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ABSTRACT: 

Designing nonlinear optimal controllers such as Minimum Variance Controller (MVC) has many difficulties. Main 

difficulties are 1) in order to design controller; the explicit relations between outputs and inputs must be executable. 

This relation is defined as implicitly in the nonlinear models; 2) learning controller is a high dimensional-multimodal 

optimization task and search space can be extremely rugged and has many local minima. In this paper, in order to 

overcome these disadvantages, the model-free optimal controller scheme is utilized. In a model-free controller, as the 

system model is not available, the gradient of the cost function cannot be executed. Instead, in this paper, a relation 

between gradient of the controller with gradient of the system model is derived by inverse lemma. The controller 

structure is selected to be neural network. Then, the gradient based PSO (GPSO) is proposed to be a learning 

controller. GPSO has both advantages of global searching and convergence properties. The application of the 

methodology to the empirical CSTR model indicates that this approach gives very credible estimates of the controller. 

The simulation results indicate that the proposed method can be more accurate than existing methods. 

 
KEYWORDS: Nonlinear optimal controller, Neural networks MVC learning, Gradient based PSO, CSTR benchmark 

system. 

 

1. INTRODUCTION 

Stochastic search algorithms like PSO perform random 

walk to explore the search space. A random search 

allows stochastic optimization algorithms to escape 

from local minima and explore flat regions but is 

computationally expensive and leads to slow 

convergence rates. On the other hand, deterministic 

algorithms like gradient-based techniques converge 

faster by using derivative information to identify a 

good search direction but get stuck in local minima. 

Also deterministic techniques perform poorly in 

minimizing functions for which the global minimum is 

surrounded by flat regions where the gradient is small. 

Therefore, a hybrid algorithm that uses deterministic 

techniques with high convergence rates to locate local 

minima while using stochastic techniques to escape 

from local minima and explore flat regions is of interest 

[1]. 

Also, in the case of a function with a single minimum 

(unimodal function) the gradient descent algorithm 

converges faster than stochastic search algorithms 

because stochastic search algorithms waste 

computational effort doing a random search. For 

multimodal functions, the gradient descent algorithm 

will converge to the local minimum nearest to the 

starting point. Therefore, for solving the problem of 

convergence in stochastic algorithms some features of 

deterministic algorithms can be utilized. The gradient 

function acts like a map, and shows the direction to the 

stochastic algorithm. The algorithm starts at an 

arbitrary point on the cost surface and minimizes along 

the direction of the gradient to reach the minimum 

point, which is usually a local minimum. Therefore, if 

this feature could be utilized, it gives advantage to have 

the convergence condition in stochastic algorithms.  

The PSO has been also combined with deterministic 

methods in various ways. Izui et al. [2] combined a 

PSO with gradients, where the members of the swarm 

were divided into sequential linear programming (SLP) 

and PSO individuals. In [3], a hybrid algorithm parallel 

combination of the PSO algorithm with a gradient-

based quasi-Newton SQP algorithm is proposed for the 

optimization of engineering structures. In [4], the PSO 

algorithm is combined with a conjugate gradient-based 

local search method for the identification of nonlinear 

systems. In [5], authors combined the PSO with a 

quasi-Newton local search method for solving an 

economic dispatch problem. A local search component 

has been added to PSO to improve its convergence 
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speed for estimating the parameters of a gene network 

model [6].  

Those methods have a superior capability in terms of a 

faster convergence, but they cannot be applied to non-

differentiable functions. Even worse, in some 

application, cost is not produced by the mathematical 

function, for example it may be determined by a 

program code. Therefore the gradient is not defined for 

these applications. Besides, it must be noted that 

stochastic algorithms have a black box view to the cost 

function. Any information about the gradient of the 

cost function will not be accepted. Otherwise, the 

algorithm performance will drop dramatically. This 

disadvantage can, however, be solved by approximately 

deriving the gradient. 

A method using the gradient by a simultaneous 

perturbation [7] has previously been proposed as PSO 

techniques that use the sensitivity of the object 

function. However, this method has a difficulty in that 

its effectiveness declines as the number of variables of 

the object function increases [3]. There is a main 

concern on accuracy of methods using approximation 

of the gradient function. Notice that the gradient 

function is usually approximated by points which may 

be far from together. Therefore, approximated methods 

cannot be much effective in promoting the convergence 

of the algorithm. In this paper, the gradient function is 

not approximate; instead, in the special application of 

designing model-free optimal controller, the gradient 

function is calculated by inverse lemma. In the classic 

methods of designing optimal controllers, there is need 

to calculate gradient of a quadratic cost function, and to 

calculate it there is need to determine the gradient of 

the system model. However, in model-free control 

design, there is no information of the system model. In 

this paper, to overcome this problem, the inverse 

lemma is utilized. The inverse lemma relates the 

gradient of the system model to gradient of controller 

dynamic. Consequently, gradient based PSO can be 

utilized to optimize the controller.  

In this paper, the controller is structured in the form of 

a neural network. The appearance of neural networks 

(NNs) helps one considerably in the design of such a 

needed controller. Theoretically, as long as a sufficient 

number of neurons are employed, a neural network can 

approximate a continuous function to an arbitrary 

accuracy on any compact set [8]. It is thus natural and 

of practical significance to investigate the proper way 

of introducing neural networks in nonlinear controller 

designs for an improved control performance, which is 

the focus of the paper. The application of the 

methodology to the empirical CSTR model indicates 

that this approach gives very credible estimates of the 

controller. The simulation results indicate that the 

proposed method can be more accurate than existing 

methods. 

The organization of this paper is as follows: In section 

II, the proposed algorithm (GPSO) is introduced. Then, 

in section III, a method to calculate gradient of the cost 

function is explained. 

In section IV, framework of GPSO for optimal model-

free controller design will be discussed. At last, section 

V presents the results of the proposed algorithm to 

design controller for a CSTR benchmark process.  

 

2. GRADIENT BASED PSO (GPSO) 

The PSO method is a stochastic algorithm that 

simulates the movement of flocks of the birds [1]. It 

can be employed to minimize a general function J(x), 

where x is a vector in a multidimensional space. In this 

approach a population of individuals (potential 

solutions of J(x), called particles) update their 

movements to reach the target point [the global minima 

of J(x)] by continuously receiving information from 

other members of the flock. In the classical PSO [9], 

the nth particle velocity and position are updated 

according to 

   igiLii xPrcxPrcwVV  22111  (1) 

and 

11   iii Vxx   (2) 

Here, w is inertial weight factor, PL is the local best 

vector of the nth particle, and Pg is the global best 

vector; c1 and c2 are adjustable social factors; r1 and r2 

are random numbers (between 0 and 1); α is the time 

step. 

On the other hand, in the gradient descent method, J(x) 

is minimized by updating the vector xi according to 

 iii xJxx  1
 (3) 

where,  ixJ  is gradient of the cost function which 

works as the search direction. 

In the GPSO algorithm, the PSO algorithm is first used 

to approximately locate a good local minimum. Then a 

gradient based local search is done with the best 

solution found by the PSO algorithm as its starting 

point. If the best solution found by the PSO algorithm 

(G) has a larger cost than the final solution found by 

local search during the previous iteration (L), then L is 

used as the starting point for the local search. This 

ensures that the local search is done in the 

neighborhood of the best solution found by the GPSO 

in all previous iterations. Thus, the PSO algorithm is 

used to go near the vicinity of a good local minima and 

the gradient descent scheme is used to find the local 

minimum accurately. Next, this accurately computed 

local minimum is used as the global best solution in the 

PSO algorithm to identify still better local minima and 

the cycle is repeated. In this way the GPSO algorithm 

locates the global minimum by locating progressively 

better local minima. The main problem in realization of 
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this algorithm is calculating the gradient part (3). Next 

section proposes a solution to this problem. 

 

3. GRADIENT CALCULATION TO 

USEINMODEL-FREE CONTROLLER DESIGN 

Optimality of a controller is measured by a cost 

function. The most common cost function is defined in 

the sense of minimum variance as follows [10]: 

(4) 
 
   tqutpy

EJ







 2

 

where y is output, u is control signal, p and q are 

positive definite (PD) weights and E(.) is expected 

value operator. Consider a discrete time system given 

by the nonlinear model as 

(5) y(t+1) = f(y(t), u(t)) 
where y(t) is the output, u(t) is the input, and f(.) is the 

output transition map assumed to be at least 

continuously differentiable. Assuming the controller is 

structured as follows: 

(6)         tdtytygtu ,,,    
where Θ(t) are the controller unknown parameters, 

time-dependent in the general case and need to be 

adaptively optimized. In this case, we propose using an 

optimization method to determine controller unknown 

parameters. To implement this idea, suppose an 

arbitrary structured controller as (6), where θ (unknown 

parameters) will be found by GPSO. The gradient 

descent part of the algorithm is calculated as 








J
ii 1

 (7) 

where 

   












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






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


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








tu
q
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pE

J
2  (8) 

Using Eq. (5) and (6), we have 

   
































g
q

u

f
ptqupf

J
2  (9) 

Then the unknown parameters θ can be update 

recursively as follows: 

   











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


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







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


g
q
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ptqupfii 21

 

(10

) 

To calculate this, there is a fundamental problems: 1) 

There is a need to calculate 
 
 tu

tf




, where calculating it 

by considering the system has unknown properties (in 

this study, the system is considered to be black box) 

and is nonlinear, and not applicable. To fulfill this 

problem, we relate the value of above gradient to 

calculable gradient function 
 
 tu

tg




. As the controller 

structure is known (ex. neural network), there is not 

any problem in using gradient of the controller 

structure. To derive the relation between the two 

gradient functions we need some assumptions. The 

following notations are used in the paper: for all x in 

the domain of arbitrary function h: 

 
 

 
 

 
 

1

2

,
;

,
, : ;

,
, :

h x y
Dh x

x

h x y
D h x y

x

h x y
D h x y

y
















 

Assumptions:  

(1) Throughout the paper we shall assume that the 

gradient of f with respect to y, D1f(y, u), is nonsingular 

everywhere. Note that this is not too restrictive an 

assumption as it is automatically satisfied for discrete 

time systems resulting from discretizing continuous 

time systems that are both forward and backward 

integrable. 

(2) System (5) is strongly controllable, i.e. the 

controllability matrix, D2f(x, u), has full rank. 

Lemma (1): For all x, z and u we have u = g(z, x) ⇐⇒ 

z = f(x, u). 

Proof: Assumption (2) guarantees the existence of g : 

y×y → u , which uniquely determines u in terms of x 

and z or u = g(x, z). 

Lemma (2): the gradients of g(z, x) are given by D1g = 

(D2f)
−1 

and D2g = −(D2f)
−1

D1f. 

Proof: Consider the mapping 

    uxfxuxf ,,,   (11) 

By above assumptions, the gradient of this mapping,  

  











fD

fDI
uxfD

nn

2

1

0
,  (12) 

is invertible at any x and u. The inverse function 

theorem [11] implies that  uxf ,  has a unique local 

inverse  zxf ,1
 such that     zxzxff ,,1 

. 

Moreover,      .,,
1

 uxfDzxfD  We know from 

Eq. (12) that 

  
  


















fDfD

fDI
uxfD nn

1

1

2

1

21

0
,  (13) 

Therefore, lemma is proved. Notice that 

    zxgxzxf ,,,1 
.  

To have high performance tracking controller, the best 

option is that we select the controller to be inverse of 

system dynamic, or: 

      

    

1 , ( ) 1

, ( ) 1

d

d

u t g y t y t y t

f y t u t y t

    

 
 (14) 
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where yd(t+1) is desired output value (i.e. reference 

input). Therefore, we can utilize lemma 2 for system 

model (f) and controller structure (gθ). Then the 

unknown parameters θ of the controller can be updated 

recursively as follows: 

  
   

1

1

2
1

i

i

d

g g g
pf qu t p q

y t y t



 








                         

 (15) 

where λ is step length. With supposing the cost function 

is convex, derivative function is Lipschitz continues, 

and λ is enough small, convergence to a local minimum 

can be guaranteed. The number of iterations required in 

the worst case to generate an iterate ϴk such that cost 

value J  (for ɛ> 0 arbitrarily small) is known to 

be at most O(ɛ-2
) [12]. A complexity analysis for 

algorithm (38) is available for the case where the 

objective function is convex, see [13], for instance. In 

the case, when the algorithm is trapped in local 

minimum, global searching property of the PSO will be 

helpful.  

 

4. FRAMEWORK OF THE GPSO FOR OPTIMAL 

MODEL-FREE CONTROLLER DESIGN 

In this paper, the controller is structured in form of a 

two-layer neural network. The neural networks are then 

trained for a proper number of iteration by GPSO. At 

each iteration, the controller is applied on loop, and the 

output variance is calculated for each particle and all 

the neural networks are ranked based on the values of 

their fitness indices. Fig. 1 shows the flowchart of the 

mentioned GPSO procedure when the neural network 

minimum variance controller NN-MVC designing are 

adopted. 

 

-Creation of the initial population with proper particle 

dimension 

-Generate initial network (controller) 

-while not Stop Criterion do 

-Let G be the best solution or G=min(f(θ)). 

-Produce new particles using Eq. (1) and (2). 

- Deterministic derivative based local search with G as 

starting point using Eq. (15) 

for (for all individuals) 

- Set up corresponded NN-MVC by weights values 

defined in individual 

- Sample output of loop on control of  NN-MVC 

- Evaluate the cost (variance of sampled data)  

end for 

- Determine global best particle among gradient 

descent and PSO particles 

-Consider new individuals as the new weights of  NN. 

-end while 

Fig. 1. Pseudo-code for NN-MVC design by GPSO 

 

A block scheme of the heuristic neural network process 

model is in Fig. 2. 

 ,,uyg
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+
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O
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n
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Fig. 2. Closed-loop feedback control system structure 

for the nonlinear plant. 

 

Fig. 3 shows the structure of a two layered feedforward 

neural network. It shows that the total number of 

interconnecting weights and thresholds is ((n+m+1) ˟ p 

+2 p + 1). These data comprise (n+m+1) ˟ p 

interconnecting weights between input neurons and 

hidden neurons, p interconnecting weights between 

output neurons and hidden neurons, p thresholds of 

hidden layer, and one thresholds of output layer. All of 

them programmed to be individual with real numbers. 

In the encoding strategy, every particle is encoded for a 

vector. For feedforward neural network (FNN) 

involved, each particle represents all weights of a 

FNN’s structure. For example, for the FNN with the 

structure of (n+m+1)–p–1, the corresponding encoding 

style for each particle with ((n+m+1) ˟ p+ 2p + 1) 

unknown variables can be represented as: 

 11 1 11
, , , , , pn m p p

particle

w w b b    



 
 

 (16) 
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Fig. 3. The structure of a two layered feedforward 

neural network. 

 

5. SIMULATION RESULTS 

Chemical or biochemical processes are, in general, 

highly nonlinear, especially when operated over a wide 

range of operating conditions. The nonlinearity is 

generally related to reaction kinetics or the nonlinearity 

of physical properties [14, 15]. Here, the study example 

is a CSTR with a first-order exothermic reaction 

provided in [16]. It is a typical chemical engineering 

process which is intensively studied at the control and 

system identification areas. The dynamic behavior for 

this CSTR can be described using the following non 

dimensional normalized equations: 

 

   

2

2

2

2

1

1 1 1

1

2 2 1 2

1

1

x

x

a

x

x

a c

x x D x e

x x BD x e x x


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



   

     

 (17) 

x1 and x2 are the reactor dimensionless concentration 

and temperature respectively. The case study under 

consideration is a regulation of outlet reactant 

concentration x1. Coolant temperatures xc is the 

manipulated variable. One set of parameter values B = 

1.0,  = 0.3,  = 20.0 and Da = 0.072 which yields an 

open-loop system with a single stable steady state for 

all fixed values of the input is selected in [0 23] ([17]). 

The detailed nomenclature for this exothermic CSTR 

can be found in [18]. 

The input range real value range is [0 23]. The output is 

bounded at range [0 1] for introduced input range [17]. 

The starting situation is a stable steady situation with 

the initial states x1 = 0.6219 and x2 = 3.7092 and input 

ut = 14. The output Yt with an additive linear 

disturbance is: 

Yt = (x1)t + Dt  (18) 

where Dt is an additive disturbance. The disturbance 

model is an AR (AutoRegressive) model defined as: 

195.01 


q

e
Dt t

 (19) 

where et is a Gaussian white noise with zero mean and 

variance 0.001. The realizations of Yt  are shown in 

Fig. 4 for the AR disturbance model. The output 

variance is 0.01. 

 
Fig. 4. Realizations of open loop control signal and 

output data. 

 

When the unit proportional feedback controller is been 

used, the variance of output increases and the output is 

going to be unstable (Fig. 5). 

 

 
Fig. 5. Realizations of proportional closed loop control 

signal and output data. 

 

NN-MVC has been designed by GPSO method for 

decreasing output variance of the benchmark system. 

Population size for GPSO is equaled to 30; and it is 

repeated 50 times for reducing the effect of the chance 

and increasing the reliability in the results. The best 

results among 50 ones are included in the paper. They 

are run until the pre-specified generation 100 reached. 

The initial population is generated randomly with 

variance 3. The weights values are bounded in range [-

10 10]. Fitness of each particle is computed by 

minimum optimization method (GPSO). Fitness is 

given by the cost function J for each particle of the 

population, where J is variance of output as shown in 

Eq (4).  
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GPSO is used to evolve the weights of the feedforward 

neural network with two layered structures. The input 

layer has 8 nodes (n=3, m=4); the hidden layer has 10 

hidden nodes; output layer has one output nodes (Fig. 

3). Assuming that the hidden transfer function is 

sigmoid function, and the output transfer function is a 

linear activation function. Fig. 6 shows the disturbance, 

control signal and output data of the NN-MVC 

designed controller by GPSO. Optimized weights 

values found by GPSO are included in Appendix A. 

The minimum variance (minimum cost) found by the 

algorithm is 
51037.9  . 

 

 

 

 
Fig. 6. Realizations of disturbance, NN-MVC control 

signal and output data. 

 

5.1. Compare results with performance assessment 

toolbox [19] 

The multivariate controller performance assessment 

toolbox was developed by the Computer Process 

Control Group at the University of Alberta to allow 

performance assessment of linear controller using the 

Filtering and Correlation (FCOR) Algorithm [19]. 

Huang et al. [20] developed a filtering and correlation 

analysis algorithm (FCOR) for MIMO feedback control 

performance assessment. The control performance 

index is a single scalar usually scaled to lie within [0, 

1], where values close to 0 indicate poor performance, 

and values close to 1 mean better/tighter control. This 

indeed holds when perfect control is considered as 

benchmark. Here, the performance of designed NN-

MVC will be assessed by the performance assessment 

toolbox. The CSTR is linearized around the operating 

point. Then the linear model and output data of NN-

MVC is applied to performance assessment toolbox. 

Fig. 7 shows the result of assessing the designed 

controller. It shows that the minimum variance index of 

the designed controller is 1.0281 which is higher than 

1, so the controller is better than optimal linear MV 

controller.  

 

5.2. Comparing with results reported in [18]: 

Above results is admitted by the approach used in [18] 

for this system in the similar situation, in which linear 

method reach higher cost (
31051.3  ) than it is 

reached in this paper (
51037.9  ). In other words, 

the designed nonlinear controller has been reached to 

lower minimum variance control than optimal linear 

method. The results show that the algorithm GPSO 

significantly improved the model-free controller in 

decreasing output variance (cost). 

 
Fig. 7. Assessing the designed controller with the 

performance assessment toolbox which admits the 

optimality of the controller.  

 

6. CONCLUSION 

In this paper, the model-free optimal controller scheme 

is utilized. In a model-free controller, as the system 

model is not available, the gradient of the cost function 

cannot be executed. Instead, in this paper, a relation 

between gradient of the controller with gradient of the 

system model is derived by inverse lemma. The 

controller structure is selected to be neural network. 

Then, the gradient based PSO (GPSO) is proposed to 

learning the controller. GPSO has both advantages of 

global searching and convergence properties. The 

application of the methodology to the empirical CSTR 

model indicates that this approach gives very credible 

estimates of the controller. The simulation results 

indicate that the proposed method can be more accurate 

than existing methods. 
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Appendix A: 

 
Table 1. optimized weights values found by GPSO 

Wij j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 

i=1 -2.7763 -6.1925 -1.9250 3.8635 -9.1758 6.4905 -1.2005 1.4717 -8.5236 -5.9282 

i=2 -9.4702 -3.9335 3.8145 9.3231 -9.1604 -8.2248 3.2686 2.4480 -3.8139 7.6736 

i=3 -2.3129 3.4643 -4.2889 -7.7741 9.0812 9.7962 10.441 -3.6376 -2.9007 3.3854 

i=4 -8.8890 1.6644 -1.9433 -1.3899 -5.0392 -7.2601 0.4129 -2.6124 -2.4283 -0.7510 

i=5 -2.8017 8.3229 -2.0793 4.4994 -4.6531 -5.2277 -6.6811 1.9210 1.9698 10.059 

i=6 8.8527 5.9410 2.1878 8.4467 0.6824 0.7140 -5.3913 6.1774 1.6181 -10.700 

i=7 3.5483 9.7259 0.0255 0.0473 3.5124 -9.5840 -7.6692 7.0161 5.6355 8.9759 

i=8 -3.8701 6.6945 5.9696 6.2335 -1.9470 2.2898 7.3698 1.8640 -9.8845 -5.5877 

W1j j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 

o=1 -6.0359 4.6606 -9.6462 0.0184 3.5209 0.5573 -7.1110 -8.0571 -6.6251 -3.7482 

bj j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 

 8.6359 1.5325 -7.5322 3.5676 -2.8395 5.1268 -4.1412 1.5594 9.1530 4.3419 

b11 9.1845          

 
where wij is the connection weight from the ith node of input layer to the jth node of hidden layer, bj is the threshold of 

the jth hidden layer input, w1j is the connection weight from the jth hidden node to the output node, b11 is the threshold 

of the output unit.  


