Document Type : Review Article

Authors

Abstract

Carbon nanotube field effect transistors (CNTFET) with extraordinary properties such as high carrier mobility, excellent thermal conductivity and high current carrying capability could be seen as a good replacement for CMOS technology. By connecting gate and drain in carbon nanotube field effect transistor, this device operates as a diode, similar to a diode-connected transistor in a silicon device. This paper presents a novel design of a high performance current mode (CM) precision full-wave rectifier by using just four diode-tied carbon nanotube field effect transistors. All simulations have been performed in HSPICE, and show that this circuit has an excellent performance at high frequencies.

Keywords

[1] P. Sahu, M. Singh, and A. Baishya, “A novel versatile precision full-wave rectifier, ” IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 10, pp. 2742-2746, October. 2010.
[2] A. A. Ciubotaru, “Absolute-value circuit using junction field-effect transistors,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, Vol. 50, No. 8, pp. 481-484, August 2003.
[3] M. Kumngern, “Cmos current-mode precision full-wave rectifier with improved bandwidth,” Digital Information and Communication Technology and it's Applications (DICTAP), Second International Conference on. Bangkok, pp. 283 – 286, May. 2012.
[4] C. Toumazou and F. J. Lidgey, “Fast current-mode precision rectifier,” Electron. Wireless World, Vol. 93, No. 1621, pp. 1115–1118, 1987.
[5] SH. Minaei and E. Yuce, “New squarer circuits and a current-mode full-wave rectifier topology suitable for Integration,” Radioengineering, Vol. 19, No. 4, pp. 657 – 661, December. 2010.
[6] J. Koton, A. Lahiri, N. herencsar and K. Vrba, “Current-Mode Dual-Phase Precision Full-Wave Rectifier Using Current-Mode Two-CellWinner-Takes-All (WTA) Circuit,” Radioengineering, Vol. 20, No. 2, pp. 428-432, June. 2011.
[7] F. KHateb, J. Vavra and D. Biolek, “A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes,” Radioengineering, Vol. 19, pp. No. 3, pp. 437-445, September 2010.
[8] SH. Lin, Y. Kim, F. Lombardi, “Design of a ternary memory cell using CNTFETs”, IEEE Transactions on Nanotechnology, Vol. 11, No. 5, pp. 1019 – 1025, September. 2012.
[9] S. Iijima, “Helical microtubules of graphic carbon,” Nature, 345, pp. 56–58, November. 1991.
[10] S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room- temperature transistor based on a single carbon nanotube,” Nature, Vol. 393, pp. 49 – 59, May. 1998.
[11] P. L. Mceuen, M. S., Fuhrer and H. Park, “Single-walled carbon nanotube electronics,” IEEE Tran on Nanotechnology, Vol. 1, No. 1, pp. 78 – 85, March. 2002.
[12] P. Avouris, J. Appenzeller, R. Matrel and S. J. Wind, “Carbon nanotube electronics,” Proceeding of IEEE, Vol. 91, No. 11, pp. 1772 – 1784, November. 2004.
[13] J. S. Hwang, H. T. Kim, M. H. Son, J. H. Oh, S. W. Hwang and D. Ahn, “Electronic transport properties of a single-wall carbon nanotube field effect transistor with deoxyribonucleic acid conjugation,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, No. 5, pp. 1115 – 1117, March. 2008.
Majlesi Journal of Electrical Engineering Vol. 9, No. 3, September 2015
50
[14] M. Pourfath, ET AL, “Numerical Analysis of Coaxial Double Gate Schottky Barrier Carbon Nanotube Field Effect Transistors,” Journal of Computational Electronics, Vol. 4, No. 5, pp. 75 – 78, 2005.
[15] J. Guo, A. Javey, H. Dai, S. Datta and M. Lundstrom, “Predicted Performance advantages of carbon nanotube transistors with doped nanotubes source/drain,” Phys Rev B Condens.Matter,cond-mat/0 309 039, 2003.
[16] J. Deng, H. S. P. Wong, “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application - Part I: Model of the Intrinsic Channel Region,” IEEE Trans Electron Devices, Vol. 54, pp. 3186-3194, December. 2007.
[17] J. Deng, H. S. P. Wong, “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application - Part II: Full Device Model and Circuit Performan Benchmarking,” IEEE Trans Electron Devices, Vol. 54, pp. 3195–3205, December. 2007.
[18] CH. Wang, K. Ryu, A. Badmeav, N. Patil, A. Lin, S. Mitra, PH. Wong and CH. ZHou, “Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes,” Physics Letters, Vol. 93,No. 3, pp. 033101 – 033101-3, July. 2008.
[19] S. University, CNFET model Website, Stanford, [Online]. Available at: http://nano.stanford.edu/model.php?id=23.
[20] D. Biolek, V. Biolkova, Z. Kolka, “AC analysis of operational rectifiers via conventional circuit simulators,”WSEAS Transactions on Circuits and Systems, Vol. 3, No. 10, pp. 2291 – 2295, 2004.
[21] Liang, J., Chen, L., Han, J., Lombardi, F.: Design and Evaluation of Multiple Valued Logic Gates using Pseudo N-type Carbon Nanotube FETs 13(4), 695-708 (2014).
[22] M. H. Moaiyeri, R. F. Mirzaee, A. Doostaregan, K. Navi, O. Hashemipour, “A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits” IET Computers & Digital Techniques, Vol. 7, No. 4, pp. 167-181, 2013.
[23] S. L. Murotiya, A. Gupta, “CNTFET-Based Design of Content-Addressable Memory cell,” International Journal of Electronics Letters (2014), doi: 10.1080/21681824.2014.911368.
[24] S. A. Ebrahimi, P., Keshavarzian, “Fast low-power full-adders based on bridge style minority function and multiplexer for nanoscale,” International Journal of Electronics, Vol. 100, No. 6, pp. 727-745, 2013.
[25] K. Sridharan, S. Gurindagunta, and V. Pudi, “Efficient multiternary digit Adder design in CNTFET technology,” Nanotechnology, IEEE Transactions on, Vol. 12, No. 3, pp. 283-287, 2013.
[26] M. Jamalizadeh, F. Sharifi, M. H. Moaiyeri, K. Navi, O., Hashemipour, “Five new MVL current mode differential absolute value circuits based on carbon nano-tube field effect transistors (CNTFETs),” Nano-Micro Letters, Vol. 2, No. 4, pp. 227-234, 2011.
[27] P. Keshavarzian, K. Navi, “Universal ternary logic circuit design through carbon nanotube technology,” International Journal of Nanotechnology, Vol. 6, No. 10, pp. 942-953, 2009.
[28] S. Lin, Y. B. Kim, and Lombardi, “Design of a ternary memory cell using CNTFETs,” Nanotechnology, IEEE Transactions on, Vol. 11, No. 5, pp. 1019-1025, 2012.
[29] S. Lin,Y. B. Kim, and F. Lombardi, “The CNTFET-based design of ternary logic gates and arithmetic circuits,” IEEE Trans. Nanotechnol, Vol. 10, No. 2, pp. 217–225, 2011.
[30] A. Raychowdhury, K., Roy, “Carbon-nanotube-based voltage-mode multiple-valued logic design,” Nanotechnology, IEEE Transactions on, Vol. 4, No. 2, pp. 168-179, 2005.
[31] P. Keshavarzian, K. Navi, “Efficient Carbon Nanotube Galois Field Circuit Design”, IEICE Electronics Express, Vol. 6, pp. 546–552, 2009.
[32] S. Lin, Y. B. Kim, and F. Lombardi, “Design of a CNTFET-based SRAM Cell by Dualchirality Selection”, IEEE Transactions on Nanotechnology, Vol. 9, pp. 30–37, 2010.
[33] P. Keshavarzian, “Novel and general carbon nanotube FET-based circuit designs to implement all of the 39 ternary functions without mathematical operations,” Microelectronics Journal, Vol. 44, No. 9, pp. 794-801, 2013.
[34] Navi, Keivan, et al. “Two novel ultra-high speed carbon nanotube Full-Adder cells,” IEICE Electronics Express, 6.19, pp. 1395-1401, 2009.
[35] Jamjaem, Theerayut, and Bancha Burapattanasiri. “High Precision HalfWave Rectifier Circuit In Dual Phase Output Mode,” arXiv preprint arXiv:1001.2253, 2010.
[36] B., Boonchai, W. Surakampontom, “A CMOS Current-mode squarer/rectifier circuit,” Circuits and Systems, 2003. ISCAS'03. Proceedings of the 2003 International Symposium on. Vol. 1, 2003.
[37] Ch. Ch. Chang, Sh.-I. Liu, “Current-mode full-wave rectifier and vector summation circuit,” Electronics Letters 36.19, pp. 1599-1600, 2000.
[38] K., Jaroslav, N. Herencsar, and K. Vrba, “Minimal configuration versatile precision full-wave rectifier using current conveyors,” Proceedings of the European Conference of Circuits Techonology and Devices-ECCTD 2010, 2010.
[39] Monpapassorn, Adisak, et al., “CMOS High Frequency/Low Voltage Fult-Wave Rectifier,” Thammasat Int. J. Sc. Tech 8.2, 2003.
[40] R., Vanchai, R. Guntapong, “A low-voltage wide-band CMOS precision full-wave rectifier” International journal of electronics 89.6, pp. 467-476, 2002.
[41] Ramirez-Angulo, J., et al. “Very low-voltage class AB CMOS and bipolar precision current rectifiers” Electronics Letters 35.22, pp. 1904-1905, 1999.
[42] Ramirez-Angulo, J. “High frequency low voltage CMOS diode” Electronics Letters 28.3, pp. 298-299, 1992.
[43] Ch. Ch. Chang, Sh.-I. Liu, “Current-mode full-wave rectifier and vector summation circuit” Electronics
Majlesi Journal of Electrical Engineering Vol. 9, No. 3, September 2015
51
Letters 36.19, pp. 1599-1600, 2000.
[44] W. Surakampontorn, R. Vanchai, “Integrable CMOS sinusoidal frequency doubler and full-wave rectifier” International Journal of Electronics 73.3, pp. 627-632, 1992.
[45] K., Jaroslav, N. Herencsar, and K. Vrba, “Current-mode precision full-wave rectifier using single DXCCII and two diodes” Circuit Theory and Design (ECCTD), 2011 20th European Conference on. IEEE, 2011.
[46] Kh. Surachet, V. Kasemsuwan, “High performance CMOS current-mode precision full-wave rectifier (PFWR)” Circuits and Systems, 2003. ISCAS'03. Proceedings of the 2003 International Symposium on. Vol. 1. IEEE, 2003.
[47] M. Adisak, K. Dejhan, and F. Cheevasuvit, “CMOS dual output current mode half-wave rectifier” International Journal of Electronics 88.10, pp. 1073-1084, 2001.