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ABSTRACT: 

In this paper, two adaptive H∞ control schemes based on a genetic wavelet kernel support vector machine (SVM) and 

a hybrid genetic wavelet kernel SVM is presented for nonlinear uncertain systems. In these methods, wavelet kernel 

SVM is employed to establish the adaptive controller and an on-line learning rule for the weighting vector and bias is 

obtained. The H∞ control technique is combined with adaptive control algorithm and wavelet support vector machine 

to achieve the desired attenuation on the tracking error caused by wavelet-SVM approximation error and external 

disturbances. The most important characteristic of this strategy is its intrinsic robustness and its ability to treat the 

nonlinear behavior of the system. The results of simulation show that this SVM online algorithm controller is very 

effective and the SVM controller can achieve a satisfactory performance. 

 

KEYWORDS: Genetic Algorithm (GA), Wavelet Support Vector Machines, Hybrid Wavelet and RBF Support 

Vector Machines, adaptive control, H∞ Control, Nonlinear Uncertain System. 

  

1.  INTRODUCTION 

Many significant results in the control design of 

nonlinear systems have been obtained in the recent 

decades. Applications of these approaches are restricted 

because they rely on the exact knowledge of the plant 

nonlinearities. Different approximators based on the 

adaptive control techniques have been used in the past 

decades to free some exact model limitations. Some 

approximators such as neural networks, fuzzy systems 

and wavelet functions have been employed due to their 

ability to handle the nonlinear behaviour of the systems 

and their inherent robustness in presence of 

uncertainties and external disturbances. These 

approximators have been widely used to present a 

model of unknown nonlinear system for the controller 

design [1-6]. 

Recently wavelet has been introduced as a powerful 

tool for approximation [7], [8]. So, it is valuable for us 

to investigate the problem of whether a better 

performance could be achieved in the control of 

nonlinear systems if we combine the wavelet technique 

with controllers. In [1], an adaptive wavelet-neural-

network (WNN)-based H∞ position tracking controller 

has been proposed that has combined the capability of 

neural networks for on-line learning ability and the 

capability of wavelet decomposition for identification 

ability. In [9], a wavelet adaptive backstepping control 

(WABC) has been proposed for a class of nonlinear 

systems. This control scheme has combined the 

advantages of wavelet neural network identification, 

adaptive backstepping control, and L2 robust control 

techniques. In [10], a novel adaptive fuzzy wavelet 

neural sliding mode controller (AFWN-SMC) has been 

presented for a class of uncertain nonlinear systems. In 

the proposed scheme, composed of an Adaptive Fuzzy 

Wavelet Neural Controller (AFWNC) to construct an 

equivalent term of SMC and an Adaptive Proportional-

Integral (A-PI) controller has been employed as 

switching control term of SMC. The present adaptive 

control techniques, such as neural network suffers from 

some bugs such as trapping in local minimum and lack 

of generalization ability. Researchers started to search 

more efficient methods due to these problems. 

Support vector machines (SVM) proposed by Vapnik 

[11], [12] have been established as a general 

approximation tool for system modelling and 

identification. SVM uses a device called kernel 

mapping to map the nonlinear data in input space to a 

higher dimensional feature space where the data 

becomes linearly separable. There are many kinds of 
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kernels that can be used, such as the Gaussian (RBF), 

Polynomial, Sigmoid and Wavelet kernel. Wavelet 

kernel is a kind of multidimensional wavelet function 

that can approximate nonlinear functions. Wavelet 

kernel support vector machines can converge to 

minimum error with better sparsity [13-17]. In [18], the 

multiwavelet SVM has been proposed and applied to 

do regression and pattern recognition. So, wavelet 

SVM is used to find the optimal approximation in the 

space spanned by multidimensional wavelet kernels. 

Although using approximation techniques represent a 

model of unknown nonlinear dynamic systems, but 

there exist approximation errors between the real 

system and approximated model. So, to overcome the 

approximation errors and external disturbances 

problems, several robust control approaches have been 

proposed. H∞ optimization control theory is a very 

important and powerful tool for designing robust 

controllers and it has been widely used to attenuate the 

influence of approximation errors and external 

disturbances on the tracking error. 

In this paper the robust tracking control for a class of 

nonlinear SISO systems with plant uncertainties and 

external disturbances is investigated. Two 

approximation methods, wavelet kernel SVM and a 

hybrid wavelet kernel SVM based on adaptive H∞ 

control scheme, are proposed to attenuate the on-line 

tracking error caused by external disturbances and plant 

uncertainties. In the proposed control system, wavelet-

SVM techniques are adapted to approximate unknown 

nonlinear dynamics in the plant and then an adaptive 

controller is presented. 

The rest of this paper is organized as follows. Section 2 

is assigned to introduce the problem formulation. In 

section 3, the wavelet support vector machine is 

represented. In section 4, the robust adaptive H∞ 

controller based Wavelet Kernel principal component is 

presented. In section 5, the simulation results show the 

performance of the controllers and finally, a conclusion 

is provided in Section 6. 

 

2.  PROBLEM FORMULATION 

Consider the nonlinear n-th order SISO system as the 

form: 
( ) ( 1) ( 1)( , ,..., ) ( , ,..., )n n nx f x x x g x x x u d

y x

   


 (1) 

Where f and g are the uncertain but the bounded 

nonlinear functions, 
( 1)

1 2[ , ,..., ] [ , ,..., ]n T T n

nx x x x x x x R    is a vector of 

states which is assumed to be available, ,u R y R   

are the input and output of the system, respectively. D 

denotes a bounded external disturbance signal of the 

system. 

The control problem is to force the output of the system 

y to track the given reference signal
my . The output 

tracking error is denoted as: 

me y y   (2) 

The considered control goal in this paper is to design an 

adaptive H∞ controller based on wavelet for nonlinear 

SISO system (1) under plant uncertainties and external 

disturbances such that the following conditions are 

satisfied: 

(1) The boundedness of all variables of the 

closed-loop system is guaranteed. 

(2) The following H∞ tracking for the overall 

system is achieved [4]: 

2

0 0

2

1
(0) (0) (0) (0)

[0, ) [0, ]

T T
T T T Te Qedt e Pe W W dt

T L T

  




  

   

 
(3) 

where ( 1)( , ,..., )n Te e e e  , 0TQ Q   and 0TP P  , 

  denotes the sum of matching errors caused by 

wavelet-SVM approximation errors and external 

disturbances. W is the parameter vector of wavelet-

SVM, W  is the wavelet-SVM parameter estimation 

error, 0   is the learning rate of wavelet-SVM and 

0   is a prescribed attenuation level. 

Remark: while the system starts with initial conditions 

(0) 0, (0) 0e W  , then the H∞ performance in (3) can 

be reduced as: 

2
[0, ]2

2

|| ||
sup

|| ||
L T

e
 


   (4) 

Where 2

2 0
|| ||

T T
e e e dt   and 2

2
0

|| ||
T

T dt    . The 

above expression means that the L2-gain from   to the 

tracking error e  must be equal to or less than  . 

At the first stage, an adaptive wavelet-SVM algorithm 

with a parameter update law is employed to learn the 

behavior of nonlinearities. At the second stage, a robust 

controller is used to guarantee the desired H∞ tracking 

performance in (3). 

 

3.  WAVELET-SVM AND ITS PARAMETER 

SELECTION 

In this section genetic wavelet is discussed. GA 

wavelet combines the genetic algorithm and wavelet 

SVM technique. 

 

3.1.  Wavelet-SVM Regression 

In this section, SVM regression is discussed. Suppose 

the training data are: 

{( , ) | 1,2,..., }k kx y k l  (5) 

where nx R  and y R , where 
nR  represents input 

space and R represents output space. The output of an 

SVM is written as: 
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( ) ( )Tf x w x b    (6) 

where ( ) : n nhx R R   is a nonlinear mapping from 

the input data x  into a so-called high dimensional 

space, nhw R  is the weight vector and b R  is the 

bias term. Model (6) is obtained by solving the 

following optimization problem: 

2

1

1
min || || | ( , ) |

2

n

i i
i

w C y f x w 


   (7) 

Where 0   is a small positive number and 0C   is a 

regularization item. The second term is defined as: 

0, | ( , ) |
| ( , ) |

| ( , ) | ,

if y f x w
y f x w

y f x w otherwise






 
  

 
 (8) 

By using Lagrange multiplier techniques, the dual of 

this optimization problem is: 

(*) * *

1 1

* *

1 1

( ) ( ) ( )

1
( )( ) ( , )

2

l l

i i i i i
i i

l l

i i j j i j
i j

W y

K x x

     

   

 

 

    

  

 



 (9) 

Subject to: 

*

1

(*)

( ) 0

[0, ]

l

i i
i

i C

 





 




 (10) 

Then the approximation function takes the form: 

*

1

( ) ( ) ( , )
l

i i i
i

f x K x x b 


    (11) 

Where ( , )i jK x x  is a given function defined as kernel 

function of SVM and 
i  is the Lagrangian coefficient. 

In this paper, the wavelet technique has been combined 

with SVMs to construct WSVMs. The wavelet kernel is 

a kind of multidimensional wavelet function that can 

approximate arbitrary nonlinear functions. In the first 

control scheme, the wavelet kernel 

1

( , )
N

i i

i

x x
K x x h

a

 
   

 


2

2

( ) || ||
cos 1.75 exp

2

N
i i i i

i

x x x x

a a

     
         

 is chosen 

as the kernel function [15], [19]. Then in the second 

control scheme, the mixed wavelet RBF kernel 

( , )K x x 

2

2

( ) ( ) || ||
2sin 2 sin exp

2 2 2

i i i i i ix x x x x x
c c

a a 

         
      

      

 is chosen as the kernel function [16]. So, it is valuable 

for us to study the problem of whether a better 

performance could be achieved if we combine the 

wavelet SVM technique with controllers. 

 

3.2.  Parameter selection based on GA algorithm 

The GA algorithm has been proven as a powerful tool 

for solving optimal for a given optimization problem. 

In this subsection, a binary GA algorithm is used to 

find an optimal choice of the kernel width   and the 

regularization parameter C. To execute the genetic 

algorithm, a cost function should be defined in the 

beginning. The mean square error of the approximated 

system is chosen as a cost function defined by: 

2 2

1 1

1 1ˆ( ( ( )) ( ( ))) ( )
N N

i i

MSE f x i f x i e i
N N 

     (12) 

Where N is the number of given sampling steps. 

The binary GA works with bits and it begins by 

defining a chromosome or an array of variable values 

to be optimized. It provides better searching capability 

compared to the traditional gradient method because 

the gradient method searches for a problem solution 

only from a single direction, while GA algorithm is 

from multiple directions due to its cross over and 

mutation operations [20]. a simple GA works as 

follows: 

1. Start with a randomly generated population of n l−bit 

chromosomes (candidate solutions to a problem). 

2. Calculate the fitness ƒ(x) of each chromosome x in 

the population. 

3. Repeat the following steps until n offspring have 

been created: 

a. Select a pair of parent chromosomes from the 

current population, the probability of selection being an 

increasing function of fitness. Selection is done "with 

replacement," meaning that the same chromosome can 

be selected more than once to become a parent 

b. With probability pc (the "crossover probability" 

or "crossover rate"), cross over the pair at a randomly 

chosen point (chosen with uniform probability) to form 

two offspring. If no crossover takes place, form two 

offspring that are exact copies of their respective 

parents.  (Note that here the crossover rate is defined to 

be the probability that two parents will cross over in a 

single point. There are also "multi−point crossover" 

versions of the GA in which the crossover rate for a 

pair of parents is the number of points at which a 

crossover takes place.) 

c. Mutate the two offspring at each locus with 

probability pm (the mutation probability or mutation 

rate), and place the resulting chromosomes in the new 

population. If n is odd, one new population member 

can be discarded at random. 

4. Replace the current population with the new 

population. 

5. Go to step 2. [21]. 

 

4.  ADAPTIVE H∞ CONTROLLER DESIGN AND 

STABILITY ANALYSIS BASED ON WAVELET-

SVM 

In this section, the adaptive H∞ controller is designed 

for nonlinear SISO system (1) under plant uncertainties 

and external disturbances. This control scheme 
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guarantees boudedness of all the variables of closed 

loop system and output tracking of desired trajectory 

( )my t  in the presence of model uncertainty and 

external disturbance. 

First, let 
1[ ,..., ]T n

nk k k R   such that all roots of the 

polynomial 1

1( ) ...n n

nh s s k s k     are in the open 

left-hand complex plane. If the functions ( )f x  and 

( )g x  are known and 0d  , the control law: 

* ( )1
( ( ) )

( )

n T

mu f x y k e
g x

     (13) 

applied to the system (1) can result in the following 

asymptotically error for dynamic system: 
( ) ( 1)

1 ... 0n n

ne k e k e     (14) 

Which implies that the tracking error converge to zero: 

lim ( ) 0t e t   (15) 

In practice, system is uncertain and 0d   or its 

dynamic functions f(x) and g(x) are generally unknown, 

then the optimal control 
*u  cannot be applicable. To 

overcome this problem, the signal control u would be 

planned which uses an adaptive control ˆ( | )u x W  based 

on wavelet-SVM in order to approximate this optimal 

control and a H∞ robust control v to attenuate the effect 

on the tracking error caused by wavelet-SVM 

approximation errors, external disturbances and model 

uncertainties. Fig. 1 depicts the block diagram of the 

control system. 

 
Fig. 1. The system block diagram of the control scheme 

 

Consider the nonlinear system (1) with given nonlinear 

functions ( ), ( )f x g x . Then, the control input u is 

chosen as: 

ˆ( | )u u x W v   (16) 

By applying (16) to (1) and some straightforward 

manipulation, the tracking error dynamic equation is 

obtained as follows: 

* ˆ[ ( ) ( | )]
( )

d
e Ae Bv B u x u x W B

g x
      (17) 

Where 

1 2 2 1

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

... ... ,

0 0 0 ... 0 1 0

... ( )n n n

A B

k k k k k g x 

   
   
   
    
   
   
          

 

As mentioned before, Wavelet-SVM is employed to 

approximate the optimal control. The output of the 

wavelet-SVM approximator is defined as follows: 

ˆ( | ) Tu x W W   (18) 

where 1( ) [1, ( , ),..., ( , )]T

Nx K x x K x x   and 

1 2 1[ ... ]T

NW w w w  . 

The wavelet-SVM approximator is valid under the 
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following assumption: 

Assumption: let x belongs to a compact set 

{ :|| || }n

x xM x R x m    and 
xm  is a designed 

parameter. It is known that optimal parameter vector W 

lies in a convex region 

{ | || || }h

W WM W R W m    (19) 

Where 
Wm  is constant. 

The optimal weight vector *W  is defined as 

follows: 
* *ˆarg [ | ( | ) |]supmin

W M x MxW

W u x W u
 

   (20) 

Where ,W xM M  denote the sets of suitable bounds on 

W, x , respectively. Also the minimum approximation 

error is defined as follows: 
* *ˆ( ) ( | )e u x u x W    (21) 

Substituting (18), (21) into (17), the tracking error 

equation (17) can be rewritten as: 
* *

*

ˆ{[ ( ) ( | )]

ˆ ˆ[ ( | ) ( | )]}
( )

e Ae B u x u x W

d
u x W u x W Bv B

g x

  

   
 (22) 

or, equivalently 
Te Ae BW Bv B      (23) 

where ( )e d g x   , *W W W   is the adaptation 

error of the estimation parameter W . 
TW e PB   (24) 

Theorem [22]: for the nonlinear system (1) if the 

adaptive control law based on wavelet-SVM is chosen 

as (16) with the adaptive control law as (23) and the 

H∞ robust control law as follows: 

1 Tv B Pe
r

   (25) 

Where 0r   is a design parameter and 0TP P   

satisfying the following Riccati equation: 

2

2 1
0T T TPA A P Q PBB P PBB P

r 
      (26) 

Where 22r  . Then the H∞ tracking performance 

from the external disturbance to the tracking error is 

achieved for a prescribed attenuation level  . 

Proof: the Lyapunov function is chosen as follows: 

1 1

2 2

T TV e Pe W W


   (27) 

By the fact W W , time derivative of this function is 

as follows: 

1 1 1

2 2

T T TV e Pe e Pe W W


    (28) 

Substituting (23), (24), (25) into (28), we have: 

1 1 1

2 2

1 1
[

2

1 1
(2 )]

1 2 1
( )

2 2

1 1
( )

2

T T T

T TT T T T

T TT T

T TT T

T TT T

TT T T

V e Pe e Pe W WV

e A Pe e P BB Pe WB Pe
r

B Pe e PAe e PBW

e PBB Pe e PB W W
r

e A P PA PBB P e e PB
r

B Pe W e PB W





 






 


  

  

  

  

   

  

 (29) 

From the adaptive law (24) and the Riccati equation 

(26), we achieve: 

2

2 2

1 1

2 2

1
( )

2

1 1 1 1

2 2

1 1 1

2 2 2

T T T

T T T

T

T T T

TT T

V e Qe e PBB Pe

e PB B Pe

e Qe B Pe B Pe

e Qe



 

 
 

     

  

 

   
       

   

   

 (30) 

Then, we integrate (30) in [0, ]t T  and it yields: 

2

0 0

1 1
( ) (0)

2 2

T T
T TV T V e Qedt dt        (31) 

Since ( ) 0V T  , from (27), the following inequality is 

obtained from (31): 

0

2

0

1 1 1
(0) (0) (0) (0)

2 2 2

1

2

T
T T T

T
T

e Qedt e Pe dt W W

dt



  

 







 (32) 

This implies that for the nonlinear system with the 

external disturbances and the uncertain parameters 

described by (1), when the robust adaptive control law 

(16) with the parameter adaptive law (24) is applied to 

the tracking control, all signals of the closed-loop 

system are uniformly bounded and the output tracking e 

satisfies the H∞ tracking performance. 

 

5.  SIMULATION EXAMPLES 

The wavelet-SVM and the mixed wavelet RBF-SVM 

are adapted to establish the adaptive controller. Then in 

order to find the effectiveness and superiority of the 

proposed control schemes, the results are compared 

with the obtained results by a scheme of adaptive 

control based on least squares support vector machines 

(LS-SVM) [23]. 

Example 1- Duffing forced oscillation system is 

defined as follows [24]: 
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1 2

3

2 2 1

1

0.1 12cos( )

x x

x x x t u d

y x



     



 (33) 

where 3

2 10.1 12cos( )f x x t    , 1b  . 

The control objective is to maintain the system to 

track the desired reference signal sin( )dy t  in the 

presence of a square wave disturbance with the 

amplitude 1  and the period 1 for the initial conditions 

1 2(0) (0) 0x x  . The feedback gain matrix is chosen 

as 
2 1[ , ] [1,2]T Tk k k  . 

To get the training data, the Gaussian noise with zero 

mean and standard deviation 1 is selected as the input. 

Using binary GA algorithm with estimated 

generalization error as the cost function, the optimal set 

of ( , )C a  is obtained as (5.6693,9.1342)  for the 

wavelet kernel function and the optimal set of ( , , )C a   

is obtained as (7.3501,4.5611,5.2403)  for the wavelet-

RBF kernel function. 

The H∞ designing parameters are obtained as follows: 

Let the positive-definite matrix 
2 210Q I   and the 

given prescribed attenuation levels 0.1,0.05   and 

0.02,0.005r  .  

 

After solving the Riccati equation (26), we have: 

15 5

5 5
P

 
  
 

 

The proposed control scheme is applied to the system 

(33), and the output tracking error, input control and 

output response are presented. The simulation results 

are illustrated in Fig. 2 ( 0.1)   and Fig. 3 ( 0.05) 

.  
Fig. 2. Simulation results with 0.1  : A. the tracking 

error, B. the control input, C. output response. 

 

A 

C 

A 

B 
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Fig. 3. Simulation results with 0.05  : A. the 

tracking error, B. the control input. 

 

It has been concluded through simulation results that 

under the smaller value of attenuation level  , the 

tracking error is reduced while the value of control 

input is bigger. Furthermore, the value of the control 

signal and a quantitative comparison of tracking error, 

mean square error (MSE), obtained by three 

approaches, have been reported in Table. 1. According 

to this table, the value of the control input and the mean 

square error (MSE) are decreased under the two 

proposed control schemes compared with the adaptive 

control based on least squares support vector machines 

(LS-SVM). 

Example 2- in this Example, we investigate the 

performance of the inverted pendulum system under 

the proposed control scheme. 

The inverted pendulum system is considered as the 

following equation: 

1 2

2 1 1
1

2 2

1

1

2

1

1

( sin( )cos( ))
sin( )

cos ( )4[ ]
3

cos( )

cos ( )4[ ]
3

c

c

c

c

x x

mLx x x
g x

m m
x

m x
L

m m

x
m m

u d
m x

L
m m

y x












 






   (34) 

Where 
1x   and 2x   denote the angular position 

and velocity of the pole, respectively. 29.8g m s  is 

the acceleration due to gravity. 
cm  and m denote the 

mass of the cart and the mass of the pole respectively. l 

is the half length of the pole and the external 

disturbance d is a square wave with the amplitude 1  

and the period 1 for the initial condition 

1 2(0) (0) 0x x  . Assume that 
2 1[ , ]Tk k k  is the same 

as in Example 1. 

To get the training data, the Gaussian noise with zero 

mean and standard deviation 1 is selected as the input. 

Using binary GA algorithm with estimated 

generalization error as the cost function, the optimal set 

of ( , )C a  is obtained as (4.8446,3.8323)  for the 

wavelet kernel function and the optimal set of ( , , )C a   

is obtained as (1.29609,3.2009,8.4529)  for the 

wavelet-RBF kernel function. 

Assume that Q is the same as in Example 1. Consider 

also the given prescribed attenuation level 0.1,0.5   

and 0.02,0.005r  . Then the solution of the Riccati 

equation is the same as before. 

The proposed control scheme is applied to the system 

(34), and the output tracking error, input control and 

output response are presented. The simulation results 

are shown in Fig.4 ( 0.1)   and Fig. 5 ( 0.05)  . 

 

 

 

A 

B 

B 
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Table 1. The values of the control input and MSE criterion of three approaches 
  Criteria Wavelet-SVM Wavelet & RBF-SVM LS-SVM [22] 

 

0.05   

2 ( )u t dt  32.2773 10  
32.2794 10  

32.2803 10  

MSE( 2( )i
i

E e ) 53.3347 10  
53.3995 10  

53.9284 10  

 

0.1   

2 ( )u t dt  31.6928 10  
31.692 10  

31.6932 10  

MSE( 2( )i
i

E e ) 55.0016 10  
55.2643 10  

55.415 10  

 

 
Fig. 4. Simulation results with 0.1  : A. the tracking 

error, B. the control input, C. output response. 

 
Fig. 5. Simulation results with 0.05  : A. the 

tracking error, B. the control input. 

 

Once again, the simulation results show that under the 

smaller value of attenuation level   the tracking error 

is reduced while the value of control input is bigger. 

Moreover, the value of the control signal and mean 

square error (MSE) of three methods are reported in 

Table. 2. Table 2 shows that the mean square error 

(MSE) and the value of the control input are decreased 

significantly using the two proposed control schemes 

compared with the adaptive control based on least 

squares support vector machines (LS-SVM). 

 

 

 

Table 2. The values of the control input and MSE criterion for three approach
  Criteria Wavelet-SVM Wavelet & RBF-SVM LS-SVM [22] 

 

0.05   

2 ( )u t dt  170.034 169.5067 171.8786 

MSE( 2( )i
i

E e ) 57.4668 10  
58.8376 10  

41.0504 10  

 

0.1   

2 ( )u t dt  166.2227 165.462 167.3584 

MSE( 2( )i
i

E e ) 59.62923 10  
41.1737 10  

4 1.5912 10  

C 

A 

B 
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6.  CONCLUSION 

In this paper, an adaptive H∞ control scheme based on 

the wavelet-SVM and the mixed wavelet RBF-SVM is 

proposed for a class of uncertain nonlinear systems. 

First, wavelet-SVM techniques are used to establish the 

adaptive controller to learn the behaviours of uncertain 

nonlinear dynamic. Then, the effect on the tacking error 

caused by wavelet-SVM approximation errors and 

external disturbances is compensated by the robust H∞ 

controller. The obtained simulation results show that 

the proposed control scheme is quite effective in the 

control of uncertain nonlinear systems. 
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