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ABSTRACT: 

Flexible manipulators are very commonly used in industries. In this paper a single-link flexible joint robot is modeled 

firstly by using Euler–Lagrange energy equation. An optimized Linear Quadratic Regulator is employed to control the 

manipulator. After that, a Linear Quadratic Regulator (LQR) controller is used for optimal control of the manipulator. 

For optimizing the LQR, the regulator term weighting of the LQR is achieved by using the newly introduced grey wolf 

optimizer technique. With the optimized LQR controller based on the proposed performance index, it is tried to have a 

system with the minimum overshoot and settling time. By considering the proposed performance index and comparing 

with the PSO-based controller as a popular algorithm, the superiority of the proposed LQR controller in improving the 

stability and performance of the manipulator is shown. The simulations are performed in MATLAB environment and 

the results confirm the efficiency of the proposed controller. 

 

KEYWORDS: Single-link flexible-joint Manipulator, Linear Quadratic Regulator, Optimal Control, Gray Wolf 
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1.  INTRODUCTION 

Nowadays, industrial manipulator robots are used in 

many branches of manufacturing for tasks such as 

robotic welding and automated assembly. The flexibility 

of the manipulator joints is often left un-controlled and 

un-modeled leading to performance restrictions [1, 2].  

This flexibility is made by the gears and belts 

employed to transmit the actuators generated torque to 

the links [2]. The natural frequencies of these joints are 

often relatively low (2–3 Hz), which often synchronize 

by the trajectory frequency being followed, forcing the 

operator to wait for any vibrations to decay naturally [3].  

Furthermore, in the large scale manipulators, even a 

relatively small joint flexibility can make considerable 

vibrations at the manipulator tip, which is highly 

unfavorable. Hence, understanding and developing the 

mathematical model for a single link manipulator robot 

and control the manipulator is an important category for 

control system engineers.  

Several studies about the modeling and control of 

flexible-joint robotic manipulators are applied [4–8]. 

Most of the researches tend to control the position of the 

end-effector in the manipulators robot.  

Control techniques which are developed for the 

present flexible systems, have a lot of limitations in 

precision and performance [9]. These limitations for the 

control of the manipulator can be solved by using 

different control structures.  

There are different techniques which can solve this 

problem and control the single-link manipulators [10]. 

In 1990, Wang and Liu presented an optimal and robust 

controller based on H2 technique and a quadratic 

performance index in frequency domain [10]. Berger 

and El Maraghy proposed a feedback linearization 

method for designing a controller in order to stabilize 

nonlinear modes of the system; LQR is used for the fast 

term [11].  

Feedback linearization method is also utilized for the 

manipulator robot in [12]. Huang and Chen presented an 

adaptive sliding controller for a single-link flexible joint 

robot with mismatched uncertainties [13].  Taghirad and 

Bakhshi proposed a hybrid controller technique by using 

a linear H∞ controller for the rigid part in the presence 

of actuator saturation [14].  

The results showed how actuator restrictions 

enforces performance degradation in the framework. 

The authors developed the research in [15] by adding an 

H2 performance index to the cost function for 

minimizing the amplitude of control attempt. In the 

presented research, they introduced a mixed H2/H∞ 
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controller.  

Drapeau and Wang presented a five bar manipulator 

with one flexible link and used a closed-loop shaped-

input technique in conjunction with a rigid body LQR 

regulator to control the vibration. 

This paper examines the suitability and evaluates the 

performance of an optimized Linear Quadratic 

Regulator (LQR) for controlling the manipulator. The 

LQR controller employs several weighting matrices to 

achieve the appropriate control force to be implemented 

to the system. The main contribution of this paper is to 

design an optimized LQR controller by using the new 

introduced Gray Wolf Optimizer algorithm to control a 

single-link flexible manipulator. 

This paper will discuss about how to optimal control 

of a single-link flexible joint robot by a new optimized 

Linear Quadratic Regulator technique. The rest of the 

paper is organized as follow: Sect. 2 shows the 

mathematical modelling of the considered system in 

details. Section 3 describes the Schur decomposition for 

reducing the system order and for simplifying the 

designed controller. Then Sect. 4 has showed a detail 

description of the required methods including PSO, 

GWO and LQR techniques for controlling the 

considered system.  Finally, in Sect. 5 results are shown 

and the paper closes by conclusion in Sect. 6. 

 

2.  MATHEMATICAL MODELING FOR THE 

SINGLE-LINK FLEXIBLE-JOINT 

MANIPULATOR 

By considering a single-link flexible-joint 

manipulator, we can achieve the mathematical model by 

the Lagrange equations. The system has a two degree of 

freedoms with the joint which is fixed to the shaft moved 

in order to the rotate direction of the motor.  

 

 
 

Fig. 1. Single-link flexible-joint manipulator model 

coordinates for the link 

 

Fig.1 shows the rotation angle ( ) and the oscillation 

angle of the end effector. 

The total energy for the potential and the kinetic energies 

is equal to: 

 

PKL   (1) 

 

Where K and P describe the kinetic and potential 

energies respectively. Therefore, the Lagrange equations 

of motion can be described as eq.2. 
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After achieving the Lagrange for the manipulator, we 

have:  
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(3) 

Here,  defines the motor generated torque. The torque 

is obtained by the applied voltage v to the armature and 

illustrates the control input to the system. The 

relationship between the torque and the applied voltage 

is: 
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Where is the angular velocity of the motor and Rm is 

the motor resistance and i defines the armature current. 

Also Km and Kg are the constant parameters respectively. 

Therefore: 
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And the desired relationship equation is: 
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By determining the state variables as eq.7. 
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The system will be transformed in the form eq.8. 
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(8) 

By considering v as the system input (u) and 

21 xxy  as the system output, the final form will be 

as eq.9.  
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(9) 

The parameters of the system are extracted from the 

[17] and are summarized in the Table 1: 

 

Table 1. Flexible Joint Robot Manipulator Parameters 

Symbol Description Value 

linkJ  
Inertia of 

Flexible 

Manipulator 

2003882.0 kgm  

mR  
Motor 

Resistance 
5.15  

gK  Gear Ratio of 

Reductor  
36.1  

mK  Motor Constant )//(0089.0 snradN  

sK  
Flexibility 

Coefficient of 

Joint 

mN /468.5  

M  
Mass of the 

Flexible Joint 
kg03235.0  

G  
Gravitional 

Acceleration  
mN /81.9  

H  

Distance to 

Center of 

Gravity of 

Rotational 

Platform of 

Flexible 

Manipulator  

m06.0  

hJ  
Inertia of 

Rotational 

Platform 

200035.0 kgm  

 

3.  LINEARIZATION AND ORDER REDUCTION 

     After mathematical modeling of the system, for using 

the LQR mode controller, it is essential to have a linear 

equivalent for the nonlinear system, by considering the 

following assumptions: 
2 2
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The system is linearized about the equilibrium

)0,0,0,0(),,,(0),( 4321  xxxxux ssss . After 

linearization around the equilibrium points, we have: 
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(11) 

For develop the system controller as a rapid controller, 

the Schur decomposition is utilized. This algorithm is an 

order reduction algorithm for simplifying the considered 

input matrix. The Schur decomposition for a complex 

square matrix A is a matrix decomposition of the form 

 

NDTAQQH   

 

(12) 

where Q defines a unitary matrix, HQ is its conjugate 

transpose, and T describes an upper triangular matrix 

which is the sum of a ),,,( 21 ndiagD   (i.e., a 

diagonal matrix consisting of eigenvalues of i A) and a 

strictly upper triangular matrix N.The first phase in the 

Schur decomposition is the Hessenberg decomposition 

[18-20]. Schur decomposition on an n×n matrix requires 

)( 3nO  operations. Hankel singular values of the system 

are shown in the Fig.2. As it can be seen, the system can 

be reduced to 3 orders by very low error ( 8102397.9  ). 
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Fig. 2. Hankel singular values for the single-link flexible-joint manipulator 

 

 
Fig. 3. step response for the Original and the reduced system by the Schur decomposition 

 

 

After reducing the system by the Schur’s decomposition, 

the 3 orders system is equal to: 
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(13) 

From the Fig.3, we can conclude that due to the low 

error, the step response for the original and the reduced 

systems are overlapping each other.  

By achieving a linear and simple enough system, we are 

ready to design a controller to balance the single-link 

flexible joint. 

 

4.  MATERIAL AND METHODS 

4.1.  Particle Swarm Optimization 

     In the last decades, meta-heuristic algorithms have 

been employed to solve most of the optimization 

problems. Particle Swarm Optimization (PSO) 

algorithm is one of the most popular optimization 

algorithms which has been presented in 1995 by 

Kennedy and Eberhart [23]. 

 PSO algorithm is inspired by the social behavior of 

swarm of fish, bees and other animals [24]. In PSO, 

optimal solution to a mathematical optimization 

problem is limited of birds behave in the moment the 

food pursues, the escape from hunters and the search for 

mates.  

Ordinary PSO algorithm starts with an initial population 

(swarm) of candidate solution (particles). The particles 

search throughout the search space due to described 

formulations. After searching, they move to their own 

best known position in the search space and the swarm's 

best known position.  

After finding the best position, they will then guide the 

other particles movements. The searching about the 

search space is repeated until the satisfactory solution 
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will eventually be detected. In each iteration, the swarm 

can be adjusted by the following equations: 
1

1 1

2 2
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Where, n defines the number of particles, w is the 

weighted inertia, C1 and C2 describe the positive 

constants, r1 and r2 are two random numbers distributed 

within the range [0,1], t illustrates the iteration number, 

P𝑖 is the best position of the ith particle and gi is the best 

particle among the group members. 

According to the eq.19, the particles update their 

velocity due to the distances and the previous velocity to 

their current position from both the own best historical 

position and the best positions of the neighbors in every 

iteration step, and then they move into the new position 

given by (20). 

 

4.2.  Grey Wolf Optimizer (GWO) 

     Grey wolf is a new meta-heuristic algorithm which is 

introduced in 2014 by Mirjalili et al. [25]. GWO 

algorithm is inspired from the grey wolves’ life. The 

method simulates the social hierarchy and hunting 

behavior in the grey wolves’ society. For mimicking the 

leadership hierarchy in GWO algorithm, four groups are 

introduced: alpha, beta, delta, and omega. Also, the 

GWO has three main steps for hunting, including: 

 

1) Tracking, chasing, and approaching the 

victim.  

2) Pursuing, encircling, and harassing the victim 

until it stops moving.  

3) Attack towards the victim. 

 

GWO algorithm, like other meta-heuristic algorithms, 

needs a number of parameters to be set, consist of: 

initialize alpha, beta, and delta, number of search agents, 

maximum number of iterations, number of sites selected 

for neighborhood search (out of n visited sites) and the 

stopping criterion.  

For simulating the social hierarchy of wolves until 

designing GWO, the best solution is considered as the 

alpha ( ). Thereupon, the beta (  ) and delta ( ) are 

introduced as the second and the third best solutions, 

respectively. The rest of the candidate solutions are 

considered to be omega ( ).These three wolves lead the 

other (x) wolves. Afterwards, for simulating the 

encircling behavior, we have: 

 

)()(. tXtXCD P 
 

(16) 

DAtXtX P .)()1( 
 

(17) 

Here, t defines the current iteration, A and C  are 

coefficient vectors, )(tX P  defines the position vector of 

the victim. The vectors A and C can be evaluated from 

the equation eq.18 and eq.19. 

 

araX  1.2  (18) 

2.2 rC   

 

(19) 

Where a  is in the interval from 2 to 0 over the course of 

iterations and 1r  , 2r are random vectors in the range [0, 

1].  

In GWO, the first three best solutions achieved are 

stored so far and enforce the omega agents to update 

their positions according to the position of the best 

search agents: 

XXCDXXCDXXCD   .,.,. 321  (20) 

     ,.,.,. 332211  DAXXDAXXDAXX   (21) 

3
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)1(

321 tXtXtX
tX


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(22) 

The final solution would be in a stochastic solution 

within a circle which is described by the positions of 

alpha, beta, and delta in the search space. In other words, 

alpha, beta, and delta estimate the prey position and 

other wolves update their positions randomly around the 

victim. Pseudo code of the GWO is shown the fig.4. 

 

 
Fig. 4. Pseudo code of the GWO algorithm [25]. 

 

4.3.  Linear Quadratic Regulator 

     Consider the closed-loop input-output transfer 

function represented by the following state equation: 
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     The terms A and B indicate the constant system model 

parameters. The pair (A, B) is assumed to be 

controllable.  

Suppose that we have sensors to measure the entire state 

and that we use a controller (regulator): 

 

xKu 
 

 

(24) 

     where K is state-feedback matrix. The linear 

quadratic cost function is defined as [22]: 

 
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     with the control law as eq.26. 

 

PxBRu T1  
 

(26) 

     which can be achieved by solving the following 

algebraic Riccati equation [21]: 

 

01   PBPBRQPAPA TT

 
 

(27) 

     The block diagram of the system with LQR is shown 

in Fig.5. 

 
Fig. 5. Block diagram of the LQR controller applied to 

the system  

 

     If the system is controllable (or even just stabilize) 

and Q is positive-semi definite and R is positive definite, 

the LQR will result in a stable system with superior gain 

margin infinite and inferior gain margin of at least (or at 

most) 0.5 and a phase margin of at least 60 degrees. 

 

5.  SIMULATIONS AND RESULTS 

     Choosing a proper fitness function to get the desired 

performance aspects like: settling time; overshoot and 

rise time is important [26]. In this study, we consider a 

new control technique based on LQR.  The main purpose 

for the proposed fitness is to minimize the following 

fitness function: 

PIdtRuuQxxJ

ft

t

TT  
0

)(  

 (28) 

and: 

)0001.0()10()10(
22424

stUSOSPI   (29) 

     Where, Overshoot (OS), Undershoot (US) and 

settling time is considered for evaluation of the 
performance index. The proposed function optimized 

the LQR and it also makes the overshoot decreases, by 

keeping the settling time in a sensible value.  

     The fitness function includes two parts (integrals): in 

the first part CCQ  ' and the object is to find an 

optimal value for the term R by utilizing the 

optimization algorithm. generally, the main task of an 

LQR controller is to settings of a (regulating) controller 

governing either a machine or process are found by 

using a mathematical algorithm that minimizes a fitness 

function with weighting factors supplied by a human or 

automatically. In effect, LQR finds those controller 

settings that minimize the undesired deviations, like 

deviations from desired altitude or process temperature.  

In the second part, S is the Overshoot (OS) and 

Undershoot (US) and t defines the settling time for 

evaluation of the fitness function. Since, the proposed 

function makes the overshoot decreases, by keeping the 

settling time in a sensible value.  

     GWO is employed for optimizing the proposed 

fitness function and after that a comparison between 

GWO and PSO algorithms showed the GWO excellence 

toward the others. Note that we have 2 constraints: Q is 

positive semi-definite matrix and R is positive definite. 

     Parameters used in GA, PSO and GAPSO algorithms 

for optimizing the integral controller are presented in the 

Table 2. 

Table 2. GWO and PSO Parameters 

Parameters Value 

Number of Search Agent 30 

Maximum Iteration 50 

 

     By considering the explained restrictions, we can 

now test how the manipulator will be controlled by the 

proposed controller. From the Fig.6, it is clear that the 

GWO has less negative value rather than the PSO. By 

focusing the GWO based controller in the Fig.7, the final 

result shows the GWO convergence. Table 2 shows the 

value for both applied of optimization algorithm on the 

LQR system. We notice that the settling time is for 2% 

of final value. 
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Fig.6. Step response of the single link manipulator robot by PSO (dashed) and GWO (line) 

 

 
Fig.7. Short step response for the GWO based LQR controller 

Table 3. Parameter and cost function value for GWO 

and PSO based LQR utilized in manipulator 

LQR 

Optimization 

Method 

Value for 

term ‘R’ 

Min value for 

Fitness Function 

GWO 0.01 
0.5 

PSO 0.15 
1 

 

6.  CONCLUSIONS 

     Selecting inappropriate parameters for the LQR 

controller will cause an unwanted behavior which may 

make the system not to be optimal. Since, optimizing the 

described parameters can develop the security level of 

the system stability. In this paper, a new optimization 

technique is used for selection of weighting the regulator 

to control the single link flexible joint manipulator.  The 

Lagrange technique is utilized to extract the rigid 

flexible link set up equations of motion, considering the 

device was a simple spring mass model. The cost of 

control for the optimized LQR design has been shown to 

be dependent on the process overshoot, undershoot and 

settling time.  

     Therefore, the proposed controller exhibits a more 

optimal response than a classical LQR controller.  

This controller can be performed by means of computer-

aided design tools such as MATLAB.  

     The comparison of performance of the proposed 

method with a PSO based LQR is done and the results 

show the presented controller’s superiority. 
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