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ABSTRACT: 

In order to analyze the mathematical modeling and PID controller performance of a quadrotor, this paper firstly, 

describes the quadrotor flight dynamics according to “Newton-Euler laws”, then equations of motion linearized and 

transfer functions for 6 degrees of freedom obtained in state space domain. Classic PID controller based on “Ziegler-

Nichols method” is designed and implemented on the system. In order to have better performance, Genetic Algorithm 

based on step response optimization is used to optimize PID controller performance and compared with classic 

method. Finally, step responses comparison for each transfer function show that Genetic Algorithm with PID control 

synthesis better efficiency than the classic PID controller. 

 

KEYWORDS: Quadrotor, PID controller, Ziegler-Nichols, 6 degrees of freedom, Genetic Algorithm 

 

1.  INTRODUCTION 

  A quadrotor is a kind of multi-rotor aircraft which 

can achieve Vertical Take-Off and Landing (VTOL). 

The flight attitude control of the quadrotor can be 

achieved only by adjusting the speed of the four rotors. 

Smaller dimension, less weight, more flexibility, less 

noise and easier maintenance, make quadrotors more 

popular than other vertical flight robots like 

Helicopters, Hexa-rotors, etc. As in [1] and [2], 

Unmanned Aerial Vehicles (UAVs) have the potential 

for full-filling many civil and military applications 

including surveillance, intervention in hostile 

environments, air pollution monitoring, and area 

mapping. In the quadrotor, there are four rotors with 

fixed angles which represent four input forces that are 

basically the thrust generated by each propeller. 

According to [3], [4] and [5], Control and stability 

of the robot are defined by changing the motor`s speed 

in processors. In this paper, modeled quadrotor is 

supposed to 6 degrees of freedom in order to obtain 

angle and position of the robot synchronously. The 

control input is a signal called error that is the 

difference between desire input voltage and a voltage 

that is received from different sensors such as 

Accelerometer, GPS, and Laser Scanners as a feedback 

signal. 

 One purpose of control is minimizing error signal 

by designing and tuning the controller coefficients. In 

this paper, in order to design the optimum controller, 

firstly, nonlinear and unstable dynamics are studied and 

described in time domain, then, transfer functions are 

determined in state space domain. Nonlinear equations 

are linearized in equilibrium point, then according to 

[7] and [8], the PID controller is designed and 

regulated. In purpose of stability criteria for this paper, 

as in [10], Genetic Algorithm based on step response 

optimization, is used and the optimized PID controller 

is compared with classic method and results are 

simulated in Matlab. 

 

2.  ROBOT STRUCTURE AND ITS MOVEMENT 

 Quadrotor’s frame is included in 2 type, “X” 

configuration (Fig. 1) and “plus” configuration (Fig.2) 

that have no such difference on stability aspects. So in 

this paper, the plus configuration is studied. 
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Fig. 1. “X” configuration 

 

 
Fig. 2. “Plus” configuration 

This robot as shown in (Fig. 3), has three straight 

movements and three rotating movements. To 

considering robot movements, two coordinate axes are 

defined: 

I. Inertial frame: This coordinate axis is 

assumed constant on earth. The axes are shown 

respectively with X, Y, Z.  

XY plate is set on horizon and the Z axis is specified 

into down side by right hand rule. 

II. Body frame: This coordinate axis is supposed 

on robot`s body and rotates along with that and 

the center is matched on center of robot`s body. 

Axes are shown respectively with X`, Y`, Z`. 

 

 
Fig. 3. Inertial frame and Body frame  

Quadrotor has three rotating movements around its 

coordinate axes, that rotating around X axis is called 

‘Roll angular’ and rotating around Y axis is called 

‘Pitch angular’, rotating around Z axis is called ‘Yaw 

angular’. Therefore, as in “Fig. 4,” they are shown 

respectively with φ, θ and ψ. 
 

 
Fig. 4. Roll, Pitch and Yaw angles 

Within changing the motor RPM, thrust force and lift 

force will change so that cause the robot movements. 

The motors rotation as shown in Fig. 4, are as follows 

that, motor 1 and 3 rotate clockwise and motor 2 and 4 

rotate counter-clockwise. Motor performance in 

rotating around the axes is following as below: 

a. Rotating around X axis: In roll motion, the 

torque of motor 2 is increased and the torque 

of motor 4 )in order to equivalent torques of 

motor 3 and 1 with the total torque of motor 2 

and 4( will be decreased. 
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b. Rotating around Y axis: In pitch motion, the 

torque of motor1 is increased and the torque of 

motor 3 )in order to equivalent the total 

torques of motor 2 and 4 and the total torques 

of motor 1 and 3( will be decreased. 

c. Rotating around Z axis:  For making Yaw 

motion, the speed of motor 3 and 1 must be 

increased in the same time and also, the speed 

of motor 2 and 4 must be decreased. 

d. Increasing or decreasing the height: If speed 

of all motors, in the same time and magnitude, 

increase or decrease, the height will be 

increased or decreased. 

 

3.  EQUATIONS OF ROTATIONAL MOTION 

 As in [1], for mathematical modeling, Newton-

Euler formula is used as below: 

 ⃗  
 (  ⃗⃗ )

  
                                                                   (1) 

 ⃗⃗⃗  
 ( ⃗⃗ )

  
                                                                       (2) 

 
 

  
∭     
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( ⃗⃗⃗ ) is consequence of entered torques, ( ⃗ ) is linear 

velocity of robot, ( ⃗⃗ ) is angular moment of robot and 

(m) is shown the mass. Equation (3) is defined for 

linear and angular moment according to Newton 

second law.  ( ⃗ ) is angular moment of rotor, (F) is 

consequent of external forces, ( ) is bulk density, (  ) 

is distance of center of robot to integrating level and 

(Moments) show the moment of aerodynamic and 

motor forces. 

“Equation (4)” show the moment for a rigid body: 

 

( ⃗ )  ∑    
  ⃗⃗   

 
                                                       (4) 

 

      That (   
) is inertia moment and ( ⃗⃗   

) is angular 

velocity. ( ⃗ ) in 3D is define in (5): 

 

( ⃗ )             ⃗                                                    (5) 

 

With replace ( ⃗ ) in (3), general form for equation of 

rotational motion is obtained this:: 
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 )     ̇  (       )      ( 
    )

          ̇       

 )     ̇      ̇  (       )        

          ̇       

                 (6) 

 

As in (6), Ixx, Iyy, Izz and Ixz are inertia moment around 

the coordinate axes and P, Q and R, are respectively 

angular velocity of X, Y, Z axes in inertial frame. LA, 

MA and NA are moment of aerodynamic forces.  LT, MT 

and NT are moments of rotor forces. 

 
4.  TRANSFORMATION MATRIX AND EULER 

ANGLES 

As in [1], [2] and [4], the horizontal coordinate axis 

could match on the body frame with three continuous 

rotate that the rotational matrix is gained in (7). 

Because the horizontal coordinate axis is in the same 

direction as an inertial coordinate axis so this rotational 

matrix is true for converting from inertial frame to 

body frame too. In order to gain the angular velocity 

around body axes, the rotational matrix as given below 

must be used: 

 

   [

       
             
              

]                                (7) 

 

          are Euler angular. Now Equation (7), is 

used for getting the relation between Euler angular rate 

 ̇  ̇      ̇ and angular velocity around inertial 

coordinate axes. Generally, the Euler angles rate are not 

perpendicular on each other and it is necessary that 

every angular velocity was imagined on body 

coordinate axes and with sum of all these converts on 

body coordinate axes, the angular velocity will be 

gained, so as in (8), the relation between angular 

velocity around the inertial coordinate axes and Euler 

angles rate is defined: 
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As in [4], following assumptions are considered: 

i. The structure is supposed rigid. 

ii. The structure is supposed symmetrical. 
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So: 

                                                          (10) 

          ( ⃗ )   ⃗                                       (11) 

 

With considering above assumptions and (8), (9), 

equation (6), is rewrite in (12). 
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     (12) 

 

Equation (12) is final equation of rotational motion in 

time domain. 
 

5.  EQUATIONS OF TRANSLATIONAL MOTION 

 According to [2], [3] and [4], to studying the 

Equations of translational motion in inertial frame, the 

Rotary matrix (Rt) is used as in (13).  
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That, f is translational force in body frame and F is 

translational force in inertial frame. 
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 are drag forces in order to X, Y and Z 

axes. 
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Equation (16), is related to translational motion in time 

domain, that Ti   is thrust force, A and C are motor's 

dynamic coefficients that will obtain in (19). Motor's 

dynamic relation is shown in (17). 

{
 ̇  

 

 
   

 

     
  

  
 

   
 

 

 
 

  
 

      

                            (17) 

 

Equation (17) is linearized at0 point, as a result new 

equation of motor is obtained in (18). 

 

 ̇                                                       (18) 

 

That A, B and C are attained: 
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                                                       (19) 

The motor’s parameters are defining in “Table (1)”. 

  
Table 1. Motor specifications 

Parameter Definition 

τ Torque constant 

η Gearbox efficiency 

r Gearbox reduction ratio 

Jt Total rotor inertia is seen by the 

motor 

Km Motor torque constant 

Rmot Rotor internal resistance 

u Motor input voltage 

ɷm Motor angular rate 

d Drag factor 

 

6.  EQUATIONS OF STATE SPACE 

 According to [5] and [6], the obtained dynamic 

equations will be rewrite in state space. 

The state space equation is defining as below: 

 

 ̇   (   )                                                                 (20) 

 

That X is state variable and U is control input. 

 

       ̇      ̇      ̇      ̇      ̇      ̇                          (21) 

 

The state space inputs and variables are defined in (22) 

and (23): 
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                are control inputs that is given by 

equation (24). 

 

{
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 )                    
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                              (24) 

 

The parameters of above equation are defined in Table 

(2). 

 
Table 2. Definitions of control input parameters 

Parameter Definition 

U1 Total thrust force of all motors 

U2 Difference thrust force between 

motor 2,4 for roll rotation 

U3 Difference thrust force between 

motor 1,3 for pitch rotation 

U4 Total thrust forces for yaw rotation 

Ω Propeller angular rate 

b Trust factor 

  

By rewriting the equations, according to control inputs 

(U), the state space matrix is obtained as shown in (25). 
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a1, a2, a3, a4, a5, b1, b2, b3 and Ωr are defined as below. 

 

   (
       

   
)      (

 

   
)  

   (
  

   
)      (

 

   
)  

   (
       

   
)      (

 

   
)                              

   (
  

   
)  

 Ω
 

 ∑ Ω
 

 
                       

   (
       

   
)  

                                              (26) 

{
                        
                                              

 

L is horizontal distance of propeller center to center 

of gravity. Equation (27), shows the general nonlinear 

equations form of rotational and translational motion in 

state space, however in nonlinear equations of hover 

state, the cross coupling and gyroscopic effects can be 

omitted. 

 

{
 ̇ ̇   ̇ ̇   ̇ ̇   

  Ω
 
 ̇     ̇ ̇   

     

  
                                           (28) 

 

So within hover state assumption, equations are 

simplified as below: 

 

{

    ̈     

    ̈     

    ̈    

                                                             (29) 

 

In order to achieve the transfer functions, rotor 

dynamics and the model are rewritten in Laplace 

transform. 

 

{
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As in [4], A and B are the coefficients of the 

linearized rotor dynamics. C is neglected because of its 

small value compared to B. By replacing the control 

inputs (U) instead of the motor inputs (u), ‘Equations 

(30)’ for attitude control change to (31). 

 

{
 
 

 
 φ( )  
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                                              (31) 

 

According to Equation (16), the position control for 

quadrotor is obtained as (32). 

 

{
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7.  DESIGNING THE PID CONTROLER 

  In order to control the quadrotor, some parameters 

make disturbance on system, such as: nonlinear and 
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unstable effects of blades, blades flexibility, ground 

effect, battery discharging, unknown aerodynamics and 

etc. 

 Consequently, as these uncertainties and nonlinear 

behavior of system, linear controls have good 

performance just around the equilibrium point. If 

disturbances become so high, the linear control is not 

suitable else, so the modern methods will used like 

optimal control, nonlinear control, adaptive control or 

etc. 

Generally, the robot control block diagram is shown as 

figure (5): 

 

 
Fig. 5. Robot control block diagram 

 

e(t) is error signal and define as in (33). 

 

 ( )   ( )   ( )                                                  (33) 
 
m(t) is sensor feedback. According to [7] and [8], the 

standard form of PID controller shown in (34): 

 

 ( )    ( ( )  
 

  
∫  ( )     

  ( )

  

 

 
)              (34) 

 
Kp, Ti and Td are PID controller coefficients. To 
eliminate constant disturbance and minimize the 
steady state error, PID controller is implemented to 
track the step input precisely and eliminate step 
disturbance too. According to Table (3), Kp, Ti and Td 
will be obtained from Ziegler-Nichols method. 
 

Table 3. Ziegler-Nichols coefficients table 

Td Ti Kp Type 

- - 0.5 Ku P 

- (1/2)Kp/Tu 0.45 Ku PI 

KpTu/8 2 Kp/Tu 0.6 Ku PID 

 

As in [8], Ku will be determined by approaching it to 

unstable boundary and Tu is oscillations period when 

system approaching to unstable boundary. 

Finally, according to Ziegler-Nichols method, the Table 

(4) shows the PID controller coefficients which 

obtained for each quadrotor’s transfer function 

separately as in (31) and (32). 

 

Table 4. PID controller coefficients for Transfer functions 

Td Ti Kp            Coefficients 

    
Transfer 

 functions 

 

4.02 3.93 2.52 Roll or Pitch 

1.6 1.57 1.2 Yaw 

5.43 1.73 2.1 X or Y 
1.63 1.58 1.1 Z 

 

As in [7], to have desired step response, such as: less 

than: 5 second settling time, 6% overshoot, 1.5 second 

rise time and 2% steady state error, in this paper 

Genetic Algorithm is used to achieve above purposes 

and better performance. 

 

8.  GENETIC ALGORITHM 

 According to [10] and [11], in a Genetic Algorithm 

(GA), a population of candidate solutions (called 

individuals, creatures, or phenotypes) to an 

optimization problem is evolved toward better 

solutions. Each candidate solution has a set of 

properties (its chromosomes or genotype) which can be 

mutated and altered. Genetic Algorithm uses probable 

rules that named fitness functions in order to produce 

better and new generation, so this algorithm is 

supposed to be a model for optimizing a lot of issues. 

We defined a fitness function based on generation, that 

mutation, population, the optimization issue will be 

evaluated. According to [12],   ‘Equation (35)’ is 

defined as bellow to minimize the cost function (Z). 

 

                                                   (35) 
 

That MP is overshoot percent, TS is settling time, 

according to stability analysis,     is rise time and w1, 

w2 and w3 are cost function weights that by weights 

variation, the stability criteria will be changed. 

According to Equation (35), 100 iterations and in order 

to crossover implementation the whole research area is 

used. The algorithm stop working after 150 

generations. As in [13], after defining parameters for 

GA, for example, number of chromosomes in the 

population, number of generations, selection and 

mutation rates, the first generation is randomly 

generated and algorithm starts a loop.  

In each iteration, after decoding the chromosomes 

and obtaining Kp, Ti, and Td coefficients, these numbers 

are sent to the model to tune the controller. Then the 

system is run with predefined initial states and its 

response to step inputs that is feedback to the 

algorithm, figure (6) show the block diagram of PID 

controller and GA combination. 

https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Phenotype
https://en.wikipedia.org/wiki/Chromosome
https://en.wikipedia.org/wiki/Genotype
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Fig. 6. Block diagram of PID controller and GA combination 

 

The optimized PID coefficients will be achieved to 

use in controller. Table (5) shows the optimized PID 

controller coefficients.  

The comparison between closed loop step response 

in classic and optimized PID controller with 6 degree 

of freedom and for each transfer function is shown in 

figure (7) to figure (10). 

 

 
Fig. 7. Step response for Pitch or Roll angles 

 

 
Fig. 8. Step response for Yaw angle 

 
Fig. 9. Step response for X or Y positions 

 
Fig. 10. Step response for Z position 

 

The result shows that both controllers can stabilize 

system and achieve to the desired set points, also Table 

(5), presents the step response specification comparison 

of two method, decreasing nearly 2% overshoot, almost 

1 second rise time and about 2 second settling time, 

show that Genetic Algorithm with PID controller 

synthesis has better performance than the classic PID 

controller based on Ziegler-Nichols method. 

 
Table 5. Step response specifications of classical PID 

compared with optimized PID 

Optimized PID Classic PID 
  step response      

 specifications 

Transfer 

Functions   

Tr=0.59(sec) 
Ts=2.79(sec) 

Mp=5.13(%) 

Tr=1.27(sec) 
Ts=4.4(sec) 
Mp=6.61(%) 

Roll or Pitch 

Tr=0.51(sec) 

Ts=2.16(sec) 

Mp=4.26(%) 

Tr=1.27(sec) 

Ts=4.4(sec) 

Mp=6.61(%) 

 

Yaw 

Tr=1.33(sec) 

Ts=4.03(sec) 

Mp=4.5(%) 

Tr=2.34(sec) 

Ts=6.97(sec) 

Mp=5.7(%) 

 

X or Y 

Tr=1.56(sec) 

Ts=4.47(sec) 

Mp=5.24(%) 

Tr=2.16(sec) 

Ts=6.95(sec) 

Mp=8.29(%) 

 

Z 

 

9.  CONCLUSION 

      In this paper, equations of a quadrotor with 6 
degree of freedom have been studied. To control the 
robot, translational and rotational motion equations 
are obtained and linearized around the criteria 
point. 

The transfer functions are achieved in Laplace 
domain and based on Ziegler-Nichols method the 
PID controller is designed and implemented. To 
optimize step response and better performance, 
Genetic Algorithm is implemented. Consequently, 
optimized PID controller coefficients gained and 
step response specification compares with classic 
PID controller as shown in Table (5), which 
represents Genetic Algorithm with PID controller 
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synthesis is better controller for this system than 
the classic PID controller. 
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