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ABSTRACT: 

Meta-heuristic methods are global optimization algorithms which are widely used in the engineering issues, nowadays. 

The main problem with the classical optimization algorithms is their slow rate of convergence to time-consuming 

mathematical calculations. In this paper, a new stochastic search for optimization is presented using variable variance 

Guassian distribution sampling. The main idea of searching in this algorithm is to regenerate new samples around each 

solution with a Guassian distribution. The proposed algorithm is applied to four popular test functions for 

optimizations (Griewank, Booth, Rosenbrock, Rastrigin). Numerical simulations have revealed that the new presented 

algorithm outperformed simulated annealing and genetic algorithms. 
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1.  INTRODUCTION 

Optimization is the process of finding the best 

solution to minimize a function according to the 

problem constraints. In other words, optimization task 

is to nominate the problem variables in order to 

optimize the fitness function to achieve a purpose. The 

general description of the optimization process can be 

described as below: 

min
min ( ),

x s
f f x  

max
max ( ),

x s
f f x  

( 1,2,3... )Tx i l                                                   (1) 

( ) 0,
i
c x  1,2,3... 'i M    1, 'i M N  

( ) 0,
i
c x   ' 1...i M M    1,i M N  

Where ( )f x is the fitness function, x is the column 

vector of the l independent variables and ( )
i
c x  

represents the class of constraint functions. Constraint 

and unconstraint equations form the equality ( ) 0
i
c x

and inequality ( ) 0
i
c x , respectively. In the above 

equations, ( )f x and ( )
i
c x are characterized as the 

problem constraints [1]. 

The main problem with the classical optimization 

algorithms is their slow rate of convergence to time-

consuming mathematical calculations; even with the 

help of advanced technology, solving an extensive 

multi-dimensional problem needs several years of hard 

work [2]. In recent years, meta-heuristic algorithms 

have put up a brilliant or acceptable performance in 

comparison to classical methods.  

The key issue of these algorithms has been inspired, 

either by nature or by treating human beings in various 

fields, such as political, social, etc [3]. Meta-heuristic 

algorithms mainly begin with an initial set of variables, 

known as the population, and then end in reaching the 

global minimum or maximum of the fitness function. 

There are a large number of naturally-inspired 

optimization algorithms, to which even more 

algorithms are being added [4-9]. In this article, a new 

meta-heuristic algorithm is introduced by searching the 

solution space, based on Gaussian distribution, which is 

a widely used one in the theory of probability, largely 

due to the central limit theorem. The main goal of such 

algorithm is to regenerate Gaussian distributed points 

around other points in the solution space. But the 

variance of distribution is variable with respect to the 

function evaluation of each point. If the function is 

univariate, the normal distribution employed will be 

univariate, as well; if, however, it is a multivariate 

function, the corresponding normal distribution will 

also be multivariate (MVN). 
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 In section 2, general formulas for univariate normal 

distribution and its extension to MVN have been 

discussed; besides, the shape of the densities for a 

typical MVN, based on different form of covariance 

matrix, has been inspected. Section 3, introduces the 

new VRGS (Variance Reducing Gaussian Search) 

algorithm in detail and delves into the reasons why the 

best MVN for the algorithm is jointly independent 

MVN, based on different form of the MVN densities. 

In section 4, the performance of VRGS is explored and 

compared to genetic algorithm (GA) and simulate 

annealing (SA), to investigate which of four popular 

test functions have been employed. Finally, section 5 

presents some concluding points about the algorithm 

and further suggestions to increase its performance. 

 

2.  MULTIVARIABLE NORMAL DISTRIBUTION 

 The Multivariate Normal Distribution is a 

generalization of univariate normal distribution, where 

the latter is characterized by its mean and variance. 

Consider a univariate normal probability density with  

 (the mean) and  (the variance) for the random 

variable x : 
21

2
22

( )1
( )

2

x
f x e              

( , )x                                                          (2) 

( , )    
2 0  

The main parts of this density are 
2

1
( )

2
f x  

(normalizing factor) and 

21

2
2

( )x
e   (kernel of the 

density). This is a measure of distance of x  from  . 

Using linear algebra, we can rewrite the argument of 

the exponential function as: 
2

2 1

2

( )1 1
( )( ) ( )

2 2

x
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Now considering a 1p  random vector

1 2
[ , ,..., ]

p
X X X X , the kernel could be 

generalized to: 

/ 11
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2ker
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Where 1 2
[ , ,..., ]T

p
x x x x , 1 2

[ , ,..., ]T
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and 

11 1

1

p

p pp

 is a p p   covariance 

matrix.  

After substituting the generalized kernel and changing 

the normalization constant, the density function of the 

MVN is: 

/ 11
( ) ( )
2

1

2 2

1
( )

(2 )

x x

p
f x e                          (5) 

Where  is the determinant of the covariance matrix. 

The normalizing factor makes the volume under the 

MVN density equal to one. We will discuss about the 

shape of a MVN based on its mean and variance here. 

The main factor that forms its shape is its covariance 

matrix. If that matrix is a diagonal one with 

ii
1,2,...i p , its determinant is non-zero 

2

1

p

ii
i

, the inverse of which is also a diagonal 

one with diagonal entries equal to 
2

1

ii

 . In this case, the 

kernel and the PDF can be re-written as: 
2
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which is the product of p independent normal 

distribution. 

Visualizing over bi-dimensional MVN is not possible; 

therefore, the inspection of the shape of MVN is 

restricted to the bi-variate normal distribution. If there 

is a need to get a vision of 1D distribution of each 

random variable based on its bi-variate normal 

distribution, the density contours of the PDF can be 

helpful. In the figure below for four different cases, the 

3D PDF and density contours of a bi-variate normal 

distribution with 
1 2
[ , ]and 

11 12

21 22

 

have been illustrated, which give a clear idea how the 

densities of PDF change with respect to the form of 

covariance matrix. 
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Fig. 1. a) Probability density b) Density contours  
1 2 11 22 12 21

0, 1, 0  

 

 

Fig. 2. a) Probability density b) Density contours
1 2 11 22 12 21

0, 1, 0.7  

 

Fig. 3. a) Probability density b) Density contours
1 2 11 22 12 21

0, 1, 0.7  
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Fig. 4. a) Probability density b) Density contours
1 2 11 22 12 21

0, 1, 3, 0

The figures above cover nearly all forms of 

covariance matrix, except for the time when it is a 

singular one; in that case, the MVN is degenerate and 

the distribution does not have any density.  

 

3. VARIANCE REDUCING GAUSSIAN SEARCH 

(VRGS)      
 In this recently proposed method, search for the 

solution space X, is not based on a bio-inspired 

algorithm. First, we choose 
1 2
[ .......... ]

k
N n n n   

random uniformly distributed individuals in the search 

space, where k represents the number of individuals, 

and where each could be a vector. Then, t-quantity of 

the best individuals, depending on the type of problem 

(minimization or maximization), will be kept and the 

rest will be omitted ( t round alpha k ). 

 The main idea is that around the individuals with 

better function evaluation, the search must be employed 

more accurately. In the next step, around each t
selected individuals, v new individuals will be 

regenerated by a Gaussian distribution. The mean value 

of this Gaussian distribution is equal to the old selected 

individual and the variance of it, proportional to old 

individuals’ function evaluation. 

 The better the function evaluation is, the lower the 

variance of the distribution will be. When the problem 

is minimization, the selected function, which relates the 

function evaluation of each individual to their 

corresponding variance, is as follows: 

1:
max min

1:

min ( ( ))1
( )( )

max ( ( ))
i t i

i

i t i

f n
X X

f n
 

1,2,...,i t                                                                 (8) 

i i
n    1,2,....,i t  

 

where 
max
X  is the upper bound of the solution 

space and 
min
X  is the lower bound, (.)f  is the fitness 

function and , are tuning parameter (usually  is 

between 1 and 2). For optimizing a multi-variable 

function instead of a variance, a covariance matrix is 

needed. One of the main reasons of choosing a 

Gaussian distribution for a univariate function 

minimization algorithm is that as we move further from 

the mean, the probability density will decrease; this 

means for a set of chosen old individuals in a solution 

space, the chance of generating new individuals is 

proportional to the inverse of the distance between the 

chosen individuals and its neighboring ones; that is, 

those individuals closer to old ones have higher 

chances of being picked as new ones. While extending 

this idea to more-than-one-dimensional space, the 

chosen PDF for algorithm should have the same 

property. From figure 1-4, it can be seen that the only 

appropriate distribution is an MVN with a diagonal 

covariance, the diagonal entries of it are equal to one 

another; this means that the random variables of the 

PDF are not correlated and their distribution is jointly 

independent (figure 1). As depicted in figure 1, this 

kind of distribution is better than others, since its 

density contours are circles, whereas for others, the 

density contours are ellipses. In cases when the density 

contours are circular, each two points (neighboring 

individuals) with equal Euclidean distance from the 

mean (old individual) have equal probability to be 

chosen as new individuals. Regarding other 

distributions, however, there are some further points 

from the mean which have higher probabilities of being 

chosen than some closer ones. The VRGS flow chart is 

illustrated in figure 5, below. 

 

-2

-1

0

1

2

-2

-1

0

1

2

0

0.05

0.1

0.15

0.2

x1x2

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



Majlesi Journal of Electrical Engineering                                                                    Vol. 10, No. 4, December 2016 

 

                                                                                                                                                                                          53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. VGRS flowchart 

 

4. SIMULATION RESULT 

 In this section, the VRGS algorithm is applied to 

four popular test functions for optimizations; figure 6 

displays the 3D plot of these functions, all of which 

have a global minimum at [0,0]X , and each of 

which has variable bounds  same as the ones shown in 

figure 6. Booth and Rosenbrock functions have just one 

minimum but Griewank and Rastrigin have many local 

ones, but just one global minimum. Besides, the 

proposed algorithm is compared to two well-known 

EAs, simulated annealing and genetic algorithms. Table 

one depicts the results of optimization through these 

three algorithms, being investigated during 30 

independent runs, along with a mean and variance of all 

results. 

 The new proposed VRGS algorithm outperformed 

the SA and GA for Griewank, Booth and Rosenbrock 

functions; nonetheless, as for Rastrigin function, 

although its performance outdid GA, it does not show 

better results in comparison to SA.   

Simulations were performed by a laptop with CORE i7 

2.2GHZ processor and 6G installed RAM. Table 2 

compared the average calculation time needed for each 

run using different algorithms. Furthermore, it can be 

seen that in this case, the new VRGS algorithm is 

faster; in other words, it is approximately 4 times 

Iter<Iter-desired 

 

 

 

 

 

Yes 

No 

  

 

 START STOP START 

Initialize the VRGS parameters 

Cost function, population size, number of regeneration 

points, number of selected population in each generation 

 

Initialize the population 

Choose the uniformly distributed initial population in the 

search space. 

 

Evaluate the population 

Evaluate the cost function of each solution vector. 

 

Select the best solution vectors and sort them 

Choose the round(alpha*N) solution vector and rank them. 

 

Choose a direct function that relates rank of each 

individual to a variance 

The best individuals correspond to lower variance 

 

Regenerate individuals 

Regenerate new individuals around each old individuals 

based on Guassian distribution with a mean equal to old 

individual vector and calculated variance in the previous 
step  

 

Last evaluation 

Minimum of the last individual solution vector is the 
optimum point 
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speedier than GA and more than 10 times quicker than 

SA. For all of the four functions optimization, the 

parameters of VRGS are as follows: 

1 , 10 , 10v  , 0.6alpha , 60k

20iteration  
One of the major and most time consuming parts of the 

VRGS algorithm is generating Gaussian distributed 

samples. There are many algorithms available in the 

literature for sampling a Gaussian PDF; the most 

popular ones include Marsaglia polar method [10], 

Box-Muller transform [11] and Ziggurat algorithm 

[12], the last of which is one of the fastest methods 

used for generating such samples. For generating new 

individuals in VRGS, Ziggurat algorithm has been 

employed, a method belonging to rejection sampling 

ones, based on sectioning the probability density 

functions to a set of horizontal rectangles in order to 

obtain points within each. Using the same computer 

that ran simulations, Ziggurat algorithm is able to 

generate more than 6e07 samples per second which 

proves how fast it can be. Figure 7 illustrates the 

convergence of VRGS for the test functions. It should 

be noted that although there is no such thing as 

mutation in VRGS, it produces good performance for 

those with many local minimums. This could be due to 

the fact that the regeneration around individual with the 

worst cost function (
1:

max ( ( ))
i t i
f n  ) will be done with 

the variance of 
max min

1
( )X X  among t  selected 

individuals; consequently, it can easily escape local 

minimums and find the global one. 

 

 

 

Fig. 6. The 3D plot of test functions for optimization 
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Table 1. Comparison among SA, GA and VRGS for different typical fitness functions (the mean and variance of the 

minimum of 30 independent simulations) 

Function SA GA VRGS 

Griewank 6.25e-2±3.23e-3 4.07e-10±2.48e-16 4.3e-7±9.9e-13 

Booth 6.62e-5±1.25e-8 4.65e-5±2.58e-8 7.62e-9±2.15e-16 

Rastrigin 1.13e-8±6.34e-16 6.6e-2±1.31e-1 2.2e-6±3.1e-11 

Rosenbrock 8.72±2.2e2 2.83e-3±8.98e-5 1.1e-4±4.5e-8 

 
Table 2. Comparison between SA, GA and VRGS for different typical fitness functions (the mean of calculation time) 

Function SA GA VRGS 

Griewank 0.81 s 0.28s 0.071s 

Booth 0.9s 0.28 0.056s 

Rastrigin 0.71s 0.28 0.058s 

Rosenbrock 0.85s 0.28s 0.056s 

 

 

Fig. 7. Convergence of VRGS algorithm for the test functions 

 

5. CUNCLUSION AND FUTURE WORK 

 This paper presents a new stochastic search for 

optimization based on Gaussian distribution. The 

algorithm was compared with GA and SA and revealed 

a better and faster performance. There remains much 

discussion about choosing the inverse function, relating 

the function evaluation to the variance of Gaussian 

distribution. Needless to say, the paper does not claim 

the chosen relating function has been the best; there 

could be other such functions, employing which in the 

algorithm may increase its performance. In addition, 

another improvement that could be exerted is the well-

known elitism behavior in GA. By choosing some best 

points in every iteration and transferring them to the 
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next, some surprisingly better results might be 

achieved. 
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