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ABSTRACT: 
This paper suggests an oracle NLMS algorithm and a simple Bayesian impulse noise detection normalized least-mean-

square (NLMS) algorithm as an effective adaptive algorithm against impulsive noises. Initially, to have a fast 

algorithm, an optimization problem is introduced and then an oracle NLMS algorithm is devised. It has the largest 

reduction in misalignment error at each iteration with respect to the previous iteration. Oracle NLMS algorithm needs 

the values of impulse noises and hence is not practical. To have a practical variant of oracle NLMS algorithm, a 

simple Bayesian impulse noise detection NLMS algorithm is proposed. It is based on a MAP detection criterion and 

the impulse noise detection rule is proved to be a comparison of the absolute value of the error of the adaptive filter 

with a threshold and hence is very simple. Also, by assuming the sparsity of the impulse noises, the value of threshold 

is obtained via a simple statistical estimation.  The simulation results in both dispersive and sparse system cases show 

the effectiveness of the suggested algorithm in terms of convergence rate and complexity. 

KEYWORDS: Adaptive filter; NLMS algorithm; impulsive noise

1.  INTRODUCTION  

Adaptive filters have a wide range of application in 

signal processing including system identification, 

channel estimation, and echo cancelation [1]. Among 

various algorithms, NLMS algorithm is the most 

widely used algorithm in such applications due to its 

simplicity and robustness [1]. Unfortunately, NLMS 

and other adaptive algorithms suffer from impulsive 

noises which naturally exist in real world applications 

[2]. Hence, many different schemes are suggested to 

combat the impulsive noises. 

The common trick to make the adaptive filters 

robust against impulsive noise is to use an appropriate 

cost function. Then, a gradient based adaptive 

algorithm could be used to minimize this cost 

function. Two main category of the cost functions are 
1l -norm and 

2l -norm. 
1l -norm based adaptive 

algorithms offer robust performance with respect to 

impulsive noise in comparison to 
2l -norm based 

adaptive algorithms. For the first time, 
1l -norm and 

pl -norm has been used for this purpose in [3] to 

combat against non-Gaussian stable processes. So, a 

normalized least mean absolute deviation (NLMAD) 

algorithm and a normalized least mean p -norm 

(NLMP) algorithm is proposed in [3], which uses 
1l -

norm and 
pl -norm, respectively. Also, robust mixed 

norm (RMN) algorithm used a mixed 
1l  and 

2l -norm 

of the adaptive filter error [4]. In sequel, a normalized 

robust mixed norm (NRMN) adaptive algorithm was 

suggested for system identification [5]. In addition, a 

class of adaptive algorithms employing order statistic 

filtering was presented [6]. Also, a robust M-estimate 

adaptive filtering was suggested in [7] in which a new 

cost function based on an M-estimator is used to 

suppress the effect of noise. Besides, a family of 

adaptive algorithms robust to impulse noise was 

introduced which can be considered as a sign-error 

variant of the LMS algorithm [8]. Additionally, an 

adaptive threshold nonlinear algorithm is proposed in 

[9] for adaptive filters to be robust against impulse 

noise.  Moreover, an affine projection sign algorithm 

(APSA) was suggested in [10] which uses an 
1l -norm 

of the error with a constraint on the filter coefficients. 

After that, some other variants of it was proposed 

which proportionate affine projection sign algorithm 

for the application of network echo cancelation [11], 

kernel affine projection sign algorithm [12] and robust 

shrinkage affine projection sign algorithm [13] to 

name a few. Besides, a robust variable step-size 

NLMS algorithm was suggested which switches 

between 
1l -norm and 

2l -norm [14]. In addition, a 

new cost function based on hyperbolic tangent 

function is introduced in [15] which results in a robust 

algorithm with a step-size scalar. Recently, a 

continuous mixed p -norm (CMPN) adaptive 

algorithm has been proposed which continuously 
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combines all 
pl -norms for 21  p   [16]. 

Recently, an exact NLMS algorithm with 
pl -norm 

constraint is also suggested [17]. 

In this paper, we assume a general cost function 

based on the error value of the adaptive filter. Then, 

we consider all the gradient-based adaptive algorithms 

based on this general cost function. This can be 

regarded as an adaptive filter with a general variable 

step-size. To calculate the general step-size, and to 

have a fast convergence rate, an optimization problem 

is introduced which aims to have the largest reduction 

in misalignment error with respect to the previous 

iteration. This leads to a variant of NLMS algorithm 

which is called oracle NLMS. It is impractical since it 

needs the value of impulse noise. So, a Bayesian 

impulse noise detection NLMS (ID-NLMS) is 

proposed where impulse noises are detected by the 

algorithm. Our algorithm is different from a detection 

guided NLMS algorithm [18] which detects the 

activity of the taps of the sparse filter. The final 

criterion for the impulse noise detection which we 

derived is similar to those suggested in [9]. But, they 

propose an adaptive threshold heuristically, while we 

derive the threshold mathematically and from a 

Bayesian point of view. Simulation results show the 

effectiveness of the ID-NLMS algorithm in terms of 

speed of convergence and complexity in comparison 

to some other algorithms. 

The organization of the paper is as follows. After 

introduction, we explain our problem in section 2. In 

section 3, we introduce an oracle NLMS adaptive 

algorithm. Section 4 suggest a Bayesian impulse noise 

detection NLMS which is a practical variant of oracle 

NLMS. Simulation results are presented in section 5, 

and the paper finally concludes with a conclusion. 

 

2.  PROBLEM FORMULATION 

 An unknown system is assumed to have an 

FIR impulse response which is 
T

Noooo www ],...,,[ 1,1,0, w where N is the length 

of the impulse response. The input vector of the 

unknown system at time index k  is 
TNkxkxkxk ]1(),...,1(),([)( x . An 

adaptive filter with weight vector 
T

N kwkwkwk )](),...,(),([)( 110 w  is used to 

iteratively estimate the unknown impulse response 

based on the output error of the adaptive filter. The 

output error is )()()()( kkkdke T
xw , where 

the desired signal )(kd  is comprised of the output 

)()( kky T

o xw  of the unknown system ow , and of 

impulsive noise )(kI  and background noise )(kv . 

So, the desired signal is 

)()()()( kIkvkkd T

o  xw . The goal of the 

adaptive filter is to update the weight vector iteratively 

to estimate the unknown impulse response. 

 

3.  THE ORACLE NLMS 

 To combat impulsive noises, various adaptive 

filtering algorithms use different cost functions based 

on the output error of the adaptive filter )(ke , where 

the 
1l -norm and 

2l -norm are two most well-known 

cost functions. Here, we assume a general cost 

function based solely on the present error term which 

is assumed to be ))(()( kefkJ  . Therefore, the 

gradient based adaptive algorithm based on this cost 

function is 

)()()1( )( kJkk kwww                        (1)  

which results in 

)())(()()1( ' kkefkk xww                   (2) 

and 

)()()()1( kkkk xww                           (3) 

Where 
'f  is the derivative of the function f  and 

the term ))(()( ' kefk    is the general step-size. 

By this notation, devising a gradient based adaptive 

algorithm is equivalent to obtain the step-size )(k . 

To have a fast converging gradient based algorithm, 

we suggest the following optimization problem: 
2

2

2

2
||)(||||)1(|| kkMin oo wwww 

                                                                        (4)  
where

2

2

2

2 ||)(||||)1(||))(( kkkeg oo wwww   

and (4) aims to obtain the largest reduction in 

misalignment error 
2

2||)1(||  kwwo  with respect 

to previous iteration. Substituting (3) into (4), and 

after some calculations, we have: 

)()()())()((2))(( 2 kkkkkkeg T

o xxww  

                                                                       (5) 

To minimize ))(( keg  with respect to )(k , the 

step-size should be equal to: 

)()(

)())((
)(

kk

kk
k

T

T

o

xx

xww 
                          (6) 

Some simple manipulations show that: 

)()())(()( kkkke T

o  xww                   (7) 

where )()()( kvkIk   is the noise term which 

is the sum of the background noise )(kv  and 

impulsive noise )(kI . Replacing (7) into (6), we have 

)()(

)()(
)(

kk

kek
k

T
xx





                                          (8) 
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Hence, the final gradient based adaptive algorithm 

is 

)(
)()(

)()(
)()1( k

kk

kek
kk

T
x

xx
ww





           (9) 

 We call the adaptive algorithm in (9) as 

oracle NLMS because it needs the value of the noise 

term )(k . When impulse noise is large in 

comparison to the error )())(( kk T

o xww  , then 

)()( kke   and hence the step-size equals 

0)( k . So, the adaptive algorithm does not 

update the weight vector of the adaptive filter when 

the impulse noise is large. However, oracle NLMS is 

the optimum solution of the optimization problem in 

(4), but it is impractical as an adaptive filter since it 

needs the value of the impulse noise )(k . In the next 

section, we propose a simple practical NLMS 

algorithm to overcome this drawback. 

 

4.  BAYESIAN IMPULSIVE NOISE DETECTION 

NLMS 

There are some statistical models for impulsive 

noise [2, chapter 13]. Among them, for simplicity, we 

suppose the impulse noise )()()( kakqkI   has a 

Bernoulli-Gaussian distribution [2,4] which 

1,0)( kq  is a Bernoulli random variable with 

probabilities pp 1, , and )(ka  is the amplitude of 

impulse noise when the impulse is present and is 

assumed to be Gaussian. When the large impulse 

occurs ( 1)( kq ), then )()( kek   assuming that 

the error term )())(()( kkk T

o xww   is much 

smaller than )()( kak  . So, )(k  would be zero 

and the filter weight vector is not updated. On the 

other hand, when impulse is not present, 

then 0)( k , So, 
)()(

)(
)(

kk

ke
k

T
xx


  and hence 

the recursion is an NLMS update formula with a step 

size equal to one. Therefore, the simple impulsive 

noise detection NLMS algorithm is: 

                














0)(ˆ)(

1)(ˆ)(
)()(

)(
)(

)1(

kqkw

kqk
kk

ke
k

k
T

x
xx

w
w                                                                      

(10) 

where )(ˆ kq  determines the presence of impulse 

noise. To determine )(kq , a maximum a posteriori 

(MAP) detection rule is used. Due to the central limit 

theorem (CLT), we assume a Gaussian distribution for 

)(k  with zero mean and variance
2

e . The MAP 

detection criterion is 



 


Otherwise

kqkepkqkep
kq

0

)0)(|)(()1)(|)((1
)(ˆ                                                                                       

(11)   

where the posterior probabilities )1)(|)(( kqkep  

and  )0)(|)(( kqkep  should be calculated. Based 

on (7), we have )()()( kkke   . )(k  is a 

Bernoulli-Gaussian random variable with the 

following probability density function (PDF): 

),0())(()1())(( 2

 pNkpkp       (12) 

where p  is the probability of occurring impulse 

noises, 
2

  is the variance of impulses, (.)  is the 

Dirac impulse function, and ),( 2mN  is the 

Gaussian PDF with mean m  and variance 
2 . 

Hence, )(ke  would be a mixture of Gaussian random 

variable 

),0(),0()1())(( 2

2

2

1  pNNpkep       

where 
222

1 e    and 
22

2 e  . Therefore, 

),0()1)(|)(( 2

1pNkqkep   and 

),0()1()0)(|)(( 2

2Npkqkep  . Some 

manipulations on the detection rule in (11) leads to the 

final criterion for presence of the impulse noise: 

Thke |)(|                                                            (13) 

where Th  is the optimum threshold in MAP sense: 

2

1

2

2

2

1

11

)
1

ln(2












p

p

Th                                  (14) 

 If impulse noises are large or the variance 
2

  is 

much larger than error variance
2

e , then 21    

and the optimum threshold can be approximated as 

2

2

12

2 )
1

ln(2 



 




p

p
Th                   (15) 

where )
1

ln(2
2

1






p

p
   is a parameter that 

control the detection probability and false alarm 

probability of impulse noises [19]. To calculate this 

threshold, we use the following formula: 
2

2

2

1

2 )1()}({  ppkeE                        (16) 

Assuming that the presence of impulse noise is 

sparse 1p   and  
2

2

2

1 )1(  pp  , the 

variance of 
2

e  can be estimated as 
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)}({ 22 keEe  . )}({ 2 keE  can be simply 

calculated by the following recursion: 

)()1()()1( 22

2

2

2 kekk               (17) 

where   is a forgetting factor close to one. 

The impulse noise detection criterion which we 

obtained is similar to those suggested in [9]. The 

difference is that we derived the final impulse noise 

detection criterion mathematically and from a 

Bayesian point of view, while [9] proposes an 

adaptive threshold heuristically but analyzed 

mathematically.  

 

5.  SIMULATION RESULTS 

Experiments were performed in a system 

identification application in presence of the both 

impulsive and background noise. Background noise 

)(kv  was modeled by an independent white Gaussian 

noise with a 20 dB signal-to-noise ratio (SNR). In 

addition, an impulse noise with a Bernoulli-Gaussian 

(BG) distribution was added to the system output. The 

variance of impulse noise is equal to 1002  , and 

the probability of being impulsive is 02.0p . The 

unknown system ow  was assumed to be a 100-tap 

impulse response. Two cases of dispersive and sparse 

impulse response were examined. The input signal 

)(kx  was an AR(2) signal with the recursion 

)()2(4.0)1(4.0)( kzkxkxkx  , where 

)(kz  was a white Gaussian noise with variance 

12 z . 

 The simulations were repeated 100 times with 

new unknown system and new input signal. The 

performances of the algorithms were measured by a 

normalized misalignment error defined as 

)
||||

||)(||
(log20)(

2

2

10

o

o

w

kww
k


  which were 

averaged on 50 independent trials. 

 At first experiment, a dispersive impulse response 

was used. The elements of the impulse response are 

generated by a Gaussian noise with zero mean and 

unit variance. We compared ID-NLMS with NLMS. 

To investigate the effect of parameter  , three values 

of  5,3,1  were examined. To fairly compare the 

algorithms, the step sizes of various algorithms were 

selected in such a way that all algorithms had a same 

final misalignment error. So, the step size   was 

selected as 0.1, 0.5, 0.8, and 1 for NLMS, ID-NLMS 

with 5 , ID-NLMS with 3 , and ID-NLMS 

with 1 , respectively. The misalignment error 

curves for algorithms are shown in Fig. 1. It shows the 

superiority of the proposed ID-NLMS over NLMS. 

Also, it shows that the best value for the parameter   

with respect to convergence speed is 3 . So, in 

the following experiments we used this value for  . 

At the second experiment, similar to first 

experiment, a dispersive impulse response was used. 

ID-NLMS is compared to oracle-NLMS, NLMS, step-

size scalar NLMS (SS-NLMS) [15], robust VSS-

NLMS [14] and CMPN with uniform weighting 

function [16]. The step sizes are equal to 0.4, 1, 0.55 

and 0.004 for NLMS, ID-NLMS, SS-NLMS and 

CMPN. For SS-NLMS, the parameter   is selected 

as 1 for the best performance with respect to the rate 

of convergence. The memory factor parameter in 

robust VSS-NLMS [14] is assumed to be 99.0  

for the best performance in terms of speed of 

convergence. The misalignment error curves for 

algorithms are shown in Fig. 2. It confirms that the 

proposed ID-NLMS has the fastest convergence rate 

among these algorithms because it is derived from the 

oracle-NLMS which is devised to have a fast 

convergence rate. Among the algorithms, robust VSS-

NLMS has the minimum final misalignment error at 

the expense of later convergence. 

At the third experiment, a sparse system was 

examined. The sparse impulse response elements are 

drawn from a BG distribution with the activity 

probability equal to 0.1 which means that 10% of the 

elements are non-zero. The non-zero elements are 

Gaussian with zero mean and with unit variance. 

Again, ID-NLMS is compared to the aforementioned 

algorithms. The step sizes are equal to 0.13, 0.9, 0.35 

and 0.003 for NLMS, ID-NLMS, SS-NLMS and 

CMPN to have the same final misalignment error 

around -18dB. The other parameters are the same as 

the second experiment. The misalignment error curves 

for algorithms are shown in Fig. 3. It confirms again 

that the proposed ID-NLMS has the fastest 

convergence rate among these algorithms. So, the 

results in the case of sparse system are very similar to 

the case of dispersive system. We also observed that in 

the case of sparse system, the performance of the 

NLMS is poorer than the case of dispersive system.  

We used the CPU time as a measure of 

complexity. Although, the CPU time is not an exact 

measure, it can give us a rough estimation of the 

complexity for comparing our algorithm with other 

algorithms. Our simulations were performed in 

MATLAB7.0 environment using an Intel 3.00 GHz 

processor with 4 GB of RAM and under windows 7 

Microsoft operating system. The results are shown in 

Table I. It shows that ID-NLMS is slightly more 

complex than NLMS. 
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Fig.1,  Averaged normalized misalignment error of 

NLMS, ID-NLMS with 1 , ID-NLMS with 

3  and ID-NLMS with 5 . 

 

6.  CONCLUSION 

In this paper, a simple Bayesian impulse noise 

detection NLMS algorithm was proposed for adaptive 

filtering which is deduced from an oracle-NLMS 

algorithm. The oracle-NLMS itself is derived from a 

suggested optimization problem which is proposed to 

have the largest reduction in misalignment error at 

each iteration. Simulation results in both dispersive 

and sparse system identification application show that 

the suggested algorithm is one of the fastest 

algorithms among some examined algorithms while it 

is robust against impulsive noise and has slightly more 

complexity than the standard NLMS. 

 
Fig. 2. Averaged normalized misalignment error of 

oracle-NLMS, ID-NLMS, NLMS, Robust-VSS-

NLMS, CMPN and SS-NLMS algorithms in a system 

identification application with a dispersive system. 
 

 

 
Fig. 3. Averaged normalized misalignment error of 

oracle-NLMS, ID-NLMS, NLMS, Robust-VSS-

NLMS, CMPN and SS-NLMS algorithms in a system 

identification application with a sparse system. 
 

Table 1. Average Run time of algorithms 

Algorithm Average Run time (Sec) 

NLMS 0.3127 

Oracle-NLMS 0.3551 

Robust-VSS-NLMS 0.3544 

CMPN 0.3808 

SS-NLMS 0.4846 

ID-NLMS 0.3522 
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