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ABSTRACT: 

Switched systems are an important class of hybrid systems. In recent years, such systems have drawn considerable 

attentions in control field. A switched fuzzy system is a switching system, for which all subsystems are fuzzy systems. 

This paper investigates the robust state estimation problem for a class of uncertain switched fuzzy systems with time-

varying delays. By using appropriate switched Lyapunov functional approach, average dwell time scheme and H

filtering theory, delay dependent sufficient conditions for the solvability of this problem are stablished in terms of 

linear matrix inequalities (LMIs). An illustrative example is provided to show the effectiveness of the proposed 

theoretical results. 
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1.  INTRODUCTION 

Switched systems are a class of sophisticated nonlinear 

systems that consist of many subsystems and a 

switching strategy that governs switching between the 

subsystems [1]. Most of modern technological systems, 

such as water quality process [3], unmanned aerial 

vehicles [4] and automotive engine control [5], require 

several dynamical systems to describe their behaviour 

due to various environmental factors [2]. Using Takagi- 

Sugeno (T-S) approach, a nonlinear system can be 

represented by a set of local linear systems [6]. 

Switching between subsystems in switched systems can 

be assumed to be fast or slow. In stabilization context, 

specifying a dwell time is conservative [7]. On the 

other hand, time delay is very common in real 

applications because of mechanical structures, signal 

transmission over the network and so on. The existence 

of time delay in a system usually lead to instability or 

bad performance of the system [8]. Moreover, 

unknown inputs and model uncertainties are coupled in 

many practical systems. H
filtering theory is used to 

solve this obstacle [9]. In [10], H
control for 

asynchronous switched systems with mode dependent 

average dwell time is studied. 

Lots of researches have been devoted to stability of 

switched systems. Stabilization of switched linear 

systems with unknown time-varying delays under 

arbitrary switching signal has been investigated in [11]. 

Authors in [12] have studied stability of switched 

systems with stable and unstable subsystems via 

average dwell time approach. In [13] stability of 

discrete time linear systems with a constant delay factor 

is considered which render the delay-independent 

results. The case of time-varying delay is addressed in 

[14] that cause to delay dependent results. Delay 

dependent approaches are more practical and yield less 

conservative results [15]. In [16], a delay-dependent 

stability criterion, based on an input-output approach 

has been studied such that the interconnected system is 

asymptotically stable. Moreover, there have been 

several studies in the field of switched fuzzy systems. 

In [17] fuzzy reliable controllers via observer switching 

for uncertain time-delay switched fuzzy systems are 

designed. Authors in [18] have designed state feedback 

controllers for switched fuzzy systems which make the 

closed loop system quadratically stable. To the best of 

our knowledge, the problem of state estimation for 

switched fuzzy systems, has not been considered yet, 

which motivated us to study this issue. 

The aim of this paper is to study robust state estimation 

for uncertain time-delay switched fuzzy systems with 

time-varying state-delays, under arbitrary switching 

signal. The proposed approach uses switched Lyapunov 
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functional method and average dwell time approach. A 

numerical example demonstrate the effectiveness of the 

proposed approach. 

 

2.  PROBLEM STATEMENT AND 

PRELIMINARIES 

 

Consider the following switched fuzzy system that each 

subsystem is an uncertain time-delay fuzzy system: 

 

1 1

1

:   is M  ... and  is M ,  then

( ) ( )

             (B ) u G

l l l

p ip

k l l k d l d l k d
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k l k d l k d l k l k l k

R if

x A A x A A x

B f E d

y C x C x Q u D d J f

 

   

   

    

 

 



     

    

    

          (1) 

 

Where
n
x

kx  , 
n

y

ky  and 
n
d

kd   are respectively 

the state, the measured output and the unknown input 

that belongs to 
2[0, )L  . 

( ) :[0, ) {1,2,...,m}kx M      is the switching 

signal. un

ku   is the control input and fn

kf   is the 

fault vector. The matrices 

,  ,  ,  ,  ,  ,  ,  ,  ,  il dil il il il il dil il il ilA A B G E C C Q D J  are 

constant with appropriate dimensions; ,  ,  il dil ilA A B    

are norm-bounded unknown matrices representing 

parameter uncertainties, and are assumed to be of the 

form of (5). lR  denotes the lth  fuzzy plant rule in the 

th  subsystem. The global fuzzy model of the i -th 

switched subsystem is represented by: 

1

1

1

1

( ) ( )
( )

(B ) u G ( )

( )

0 ( ) 1,    ( ) 1,    i 1,...,m

i

i

i

N
il il k dil dil k d

k il k

i il il k il il k

N
il k dil k d il k il k

k il k

i il k

N

il k il k

i

A A x A A x
x

B f k E d

C x C x Q u D d
y

J f

 

 

   













     
  

     

   
  

 

   







 (2) 

Where 

1 1

( ) ( ) / ( ) , ( ) ( )
iN p

l

il k il k il k il k i k

l

M  



     
 

       

In which ( )l

i kM    is the membership function. Since 

states of the system are not often measured directly, it 

is assumed that ˆ( )kx   where ˆ
kx  is the filter’s 

state. Assume that operation space can be partitioned 

into m  regions, i.e.  1 2 ... n

m      and 

 ,  i ji j     . When ˆ
k ix   the switching 

signal is ˆ( )kx i   , which depends on 

1 2, ,.., m   . When ˆ
k ix   the switching signal is 

subjected to:  

ˆ1    , 
ˆ( )  , i

ˆ0    , 

k i

i k

k i

x
x M

x


 
 



                                  (3) 

that is, if and only if ˆ( )
k

x i   , ˆ( ) 1i k
x  . Thus 

the system (1) is described by [17]: 
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(4) 

 

Consider the discrete-time switched fuzzy system that 

is described by (4) in which 
ilA ,

dilA , 
ilB  satisfying 

 

  1 2 3( )  ( )  ( )     il dil il il k il il ilA k A k B k H F C C C         

(5)  
 

where 1 2 3,  ,  ,  il il il ilH C C C  are constant matrices and kF  

is an unknown time-varying matrix satisfying 
T

k kF F I . The considered observer is as: 

 

1

1 1

1 1
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               (6) 

 

Where ˆ
kx  is the estimated state and 

kr  is the residual 

signal, ,  ,  C ,  fil fil fil filA B D  are the filter parameters 

and ˆ ( ) ( ) ( )ff z W z f z  is the weighted fault with the 

following minimal realization: 

 

1

ωf̂ C

k k k

k k k

x A x B f

x D f

 



  


 

                                              (7) 

 

where 
kx  is the state of the weighted fault and 

,  ,  ,  A B C D     are known constant matrices. 

Denoting ˆ
k k ke r f  , which 

kr  is an estimate of the ˆ
kf

. The augmented system can be written as: 
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1

1 1

1

0 0
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0 0

k k il il

k k k k il fil il fil

k k

x x A A
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Remark 2 [19]: For predetermined scalars 0 , 

0 1  , system (8) is exponentially stable with an 

exponential H
 performance  , if it is exponentially 

stable and under zero initial conditions the estimated 

error 
ke  satisfies: 

0 0

2(1 ) ( ) ( ) ( ) ( )s T T

s k s k

e s e s s s   
 

 

                      (9) 

 

Lemma 1 [20]: For any matrix ,  0n n TW W W    

and two positive integers 
0 ,r r , which 

0 1r r  , the 

following inequality holds 

 

0 0 0

( ) ( ) ( ) ( )

T
r r r

T

i r i r i r

x i W x i r x i Wx i
  

   
      

   
                   (10) 

where
0 1r r r   . 

 

Lemma 2 [21]: For any matrices ,  TA Q Q if there 

exist a matrix T , following inequalities are equal: 

 

a. 0TA PA Q   

b. 0
*

T

T

Q A T

P T T

 
 

  
                               (11) 

 

2.1.  Filter Synthesis 

In this section a delay-dependent sufficient condition 

on the existence of the robust filters would be given. 

Theorem 1: For given scalars 0,  1   and any 

delay, ( )d k satisfying ( )m Md d k d  , if there exist the 

positive definite matrices 
1 2 1 2,  ,  ,  ,  il il il il ilP Q Q R R  such 

that the following inequalities holds: 

2 1 2 2 3 1

1

2

* 0 0 0

0* * 0 0

* * * 0

* * * *

T T T T

m il il il

il

il

il

d R d R P

R

R

I
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              (12) 

1 1 2 2

1 1 2 2
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il jl il jl il jl

il jl il jl

P P Q Q Q Q

R R

  

 

  

 
                     (13) 

* ln

ln(1 )
a a

u
T T


  


                                            (14) 

then the system (8) is exponentially stable with decay 

rate 1
(1 ) aT     and under any switching signal 

with the average dwell time 
aT  satisfying (14) where: 

1M md d d    
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Proof: First, exponential stability of the system (8) 

with 0k   is considered. Choose the following 

switched Lyapunov functional 
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(15) 

 

Where ( ) ( 1) ( ).n x n x n    by taking the difference 

between the considered Lyapunov function for two 

consecutive time instants and using lemma 1 one has: 
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Using Schur complement we have 

 

( ) ( )( ) 0 ( ) (1 ) ( )l

l
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Using (13) and (18) we have 

  0

0
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Using (19) and for considered Lyapunov functional we 

have 
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Define 1
(1 ) aT     then we can obtain that 
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From (14) we have  

1 ln(1 ) ln 1
(1 ) (1 ) 1 1

1
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therefore, using Remark 2, the augmented system with 

( ) 0k  is exponentially stable. Like the previous 

steps we have: 
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Using Schur complement from (12), we conclude: 
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Using (22) recursively gives: 
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Using (13) and (23) we can obtain: 
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Under zero initial condition, from (30) one can obtain 
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    from (26) we have: 



Majlesi Journal of Electrical Engineering                                   Vol. 9, No. 4, December 2015 

 

27 

 

0

0

1
(0, ) 1

1
1 2

(1 ) ( ) ( )

(1 ) ( ) ( )

k
N s k s T

s k

k
k s T

s k

e s e s

s s

 

   


  




 



 






                         (27) 

 

Considering k  gives: 
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therefore, for any nonzero 2[0, )k l    
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which completes the proof. 

 

Theorem 2: For given scalars 0,  1   and any 

delay, ( )d k  satisfying ( )m Md d k d  , if there exist 

the positive definite matrices 
1 2 1 2,  ,  ,  ,  il il il il ilP Q Q R R  

and matrices 
1 2,  ,  il il ilT M M  such that the following 

inequality holds 
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and desired filter can be constructed by: 
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Proof: By using lemma 2 and introducing matrices 
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2 1 2 2 3 1

1 1 1

2 2 2

* 0 0 0

* * 0 0

* * * 0

* * * *

T T T T

m il il il

T

il il il

T

il il il

T

il il il

d M d M T

Z M M

Z M M

I

P T T

    
 

  
  
 

 
   



Majlesi Journal of Electrical Engineering                                   Vol. 9, No. 4, December 2015 

 

28 

 

considering 
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P P P T T T
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, one 

can obtain inequality (29). The proof is complete. 
 
3.  SIMULATION RESULTS 

Consider following discrete-time switched fuzzy 

system consisting of two subsystems: 
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0.1

1  1.5  1.3  0

d

d
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D J Q 

     
       
     

   
      
   

 
    
 

    .5

 
The weighted matrix of the faults is considered as 

( ) 0.5 / ( 0.5)fW z z z   with the minimal realization 

0.5,  0.25,  1,  =0.5A B C D       and the time-

varying delay satisfying 2 ( ) 4d k  . Then we have 

3d  . Assuming 0.05,  1.05    yields 

 * ln / ln(1 ) 0.9512aT      . Choosing 2aT  , 

then 0.9866 1   . For 2.4   by solving (35) filter 

matrices are as follows: 

 

 

1 1

1 1

0.0042 0.0077 0.00008
,  B ,

0.008 0.0101 0.00075

C 0.039 0.0087    ,  D 0.1609

f f

f f

A
   

    
    

  

 

 

2 2

2 2

0.0033 0.0013 0.0089
,  B ,  

0.0013 0.0009 0.0042

C 0.0757 0.0156   ,  D 0.2179

f f

f f

A
    

    
   

  

 

 

3 3

3 3

0.0023 0.055 0.003
,  B ,

0.0059 0.0086 0.009

C 0.0747 0.0256  ,  D 0.1858

f f

f f

A
    

    
    

  

 

 

4 4

4 4

0.0014 0.001 0.0001
 ,  B ,  

0.001 0.0021 0.0129

C 0.1392 0.1001 ,  D 0.1474

f f

f f

A
    

    
    

  

 

 

To illustrate the effectiveness of the design, an 

unknown input is assumed to be

0.01exp( 0.04 )cos(0.03 )kd k k  . The control input 

ku is the unit step signal. It is assumed that two faults 

in different times affects each subsystems as shown in 

Figure 1. The switching signal is demonstrated in 

Figure 2. States of first subsystem, second subsystem 

and overall system are shown respectively in Figures 3, 

4 and 5. 
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Fig. 1. The Switching signal 

 

 

Fig. 2. The Fault signals 

 

 

Fig. 3. States of the first subsystem 

 

 

Fig. 4. States of the second subsystem 

 

 

Fig. 5. States of the overall system 

 

It is easy to verify that in the interval of fault 

occurrence, state variables are deviated and with the 

end of interval, they return to their initial values. Also, 

disturbance is eliminated in a large extent. 

 

4.  CONCLUSION 

In this paper, the robust state estimation filter design 

problem for uncertain switched fuzzy systems with 

time-varying state-delays has been studied. Then using 

H
 filtering, switched Lyapunov functional and an 

average dwell time approach a delay dependent 

sufficient condition for solvability of this problem has 

been obtained in terms of LMIs, and filter matrices has 

been obtained. An illustrative example verified the 

effectiveness of the method to preserve stability of the 

system even in the presence of the faults. 
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