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ABSTRACT: 

A polynomial trajectory is a time-traveled distance function used to describe trajectory of the robot. Optimal high-

degree polynomial trajectories considering initial and the final velocity conditions besides the acceleration constraints 

are desired. In this paper, a trajectory optimization problem aiming travel maximum distance for a robot that follows 

an arc based path is formulated. Along the path, the robot requires observing initial and final zero velocity conditions 

as well as certain acceleration limits. A high-degree polynomial equation along the trajectory is proposed inside of the 

optimization problem. The closed-form solution of the problem had been obtained analytically. The solution includes 

the coefficients of the any high-degree trajectory polynomial equation where the coefficients are obtained in closed-

form. Simulations several experiments show that the resulting high-degree trajectories satisfy the initial and final zero 

velocity conditions as well as acceleration constraint.  
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1.  INTRODUCTION 

The task of describing the planar motion of a vehicle as 

a function of time stands on mathematical physics [1]. 

Based on physical laws and using definitions of 

physical quantities, the equation of motion can forms. 

Also, the boundary and initial value conditions can be 

settled. Then, a motion function for a vehicle can be 

obtained based on its dynamics, and the boundary and 

initial conditions [2]. 

Time planning of a path that a robot can follow is 

called it's trajectory planning, where it's an important 

task in motion planning for ground vehicles, flying 

vehicles or robots, unmanned aircraft, spacecraft and 

etc. An infinite number of time based trajectories 

reveals to traversing a given path segment. A limited 

number of these trajectories are appreciated to be 

tracked by satisfying some optimality conditions. 

Motion with maximum speed, maximums path 

traversal, spend minimum time, or a minimum turning 

radius are some of constraint that could be considered 

in the mobile robots optimal trajectory planning. 

Optimal trajectories can be obtained from a time-

optimal problem formulation such that the optimal 

motion is usually expressed as an optimization problem 

where the objective is to minimize the time of motion 

under the constraints. Therefore, there is need to 

develop methods to solve the trajectory optimization 

problems with some of mentioned constraints. In [3], a 

number of methods for trajectory optimization 

problems based on formulating and solving constrained 

nonlinear optimal control problems are reviewed. In 

many of trajectory optimization problems, time 

minimization and distance maximization of objective 

functions are often defined by taking kinematic 

constraints such as bounded velocities, accelerations 

and/or jerks into account. The goal is to find the 

optimum traveling distance, velocity and acceleration 

functions in the time domain according to the geometry 

of the path as well as the robot kinematics and 

dynamics.  

Trajectory optimization for manipulator and mobile 

robots is studied in many papers. A manipulator 

trajectory planning with fifth-degree B-splines is 

presented in [4].  A mobile manipulator trajectory 

problem considering the torque and jerk constraint is 

investigated in [5]. Linear and circular path segments 

trajectory generation is studied in [6]. High-degree 

polynomial based S-curve trajectory planning under the 

constraints of minimum time and limited jerk-

acceleration is studied in [7]. Some researches 
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proposed the trajectories denoted by high-degree 

polynomials where a solution approach can be used to 

obtain the coefficients of these polynomials. Definitely, 

in polynomial trajectory optimization problems, 

determining the coefficients of these polynomials as 

closed-form is desired. However, closed-form solution 

is not simple to discover in many problems. In 

complicated problems, numerical solution methods can 

be used to solve the optimization problem. Solving 

trajectory problems with Particle Swarm Optimization 

[8], Genetic algorithm [9] and neural network [10] are 

only a number of numerical methods that are used in 

literature. Trajectory problems are investigated widely 

in robotic and engineering society, for example we 

could mention to [11-15]. Marine vehicles motion 

along curved paths in [16], unmanned aerial vehicles 

optimal trajectories in [17] and spacecraft maneuvers 

nonlinear trajectory optimization with path constraints 

in [18] are some engineering application of trajectories. 

In polynomial trajectory problem, third-degree 

functions are widely used to interpolate the trajectory 

under continuous velocity and acceleration constraints. 

Third-degree polynomials are not smooth enough as 

they are unable to satisfy additional boundary 

constraints [19].  Use of high-degree polynomials 

requires additional coefficient computations. The main 

approaches of problem solving to find coefficients are 

analytically or numerical tracking of solutions. 

Evolutionary and numerical methods are sometimes 

unable to find an acceptable solution. Therefore, 

analytical approaches and closed-form solutions are 

desired always as the solutions can be determined by a 

number of simple mathematical operations.  

In this paper, we proposed an any-order polynomial 

trajectory equation for describing motion of a point 

model mobile robot from its initial position to a goal 

position during a continuous set of time. The initial 

position and velocity profiles of the robot are known. 

Also, velocity profile is given in final position. Along 

the path, the robot requires to observe a certain 

acceleration limit. For describing such a motion, the 

considered trajectory function should be generating 

smooth position, velocity and acceleration profiles, 

while satisfy all mentioned constraints. We proposed a 

formulation of constrained trajectory planning problem 

where the solution can be obtained analytically. 

Proposed analytically solving procedure reaches to 

closed-form solution for coefficients of the considered 

high-degree polynomial trajectory. The closed-form 

coefficients generate an optimal trajectory function 

considering related path constraints. However, this 

problem are studied with similar condition with 

considering a third-order polynomial function in [20], 

or trajectory generation using any-order polynomial 

function for the straight path in [21], and (fourth-sixth)-

order polynomials for manipulators in [22], apart of 

literature in this work we solved the problem for a case 

of two-term any-order polynomial function in the path 

of along an arc of a circle. In circular path, the 

constraint of limited acceleration is a nonlinear 

inequality that should be satisfied during of motion 

time. In other words, an optimization problem is 

formulated for describing of an arc path trajectory 

motion.  The optimization problem is included of a 

two-term any-order polynomial function in the time 

domain under the initial and final velocity conditions as 

well as the acceleration constraint.  

The rest of this paper organized as the sequel. The next 

section describes how we formulated optimization 

problem and then, the analytical solving method is 

presented. Simulation examples are provided in the 

third Section. The last section includes conclusions. 

 

2.  PROBLEM FORMULATION AND SOLUTION  

 

2.1.  Problem Formulation  

Newtonian mechanics is an effective tool to describe 

motion equations in the form of a second order 

ordinary differential equation as, 
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where s, t and tf denote position, time variable and final 

time value, respectively. Note that first derivative and 

second derivative of position in time show velocity (v) 

and acceleration (a), respectively. Also, initial 

conditions as constant values should be given at t = 0. 

The solution s to the equation of motion describes the 

trajectory for all times 0<t<tf. 

For a vehicle follows the path that stands on an arc of a 

circle, the trajectory equation could be described by 

position s = s(t). Suppose that the vehicle travels from 

an initial angular position θ(0) to the final θ(tf) along a 

circle with radius c. The length of arc or distance 

traveled by the vehicle is, 

      ctts
ff

0                                            (2) 

In the planning of the vehicle trajectory in this path, we 

just have to determine the angular position over time. 

To this aim, assuming the vehicle moves from rest, we 

use a two-term any-order polynomial as below to 

describing its angular position. 

  3    ,   1

21
  nttt nn                                        (3) 

Now, the problem is to find λ1, λ2 in order to get an 

ptimum angular trajectory according to a formation of 

an optimization problem. Here, acceleration of the 

vehicle composed of centripetal (ac) and tangential 

components (at) (see Fig. 1). 
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Fig. 1. The vehicle follows the path that stands on 

an arc of a circle. 
 

Then, the limited acceleration constraint could be 

written as, 


tc

aa


                                                     (4) 

where   is a constant value that we will use it to 

specify allowed maximum and minimum accelerations. 

Equation (4) shows a non-linear inequality constraint 

that satisfies limited acceleration condition in the case 

of trajectory at circular paths. Note that equation (4) 

could be written in the form of, 






















22

2

t

v

c

v
       or 

 2

2

2

24

2

1



























t

s

t

s

c
                                            (5) 

 

2.2.  Solution  

As can be seen, this paper discusses the problem of the 

motion based on time for a vehicle which has two 

degrees of freedoms in circular paths. In this 

subsection, optimal trajectory formulation and the 

solutions for the circular arc path segment trajectories 

are presented with the following assumptions. The 

robot is assumed as a point model. Also it is assumed 

that the robot is stationary and starts to move from 

origin on a circular arc path and finally it is stops 

gently at the end of the time or path. Aiming to have a 

safe navigation, it is assumed that acceleration / 

deceleration of the robot are limited. 

In accordance with the assumptions mentioned above, 

the trajectory is desired to be planned satisfying the 

velocity boundary values and the acceleration 

constraint. In details, the trajectory optimization 

problem can be formulated with a high-degree 

polynomial subject to the velocity boundary condition 

and the acceleration constraint as following 

optimization problem, 
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where, equation (6a) is a constraint which implies on 

zero velocity at the end of the trajectory and inequality 

(6b) is the limited acceleration constraint. 

Finding 1 from equation (6a) and substituting in 

inequality (6b), the problem yields, 
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Differentiating inequality (6b) with respect to time, 

only one critical point obtained as, 

f
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f
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inequality (7a) held at the obtained points, it would be 

held in all instances of interval0<t<tf. Therefore, we 

can rewrite it as, 
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for the times of *t and **t , respectively. 

 

Inequalities (7b), and (7c) yields to, 
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Maximum value of cost function in equation (7) can be 

obtained with maximum value of2. Then the solution 

of the optimization problem is, 
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From equation (6a), also we obtain 1, 
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Equations (8a) and (8b) are the closed-form solutions 

of
2

 and
1
 , respectively. As a result, the maximum 

angular trajectory can be obtained by using the 

following equation, 
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and the corresponding maximum distance is, 
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Substituting equation (9) into equation (2), the vehicle 

optimal trajectory can be obtained. 

 

3.  SIMULATION EXAMPLES  

To illustrate the accuracy of closed-form solution that 

is described in the previous section, we present three 

simulation examples. 

Example 1. Considering a two-term third-order 

polynomial trajectory function, the optimization 

problem is as follow, 
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Using presented closed-form solution, to have optimal 

trajectory with aim of maximum traversal, the values of 

1 and2 should be set as below, 
























2
,

2
min

12

1

2

1

2

c

t

c

f




       and 




































2
,

2
min

3

2 12

1

2

1

1

c

t

c

t
ff




                         (12) 

and the corresponding maximum distance trajectory is, 
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Example 2. For a two-term fourth-order polynomial 

trajectory function, we have, 
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The values of1 and2 should be set as below, 
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and maximum distance trajectory is, 

f

fff

tt

t

c

t

c
tt

t
ts





















































0

,
3

,
4

9
min

4

3
)(

1

2

2

1

2

1

34

   

   


 (16) 

 

Example 3. A fifth-order polynomial trajectory, 
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For1 and2, we can get the below solutions, 
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The optimal trajectory is, 
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In the experiment motion simulations, setting tf as 5 

seconds, Φ as 1 (m/s
2
) and c as 1 meter, the profiles of 

traveled distance, velocity and acceleration in the 3
rd

, 

4
th

 and 5
th

 degree of the proposed trajectory 

polynomials are shown in Fig. 2. As can be seen in 

plots, travelled distance decreases as the degrees of the 

polynomials increase. The velocity boundary 

conditions are satisfied in the initial (t = 0) and the final 

times (t = tf) as seen. The acceleration constraint is 

satisfied during the time interval [0, tf] as shown in 

plots. Fig. 2 verifies the closed-form solutions as well 

as ensuring suitability of used the analytical problem 

solving approach in this paper 
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(c) 

Fig. 2. Motion profile plots for 3
rd

, 4
th

 and 5
th
 

degree of the polynomial trajectories, (a) traveled 

distances, (b) velocities, (c) accelerations. 

 

4.  CONCLUSION  

We have proposed a formulation for trajectory planning 

problem denoted by high-degree polynomials. 

Formulation output is a time-distance optimal trajectory 

function for the vehicle in a circular path. Closed-form 

solution is presented to find the coefficients of 

trajectory polynomial that is proposed in the 

formulation. The formulation is taken into 

consideration under the velocity conditions as well as 

the acceleration constraint. Based on the obtained 

trajectories, it is easy to compute position, velocity, and 

acceleration at any time point throughout motion where 

these values can be used in the vehicle control system. 

By motion simulating of some examples, the accuracy 

of the used analytical approach is also ensured. 
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