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ABSTRACT: 

For linear time-invariant continuous-time singular systems, two new simple approaches (The Kronecker method and 

the recursive method) are developed in order to estimate the states from the system input-output information via 

shifted Legendre polynomials (SLP), and a simple observer in the descriptor form. Sufficient conditions for the 

existence of the present observer are given. These two methods make easy the system of state equations by turning it 

into the solution of a set of linear algebraic equations. The advantage of these algorithms is their easy implementation 

in a digital computer, and also solutions can be obtained for any length of time. Further, these approaches include the 

filtering and the smoothing effect which can reduce the influence of zero-mean measurement noise on estimation. 

Simulation results of a given numerical example demonstrate the effect of the proposed approaches. 
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1.  INTRODUCTION 

Singular or descriptor systems describe a wide class 

of systems. These types of systems are encountered in 

many areas, such as electrical, social, economical, 

chemical, mineral, power systems, etc. Therefore a lot 

of works have been devoted to the analysis and design 

of techniques of these systems in the past several 

decades (see, e.g. [1], [2], [3] and [4]).     

The problem of designing state observers and signal 

estimators has a great theoretical and practical 

importance in the area of control design and signal 

processing. Luenberger observers [5] and observers in 

descriptor form [2] are two kinds of many approaches 

designing an observer for linear time invariant singular 

systems. Considerable interest (see, e.g. [6], [7], [8] and 

the references therein) has been shown in studying 

observer problems of linear singular systems.  

A number of orthogonal functions or polynomial 

series such as block-pulse functions (BPF) [9], shifted 

Chebyshev polynomials of first kind (SCP1) [10], 

shifted Legendre polynomials (SLP) [11] and wavelets 

[12] have been considered to estimate the states for 

standard (conventional) systems. Orthogonal functions 

approach has inherent filtering property [12] as it 

involves integration process which has the smoothing 

effect [11]. In order to solve the estimation problems 

for singular systems without using orthogonal 

functions, some efforts were made in [13], [14] and 

[15]. 

In this paper, motivated by the basic idea given in 

[11] for the state estimation of linear time invariant 

(LTI) systems via SLP, we extend the method to LTI 

singular systems. First a simple descriptor observer is 

used for estimating the states from the system input-

output information. Among other observers designed 

for singular systems, it can be seen that this descriptor 

observer has a very simple form. Then these estimated 

states are analyzed via SLP by presenting two new 

powerful computational methods (The Kronecker 

method and the recursive method). This paper is 

organized as follows. Section 2 is dedicated to the 

preliminaries which involve the properties of SLP and 

the integration operational matrix of SLP. Also a form 

of descriptor observer and sufficient conditions for the 

existence of this observer are given in this section. 

Section 3 proposed two approaches for the state 

estimation of LTI singular systems by the use of SLP 

and descriptor observer which are introduced in section 

2. In Section 4, an illustrative example is given to show 

the applicability and accuracy of the methods. 

Furthermore, the influence of zero-mean measurement 

noise on estimation is examined. Concluding remarks 

are presented in Section 5. 
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2.  PRELIMINARIES 

2.1.  Properties of the shifted Legendre polynomials 

A set of SLP, denoted by {     } for   = 0,1,2, …, 

   , is orthogonal with respect to the weighting 

function       , over the interval [     ]. These 

polynomials are given by the following recursive 

formula [11] 
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Afunction      that is square integrable on   
        can be represented in terms of SLP as 
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is called SLP vector. The integration of the SLP vector 

can be approximated by  

∫                 
 

  

                                                       

where 

      
       

 

[
 
 
 
 
 
 
 
 
 
 
 
           

  

 
 

 

 
    

 
  

 
 

 

 
   

       

      
 

    

     
  

    
 ]

 
 
 
 
 
 
 
 
 
 
 

       (9) 

in which      is called the integration operational 

matrix of SLP.   

 

2.2.  Descriptor observer for singular systems 

A linear time-invariant singular system is 

considered as follows 

  ̇                 
     

                        

where     is the  -state vector,      is the  -control 

vector,      is the  -output vector.  is a singular 

matrix, i.e.,                              
and        are the known real matrices satisfying 

following assumptions [16], [17]. 

   Assumption A1: det(    )  ,      except a 

finite number of  . 

Assumption A2:      [
    

 
]           

   Assumption A3:     [
  
  
  

]             

A1 guarantees that the plant (10) is solvable, i.e., 

the solution to the plant (10) exists and is unique for 

sufficiently piecewise smooth input functions   and 

consistent initial values. A2 implies that the triple 

        is finite detectable.  denotes the complex 

plane and    denotes closed and right-half complex 

plane. A3 insures the triple         is impulsive 

observable. 

Consider the descriptor observer as follows: 

        ̇̂      ̂                ̂  
(11) 

                     ̃ ̂         +       

where ̃      and  ̂ is the estimated vector of 

order n. There exists a matrix   such that the pair 

         is internally proper and stable if and only 

if         is impulsive observable and finite 

detectable [16]. 

We have the error dynamic in the form of: 

  ̇                                                                           

where      ̂.  

  As it was discussed above, a matrix   can be 

chosen such that the error equation (12) or equivalently 

the pair          isregular, internally proper 

andstable if and only if         is impulsive 

observable and finite detectable. 

 With Assumptions A2 and A3,   is free of 

impulsive behavior and the eigenvalues of the observer, 

given by the roots of characteristic polynomial 

            , lie at chosen locations in the left-

half complex plane. Thus,   goes to zero as   tends to 
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infinity at a rate determined by the chosen roots of 

characteristic polynomial. The degree of characteristic 

polynomial is given by: 

                                                      

which is equivalent to the assumption A3. A 

distinguishing feature of this observer is reconstructing 

the states of the plant (10) without any prior knowledge 

of initial conditions. 

3.  STATE ESTIMATION USING SLP 

 ̂   ,                ̂     in (10) can be expressed 

in terms of m-set SLP 

 ̂    ∑  ̂      

   

   

  ̂                                                

     ∑        

   

   

                                                 

 ̂     ̂                                                                         

where 

 ̂    ̂   ̂   ̂     ̂                                                        

                                                                    

 ̂    ̂                                                                       

                                                                      

Integrating (10) once with respect to  , using the 

approximated values of  ̂               ̂    and 

using the matrix of integration    , gives 

  ̂   ̃ ̂       ̂                                    

3.1.  Kronecker method 

Applying the operation of Kronecker product (   

[18] to (21) and rearranging the terms leads to: 

     ̂  (  
        

   ̃)
  

                           

where 

    ̂                                                           

and the operation of      stacks the columns of an 

appropriate matrix into a single column vector [18]. 

Finally, ̂    can be obtained using (14). 

Solving (22) involves inversion of a matrix of 

     size, which becomes large as the value of 

  increases. On the other hand, more accurate results 

can be obtained with increasing the value of  . In the 

next section we will develop a new recursive method 

via SLP which will extend those given in [11] for 

singular systems.  

3.2.  Recursive SLP method 

Substituting matrix      into (22) and rearranging 

the terms, gives 
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 ̂can be obtained as the following recursive 

relations: 

  

 {
   

                                                                        

                      
                     

 
(27) 

   {
                                                            

  (             )                        
 (28) 

 ̂          

 ̂                                       (29) 

Even though the matrix   is singular,     and 

                     in (27) turn out to be non-

singular. Using the proposed recursive method, the size 

of the matrix to be inverted is kept to   instead of 

     as in the case of Kronecker product method. 

Therefore in the case of recursive method, the size of 

the matrix becomes much smaller and we will have 

considerable computational advantages when compared 

with the Kronecker method. It is worthy to mention that 
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the zero entries in      greatly simplify the solution 

procedures. 

4.  ILLUSTRATIVE EXAMPLE 

Consider a system in the form of (10) with the 

following parameters: 

  [
   
   
   

]                  [
    
   
   

]       

  [
 
 
 
]                               [

   
   

]                     (30) 

                 (31) 

For this system,   = 3 and          . It is easy 

to verify that the Assumptions A1, A2 and A3 are met. 

We design a descriptor observer in the form of (11) to 

have both the eigenvalues at       by choosing 

  [
  
   
   

] (32) 

Let             , the original states 

of the plant are given by 

                                         (33) 

At first, the initial estimates for the states are taken 

as    . The estimates of the states are obtained by 

using the proposed recursive method with   = 7. The 

results are shown in Figs. 1-3. It can be seen that the 

performance of the proposed algorithm on tracking the 

states of the system is excellent. Next, the initial 

estimates for the states are assumed to be  ̂    
             . In order to exhibit the performance 

of the proposed algorithm in noisy environments, 

system output corrupted with measurement Gaussian 

noise and signal to noise ratio (SNR) is equal to 10. 

Figs. 4-6 show that the tracking in this case is 

satisfactory despite the noisy environment. Note that 

both the Kronecker method and the recursive SLP 

method have exactly the same results. 

 

 
             Fig. 1.    and its estimate with known initial states 

 

 

 
Fig. 2.    and its estimate with known initial states 

 

 

 
            Fig. 3.    and its estimate with known initial states 
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        Fig. 4.     and its estimate in noisy environment 

 

 
Fig. 5.     and its estimate in noisy environment 

 

 
Fig. 6.     and its estimate in noisy environment 

 

5.  CONCLUSION 

Two algorithms for the state estimation of singular 

systems have been developed by using SLP and 

descriptor observer under sufficient conditions. The 

approaches make easy the system of state equations by 

turning it into the solution of a set of linear algebraic 

equations. Furthermore, the proposed algorithms 

include filtering and smoothing effect which can reduce 

the effect of zero-mean measurement noise on 

estimation. Using the recursive SLP method, which is 

the extension of the method given in [11] for singular 

systems, the size of the matrix to be inverted is 

reduced. Hence, it makes this method more attractive 

computationally than the Kronecker method. Finally, 

the SLP approach can be developed to estimate the 

system states and disturbance vector for descriptor 

systems with both input disturbances and output 

disturbances by using the descriptor estimator 

introduced in [16]. 
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