
Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

47

An Algorithm to Enhance Cache Efficiency in Multi-core

Processors

Majid Babaei

1
, Ali Ghaffari

2*

1, 2 – Department of Computer Engineering, Tabriz branch, Islamic Azad University, Tabriz, Iran

E-mail: A.ghaffari@iaut.ac.ir (Corresponding author)

Received: August 2016 Revised: January 2017 Accepted: April 2017

ABSTRACT

The Cache efficiency is considered to be one of the major challenges in multi-core processors. Hence, using cache

space in such processors should be meticulously managed by each of the cores. This paper addresses the issue of cache

re-access and proposes an algorithm which divides the last level of cache into local and global share for the cores. The

rationale behind the proposed algorithm is to activate or deactivate the ways of cache for any intended core.

Consequently, the collision between cores is reduced and each of the cores can use the cache space dynamically. To

simulate the proposed algorithm, the researchers used three groups of applications and the obtained results were

examined and evaluated in two stages. The first phase is involved with the number of active ways in cache for each

core. It should be highlighted that the proposed algorithm, in the merged state, was able to enhance the active ways up

to 19%. In the second phase, cache miss rate was taken into consideration and it was observed that about 7%

improvement was achieved in this stage.

KEYWORDS: Asymmetric Multicore-Processors, Processor Performance, Cache Performance, Shared and

Dedicated Structure, Partitioning of the Last Level of Cache.

1. INTRODUCTION

The development in the design and production of

semiconductors, integrated-circuits, computer

architecture, etc. has enhanced the efficiency of multi-

purpose processors [1]. Moore’s Law which was

introduced in 1965 indicates that the degree of

integrating a transistor on a chip has been doubled

within the last one and half years [2]. As a case in point,

The Intel Company introduced the Itanium2 model in

2006 which included 1.72 billion transistors within just

the size of 21.5 mm by 21.5mm [3], [4]. However, it

should be noted that same company introduced the

Pentium Pro Model in 1995 which included only 5.5

million transistors on a chip with the size of 17.3mm [5].

It should be pointed out that the more the number of

processors, the faster the speed of the processors will be

[6]. Multi-threading, security and virtualization are

regarded as the factors and parameters which are of high

significance for multi-core processors. The advantages

of multi-core processors cannot be readily observed and

a lot of studies and examinations on hardware products

should be conducted. One of the important hardware

products is the cache.

The demand for more powerful and fast processors

is increasing day in day out. Nevertheless, the increase

in the power and speed of processors requires

significant changes and evolutions in the development

and production of processors. The majority of processor

manufacturing companies such as Intel, IBM and AMD

produce multi-core processors rather than single-core

processors [7]. In designing cache, the issue of data

locality should be taken into consideration so as to

enhance efficiency [8]. Moreover, another issue known

as block should be considered; change in block size can

alter the features of cache such as hit rate and miss rate.

On a single core processor that running multiple

applications, the operating system acts as a scheduler -

switching contexts between the applications. This can

require a complete dump of all processor registers and

possibly the cache(s), which is costly in terms of

completion time. It is obvious that lessening the

frequency of context switching will increase the usable

cycles of a processor. One way of achieving this is by

creating more processors to distribute the load [6]. For

example, a computer running two applications will not

need to switch contexts if there are two processors

working in parallel. This example is simplistic as

operating systems often take control, running

scheduling and other management tasks in the

background.

The concept of symmetry can be understood as the

creation of a number of processors and multiple cores

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

48

on a distinct chip. For the efficient utilization of

multiple cores by the applications, either the

programmer should split the application into

simultaneous parts or the operating system should break

the task into distinct parts; this operation can be

conducted by means of the multi-threading feature [9].

Cache refers to a type of memory which is located

between the processor registers and the main memory

and it is regarded as an efficiency bottleneck. In the

majority of common architectures, the optimization of

cache leads to the improvement of the efficiency of the

entire system. However, it should be noted that many of

the methods used in cache are complicated. Studying

and investigating cache memory in multi-core

processors reveals that the shared or dedicated structure

for the last level cache cannot enhance the efficiency by

itself.

In this paper, the proposed algorithm was intended

to dynamically segment and partition the last level

cache into the cores in asymmetric multi-core

processors. The proposed algorithm made use of both

structures of local share and dedicated share since, at

first, it considers the cache memory for each core

individually; and then, after an application is started and

executed at a certain time span, the algorithm can

change the segmentation and partitioning of the last

level cache. Accordingly, it can allocate more of the

cache memory to the core which needs more cache. In

as much as the cache memory should be specifically

allotted to a core, the cores compete with each other to

obtain resource and, as a result, the problem of collision

might occur. Thus, the proposed algorithm is aimed at

addressing this challenge. Thus the proposed algorithm

can dynamically allocate more cache to one of the cores,

if needed. In this study, the results are given in two

sections: the number of the active ways and miss rates.

The reminder of the paper is organized as follows:

Section 2 shows the related works. Then, in section 3,

the concept of re-access to cache memory is discussed.

In section 4, the cache partitioning algorithm is

introduced and discussed. In section 5, the simulation

results are reported and evaluated and the findings of

the present study are compared with those of other

studies.

2. RELATED WORKS

The majority of modern multi-core processors utilize

a shared feature cache. The main architectural problem

of this type of cache is the probability of collision and

competition among the cores since several cores

compete with each other in using a shared cache.

Uncontrolled sharing of cache results in a condition in

which the core including the cache ejects the other core

while the main core has not used the content. In the

related studies, many solutions have been proposed for

this problem. These solutions are classified into

hardware and software solutions.

A software mechanism has been proposed for the

operating system in [10] which allows it to segment and

partition the cache in a shared way based on the

physical allocation of the pages. This mechanism is

virtually controlled by the operating system so that the

collision degree can be observed at any moment. This

method improved the efficiency up to 17% and had no

negative impact on the other applications which were

executed. Furthermore, the overload of this mechanism

is negligibly low.

A great number of researchers in this area have

admitted the challenge of collision in cache memory and

have suggested the hardware support for partitioning

and segmenting the cache [11-13]. A number of the

proposed hardware solutions have been effective and

they were reasonably complex and their power

consumption was appropriate. Nevertheless, they should

be used in the processors of the next generation. It

should be noted that these studies are evaluated by

means of simulations and they have not been examined

in real life situations.

Software-based methods were proposed in [14],

[15]. The advantage of these methods is that they are

executable on real systems. In these methods, cache

memory is segmented and partitioned based on physical

page. The focus in these methods is more on how to

distribute data in non-uniform cache architecture

(NUCA) so as to reduce the access delay.

In [16], cache memory was examined in multi-core

processors since cache memory is regarded as a

component which has a remarkable impact on the

processor. For investigating cache, a number of criteria

were used to clearly illustrate and indicate the effects of

cache on the processor. At first, the increase in the

number of cores was mentioned. Then, the major inputs

of the cache memory were pointed out. The impact of

the cache on processors was examined and shown by

means of the variations in the inputs of cache. Dual-core

Intel processor has a shared cache while the dual-core

AMD processor has a second level dedicated cache.

Figure 1 depicts an Intel quad-core processor with a

second-level shared cache [16].

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

49

Core

I1 D1

Core

I1 D1

Core

I1 D1

Core

I1 D1

CL2

Bus

Main

Memory

Fig. 1. The outline of a multi-core processor with a

second-level shared cache in Intel architecture [16]

Also, figure 2 demonstrates an AMD quad-core

processor with a second level dedicated cache; in this

architecture, third level cache is shared.

Core

I1 D1

Core

I1 D1

CL2

Core

I1 D1

CL3

CL2 CL2 CL2

Core

I1 D1

Crossbar

Switch

Main

Memory

Fig. 2. Outline of a multi-core processor with a second

level dedicated cache in AMD architecture [16]

A page replacement policy for personal computers

was proposed in [17] which cache was divided into two

ways. Data with more iterations and repetitions are

placed in the main ways which is conducted based on

the reuse distance. In contrast, data which are used

much less than the main data are placed in the Deli way

of the cache. In case there is a request for data removal

from cache, the data from the Deli way are thrown out.

Figure 3 illustrates these two ways of cache. The two

bits of L and M were used in [17]. When bit M is set, it

indicates that the line belongs to data with more

repetitions and when L is set, it means that the line

belongs to the data with less repetition. In conducting

these experiments, non-uniform shared cache was used.

The obtained results indicate that this replacement

method has had 9.6%, 30% and 33% improvements in

dual-core, quad-core and octal-core processors,

respectively.

In [20], [13], cache was segmented based on the

monitoring of the application which is executed. That is,

at first, a memory is allocated to each core; however,

this memory partitioning might dynamically change

throughout the execution of applications. Nevertheless,

a solution was proposed in [21] in which cache is

segmented in a more interesting way before the

execution of an application. In the present study, it was

shown that as the size of the cache memory increases,

the miss rate decreases.

 State
M

a
in

W
a

y

Cache Data L-Bit M-Bit

D
el

iW
a

y
s

Fig. 3. Segmentation of the cache memory in the

present study

A smart software-based method was proposed in

[21] for sharing the last level cache in which the

probability of collision among cores decreases. The

rationale behind this method was to use the following

factors in order to achieve the best condition in cache

partitioning: figure of cache re-access, the frequency of

cache access and cache miss rate.

A predictive method was considered in [22] for the

cache memory. Hardware counter was used to allocate

an appropriate size of cache for each core in the present

study. In [23], a quasi-partitioning method was used for

the last level cache which resulted in 10% efficiency

improvement and 9% fairness improvement. This

method effectively allocates the last level of cache by

minimizing the destructive interferences of the

applications which compete with each other for

obtaining resources. Indeed, the allocation of cache is

based on the features of applications which are to be

executed such performance sensitivity to cache misses

and thrashing. In this paper, specific counters and

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

50

hardware were used for collecting essential data such as

cache miss rate or access rate and information of cache

tags for each core.

Mixed-cell cache architecture was proposed in [29]

for three levels of cache. In this architecture, for

enhancing cache efficiency and reducing power

consumption of the multi-core processors, the mixture

of robust and non-robust cells were used in the cache

memory. In all three levels of the cache, robust cells

were used for the first and second ways. For the

remaining ways, non-robust (standard) cells were used.

In this architecture, if an error occurs in the first level of

the cache, it will be treated as a miss rate which will

have little impact on the efficiency. Nevertheless, if an

error occurs in the second and third levels of the cache,

this error must be corrected. In [29], the policies of

reading and writing in the cache are different from each

other. That is, the modified and altered data should be

saved only in the robust ways. With respect to replacing

in the case of miss rate in writing, only robust ways are

used. Also, in the case of miss rate in reading, non-

robust ways are used. The simulation results reported in

[29] indicate a 17% improvement in efficiency. Figure 4

depicts this architecture.

Fig. 4. The Mixed-cell architecture

The method of simulating a single-pass cache for

two-level cache was proposed in [30]. This method

operates based on stacks which maintains the address of

cache blocks in a set of stacks. In [30], a hierarchy of

dedicated cache memories was used for preventing the

impacts of the inherent complexities of the rapid

implementation of the applications. This method

consists of a unified two-level cache. It uses the

configurable first-level data instruction cache and the

unified configurable second level cache. The output of

this methodology is the number of data and instruction

miss-rates in the first level and the number of write-

backs and miss-rates in the second level for configuring

cache to improve efficiency.

Studies reveal that the cache lock enhances the

predictive capability in multi-core systems. The cache

lock is intended to prevent the cache from overwriting a

part of data or instruction. In [31], the technique of

locking the ways of first level cache was used in multi-

core systems for enhancing efficiency. Three techniques

were introduced in [31]: random, static and dynamic

techniques. In the random technique, a block is

randomly selected for the lock; however, in the static

and dynamic techniques, the selection of the block is

based on a particular algorithm where the number of

miss rate is taken into consideration.

Cache re-access is the concept that was used in [18,

19]. When a previously used page in the cache is reused

with a certain distance of time, it is known as cache re-

access. The data obtained from page reuse distance can

be used to indicate the degree of the locality of

application execution. The concept of cache re-access is

used to define the following equation [18], [19]:

F =

 (1)

In Eq. (1) in case F is a big value, it indicates that

the executed application has little locality feature since

the number of the highest distance of reuse is greater

than the number of the lowest distance of reuse. In other

words, it can be argued that if the value of F is low, it

indicates that the executed application has a good

locality feature. We will use this equation in our

proposed algorithm.

3. THE PROPOSED ALGORITHM

The proposed algorithm was intended to activate or

deactivate a number of the cache ways which are related

to each of the cores. When the way of each core is

deactivated, its possession is taken out of that core and

if other cores need it, it will be given to them. In this

way, cache can be dynamically allocated and divided

among the cores.

In the proposed algorithm, each core executes the

algorithm independently and makes the right decisions

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

51

based on the results. The activation or deactivation of

ways is important because not using the ways is

tantamount to wasting the accessible resources. Since a

lot of cost has been paid for cache, it is expected that

this memory should of remarkable importance and

efficiency. Thus, it can be maintained that the activation

of a large number of ways in the cache indicates an

optimized utilization of the cache which can enhance

efficiency. The flowchart of the proposed algorithm is

depicted in figure 5. The proposed algorithm is defined

as follows:

(1) Start of the processing task

(2) Sampling

(3) Calculating F

(4) Phase one: Comparing with the threshold

(5) Phase two: Preventing instantaneous changes

(6) Phase three: The proper selection of a page which

should be extracted.

(7) Continued implementation of the application (go to

1)

After the application is started, in the sampling stage,

the collected data from the re-access table was used to

obtain the number of the highest reuse distance and the

lowest reuse distance during running the program. In the

next section, the data obtained in the sampling stage and

the above mentioned equation is used to determine F

value. The F value is of high significance for

understanding the locality or non-locality of the

application which is executed. Based on the results of

the conducted experiments and simulations, the F value

for indicating the locality of application was determined

to be 0.02 and 0.005 (T1=0.005 and T2= 0.02).

Fig. 5. The flowchart of the proposed algorithm

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

52

3.1. Phase one

In this phase, F algorithm was compared with high

and low limits. In case F value is lower than the low

limit (F<T1), one of the ways of a core can be reduced

since the application has the locality feature by itself

and the number of local pages is limited. Hence,

inasmuch as all the local pages are available in the

cache of the respective core, one of the ways of the core

can be deactivated. This way can be used by other cores.

However, in case the F value is greater than the high

limit of the threshold (F>T2), it means that the

application is not locally enough and there is a lot of

distance among pages which are reused. Thus, the need

for additional cache for the respective core is essential.

That is, by adding cache, fewer pages are removed from

the cache. As a result, the algorithm requests the

additions of one more way to the cache. If the obtained

F value is within the range of high and low limits, the

output of the initial phase is considered to be stable.

That is, there is no need for increasing or reducing the

ways of the cache for the respective core.

(1) If F<T1: Decrease is requested (Dec)

(2) If F>T2: There is a request for increase (Inc)

(3) If the stages of one and two are not correct:

There is a request for not changing or it is kept stable

(keep)

3.2. Phase two

Examining the results of simulations for the first

phase indicates that these results do not improve the

efficiency; rather, they reduce the efficiency. Thus, it

can be argued that another phase is needed. In this

phase, three bits were used for reducing the speed of

change [33]. The state diagram is given in figure 6. As

shown in the diagram, the increase or decrease is not

immediately carried out which prevents the rapid

realization of changes in the algorithm.

Fig. 6. Three-bit state diagram preventing immediate

realization of changes in the algorithm [33]

3.3. Phase three

This phase is used for the proper selection of a page

which should be taken out. The outputs of the second

phase are: increase, decrease and stable. For the stable

state of the way, another phase is not needed. However,

a third phase is needed for increase or decrease. The

dynamic cache segmentation algorithm has a set of

inputs; these inputs as well as obtained probability of

each phase are used to properly predict the future

events. Hence, in phase three, the proposed algorithm is

used to dynamically segment the cache. The inputs of

the dynamic segmentation algorithm are pages which

are fed into the cache by the respective application.

Each of the pages is located in one way. In this stage, a

page replacement method such as LRU was used. This

algorithm is separately implemented on each of the

cores and each core has its own output. The outputs of

the second phase are used to consider the following

probabilities:

(1) The output of the second phase is considered to

be stable: In this case, no ways are activated or

deactivated and the algorithm is re-implemented by

starting the sampling operation.

(2) The output of the second phase is assumed to be

an increase: In this case, we go towards a core which

has requested a way increase and one of the inactive

ways is activated for the intended core so that more

pages can be included in the core.

(3) The output of the second phase is a decrease: In

this case, firstly, the algorithm of the third phase is used

to find the page which should be taken out; then, the

way of that page is deactivated. Nevertheless, its data is

stored before it is removed.

Consequently, the cores use the cache space

optimally. Moreover, the cache space is divided fairly

among the cores. That is, the core for which more space

had been allocated at first voluntarily gives its

additional cache space to the cores which had requested

more space. Thus, algorithm operates in such a way that

all the cores achieve the highest efficiency as a product

of working in harmony with each other. The output of

the third phase is considered to be the ultimate output of

the algorithm; then, the algorithm starts again.

4. SIMULATION RESULTS

For conducting the simulations, at first, the

applications are executed in the second level cache so as

to obtain the re-access distance. For doing so, Gem5

simulator was used [24]. This simulator operates in

Linux operating system which is particularly used for

simulating memory in multi-core processors.

4.1. Simulation parameters

For simulating cache memory, a memory compatible

with way was used. That is, it was possible to activate

or deactivate the cache ways separately. For evaluating

the performance and efficiency of the proposed

algorithm, a precise clock cycle created by Simple-

Scalar was used [25]. Each application was firstly

executed for 5E+05 time period and the obtained

information was used to determine the re-access

distance. The applications were executed for 1E+08

clock cycle. Table 1 illustrates the applications designed

for the simulator based on Alpha 212-64 [26].

INC/DE
C

INC/KEE

P

INC/KEEP INC/INC

INC/IN

C

DEC/KEE

P
DEC/KEE
P

DEC/KEE
P

INC/KEEP

…

DEC/KEE
P

000
INC

001
KEEP

1 10
KEEP

1 10
DEC

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

53

Table 1. Applications that were used in the simulation

Suites Benchmarks INS Exec Cache Ref

SPECint95 go

gcc

compress

perl

100M

100M

78M

19M

29M

37M

3M

7M

SPECfp2000 ammp

art
equake

19M

100M

100M

8M

14M

37M

Media

Bench
mpeg2encode

mpeg2decode

g721-encode

g721-decode

100M

100M

100M

100M

24M

18M

46M

46M

For conducting the experiments, SPEC int/fp [27]

and Media Bench [28] were used. Table 2 shows the

input parameters of the simulation for the above-

mentioned applications.

Table 2. Simulation parameters

Value Parameter

4 entries Fetch queue

comb(bimodal, 2-level gshare)

bimodal - 2048 entries

gshare Level1 1024

Level2 4096(global)

Combining pred. 1024 entries

Branch predictor

RAS entries-32; BTB-1024 * 2ways Branch misread

10 cycles Latency

4 instructions Decode width

4 instructions Issue width

4 instructions Commit width

16 entries Register update

unit

32 entries Load/Store queue

64*4-way, 8K pages, 30 cycles Instruction TLB

128* 4-way, 8K pages, 30 cycles Data TLB

80 cycles Memory latency

32 entries Memory access

bus

Int 4, FP 2 Functional Units

8KB, 16-Way32B line, 2 cycles L1 I-Cache

8KB, 16-Way32B line, 2 cycles L1 D-Cache

512KB, 16-way128B line, 12 cycles L2 unified-Cache

As shown in this table, parameters such as fetch

queue including four entries and branch predictor 1024

with hint 10 for the first level and 4096 entries with 10

cycles delay for the second level were used in the

simulation. It should be noted that I-cache used in the

table denotes the instruction cache and D-cache refers to

the data cache.

4.2. Examining the increase of active ways

4.2.1. Investigating active way enhancement

separately

In this section, the figures related to the active ways

in the applications are examined. By active ways,

researchers refer to the ways which include data within

themselves. In other words, they are not empty. In case

an application does not use its ways actively, it means

that consumption energy is wasted. That is, the

application has allocated ways to itself but it does not

use them. As shown in table 1, the applications used in

the simulation are divided into three groups: the first

group of applications, as shown in figure 7, has little

locality feature and use all the cache ways. In this group

of applications, all the four applications utilize their

maximum cache. In the second group of applications,

although each core has sixteen ways, they use only

twelve of those ways. Hence, the algorithm can be used

to partition the cache more precisely. The third group of

applications has locality feature; hence, they do not

need to increase their ways. Moreover, all the

applications which are executed have strong locality

feature. Hence, the proposed algorithm does not

enhance the active ways remarkably. Nevertheless, the

probability that all the executed applications behave

similarly is very meager. Thus, for proper examination

of the proposed algorithm, it is better to execute the

applications in the merged mode.

Fig. 7. Active ways for the three groups in the separate

mode

4.2.2. Examining the active ways in the merged mode

4.2.2.1. The first merged method

In this method, the applications of the first group

(SPECint95) and the second group (SPECfp2000) were

used in a merged way. The applications go and gcc from

0

2

4

6

8

10

12

14

16 Asymmetric cores

Used applications

N
u

m
b

er
 o

f
w

ay
s

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

54

the first group and the applications ammp and art from

the second group were used for execution. The results of

this simulation are depicted in figure 8. As it can be

observed from this figure, the proposed algorithm was

able to enhance the number of active ways of the first

group significantly; this increase is attributed to the fact

that the proposed algorithm managed to get the ways

unused by the second group applications from

respective cores and put them at the disposal of the first

group applications. Hence, not only the applications are

executed at a high rate but also the cache memory is

used optimally.

As noted above, the number of active ways for gcc

increased from 15 to 17 ways. Regarding ammp, it can

be argued that the algorithm gets surplus ways and

allocates them to gcc.

Fig. 8. Active ways in the first merged method

4.2.2.2. The second merged method

In this method, the first group applications

(SPECint95) and the third group applications (Media

Bench) were used. The applications go and gcc from the

first application and the applications g721-encode and

g721-decode from the third application are used for

execution. The results of this simulation are illustrated

in figure 9.

Fig. 9. Active ways in the second merged method

As shown in this figure, the proposed algorithm in

the second merged method was able to enhance the

number of active ways in the first group applications

more than that of the first group application. This is

attributed to the fact that the number of ways unused by

the third group applications is more than that of the

second group application. Thus, it can be pointed out

that the proposed algorithm can dedicate more active

ways to the first group applications. As a result, not

only are the applications executed faster but also the

cache memory is used optimally. Accordingly, the

active ways for gcc increased from 15 ways to 20 ways.

Figure 10 illustrates the gcc application under three

states. This figure indicates that the proposed algorithm

manages to enhance active ways of the gcc application.

Fig. 10. Comparison of active ways in gcc application

4.3. The examination of miss rate in executing

applications in the merged mode

4.3.1. The first merged method

Noticing figure 11 indicates that the proposed

algorithm was able to significantly reduce the miss rate

0

2

4

6

8

10

12

14

16

18

20

go gcc ammp art

Asymmetric cores

Used

A
ct

iv
e

w
ay

s

0

5

10

15

20

25

go gcc g721-encode g721-decode

Asymmetric cores

Asymmetric cores by proposed algorithm

Used

A
ct

iv
e

w
ay

s

0

5

10

15

20

25

0.00E

+00

2.00E

+07

4.00E

+07

6.00E

+07

8.00E

+07

1.00E

+08

Separate mode

First merged method

Second merged method

Time(cycle)

A
ct

iv
e

w
ay

s

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

55

in the first group of applications. This is attributed to the

fact that the proposed algorithm takes the cache not

used by the cores of the second group applications and

gives them to the first group applications. Consequently,

the applications are executed faster and the cache is

used optimally.

Fig. 11. Cache miss rate in the first merged mode

4.3.2. The second merged mode

As illustrated in figure 12, in the second merged

mode, the proposed algorithm was able to reduce the

miss rate of the first group applications more than that

of the first merged mode. This is attributed to the fact

that the unused cache by the third group applications is

more than that of the second group applications. Hence,

it can be mentioned that the proposed algorithm can

allocate more cache to the first group applications.

Fig. 12. Cache miss rate in the second merged mode

Now, the results obtained from the proposed

algorithm are compared with those of other studies.

Inasmuch as the proposed algorithm is software-based

and partitions the cache dynamically among the cores,

studies should be selected for comparison which has the

same features. In other words, the selected studies

should be fundamentally comparable with the proposed

algorithm in the present study. In [22], the cache miss

rate was mentioned with respect to the effective size of

the cache. The method proposed in [22] was able to

reduce the cache miss rate. For comparing the results of

the algorithm proposed in the present study with those

related to [22], art, mesa and swim applications were

considered. It was observed that the algorithm proposed

in this paper reduces the cache miss rate better than the

method used in [22]; because the proposed algorithm

uses the cache space more effectively. In other words,

the proposed algorithm selects cache for each core with

regard to the application which is executed and uses the

free space of cache optimally. As depicted in figure 13,

the swim application has less locality feature; as a

result, the proposed algorithm operates better and brings

about more significant reduction. Furthermore, due to

the accurate selection of the page to be removed and due

to preventing instantaneous fluctuations in the

algorithm, the curve obtained by the proposed algorithm

in this paper is more uniform and consistent than the

curve obtained in [22]. Art application, as shown in

figure 14, has more locality feature. Accordingly, there

is not much difference between the two methods.

However, mesa application, shown in figure 15, is

somewhere between the swim and art applications in

terms of the locality feature and has less changes.

 Fig. 13. Cache miss rate in swim

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

go gcc ammp art

Asymmetric cores

Asymmetric cores by proposed algorithm

Used

M
is

s
ra

te
 (

%
)

0

0.01

0.02

0.03

0.04

0.05

0.06 Asymmetric cores

Used applications

M
is

s
ra

te
 (

%
)

0

0.2

0.4

0.6

0.8

1

1.2

Proposed method

Time

M
is

s
ra

te
 (

%
)

[21]

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

56

Fig. 14. Cache miss rate in mesa

 Fig. 15. Cache miss rate in art

5. CONCLUSION
In the architecture of multicore processors, cache

memory is considered to be the efficiency bottleneck. In

this paper, having introduced the concept of cache re-

access, the researchers proposed a dynamic algorithm

for partitioning and segmenting cache memory in multi-

core processors. The simulation results revealed that the

proposed algorithm significantly improved the

execution of applications and applications, especially

applications with little locality feature. Having

examined the active and inactive ways in cache

memory, the researchers concluded that increasing the

active ways results in the enhancement of cache

efficiency. Also, IPC increases. Furthermore, cache

miss rate in different applications was investigated; it

was observed that the proposed algorithm reduces the

cache miss rate more than similar methods. It was

pointed out in the paper that the study of asymmetric

multi-core processors is a novel research issue which is

of high significance. The present study addressed the

research gap on cache which is deemed to be a bridge

between the main memory and core. Nevertheless, more

research should be conducted on this novel and under-

researched issue. Recently, as a result of the extensive

development and utilization of mobile phones, portable

computers, etc. the critical need for saving consumption

energy is increasingly underscored. One direction for

further research in this area is the investigation of the

power consumption of the processors.

REFERENCES
[1] F. J. Pollack, “New micro architecture challenges in

the coming generations of CMOS process

technologies”, in Proceedings of the 32nd annual

ACM/IEEE international symposium on

Microarchitecture, 1999, pp. 2.

[2] G. E. Moore, “Cramming more components onto

integrated circuits”, Electronics, Vol. 86, No. 1,

1998, pp. 82-85.

[3] C. McNairy and R. Bhatia, “Montecito: a dual-core,

dual-thread titanium processor”, IEEE Micro, Vol.

25, No. 2, 2005, pp. 10–20.

[4] S. Naffziger, B. Stackhouse, T. Grutkowski, D.

Josephson, J. Desai, E. Alon and M. Horowitz, “The

implementation of a 2-core, multi-threaded

titanium family processor”, IEEE Journal of Solid-

state circuits, Vol. 41, No. 1,2005, pp. 197–209.

[5] A. Carbine and D. Feltham, “Pentium pro processor

design for test and debug”, IEEE Design &Test of

Computer, Vol. 15, No. 3, 1998, pp. 77–82.

[6] J. W. Langston and X.He, “Multi-core Processors

and caching: A Survey”,

http://blogs.cae.tntech.edu/jwlangston21/files/2008/08

/multi-core-processors-and-caching-a-survey-ieee-

format.pdf

[7] V. Romanchenko, “Evaluation of the multi-core

processor architecture Intel core: Conroe,

Kentsfield”, in Digital-Daily.com, 2006.

[8] V. P. Heuring and H. F. Jordan, “Computer Systems

Design and Architecture”, Prentice Hall, 2004.

[9] J. L. Hennessy, D. A. Patterson, “Computer

architecture: a quantitative approach”, Morgan

Kaufmann Publishers, 2007.

[10] D. Tam, R. Azimi, L. Soares and M. Stumm,

“Managing shared L2 caches on multi-core systems

in software”, in Workshop on the Interaction between

Operating Systems and Computer Architecture, 2007,

pp. 26-33.

[11] F. Guo and Y. Solihin, “An analytical model for

cache replacement policy performance”, ACM

SIGMETRICS Performance Evaluation Review, Vol.

34, No. 1, 2006, pp. 228-229.

[12] H. Kannan, F. Guo, L. Zhao, R. Illikkal, R. Iyer, D.

Newell, Y. Solihin and C.Kozyrakis, “From chaos to

QoS: case studies in CMP resource management”,

in ACM SIGARCH computer Architecture News, Vol.

35, No. 1, 2007, pp. 21-30.

[13] M. Qureshi and Y. Patt, “Utility-based cache

partitioning: a low overhead, high-performance,

runtime mechanism to partition shared caches”, in

Micro 39, 2006, pp. 422-432.

0

0.2

0.4

0.6

0.8

1

1.2

Proposed method

Time

M
is

s
ra

te
 (

%
)

0

0.2

0.4

0.6

0.8

1

1.2

Proposed method

Time (cycle)

M
is

s
ra

te
 (

%
)

(%
)

[21]

[21]

Majlesi Journal of Electrical Engineering Vol. 11, No. 2, June 2017

57

[14] S. Cho and L. Jin, “Managing distributed, shared

L2 caches through OS-level page allocation”, in

Micro 39, 2006, pp. 455-468.

[15] L. Jin and S. Cho, “Better than the two: exceeding

private and shared caches via two-dimensional

page coloring”, in Workshop on Chip Multiprocessor

Memory Systems and Interconnects, 2007.

[16] A. Asaduzzaman, F. N. Sibai, and M. Rani,

“Impact of level-2 cache sharing on the

performance and power requirements of

homogeneous multi-core embedded systems”,

Microprocessors and Microsystems, Embedded

Hardware Design, Vol. 33, No. 5,2009, pp. 388-397.

[17] R. Manikantan, K. R. Govindarajan, “Nucache: an

efficient multi-core cache organization based on

next-use distance”, in the proc of the 17th

International Computer Architecture, 2011, pp. 243-

253.

[18] M. D. Hill and A. J. Smith, “Evaluating

associativity in cpu caches”, IEEE Transactions on

Computer’s, Vol. 38, No. 12, 1989, pp. 1612–1630.

[19] D. Chandra, F. Guo, S. Kim and Y. Solihin,

“Predicting inter-thread cache contention on a chip

multi-processor architecture”, In HPCA, 2005, pp.

340–351.

[20] R. Iyer, “CQOS: A framework for enabling QoS

in shared caches of CMP platforms”, in Proc.

Annual International Conference on Supercomputing,

2004, pp. 257–266.

[21] C. Xu, X. Cheny, R. P. Dicky and Z. M. Mao,

“Cache contention and application performance

prediction for multi-core systems”, in Performance

Analysis of Systems & Software (ISPASS), 2010,

pp.76-86.
[22] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm,

“Rapid MRC: approximating L2 miss rate curves

on commodity systems for online optimizations”,

ACM SIGARCH Computer Architecture News, Vol.

37, No. 1. ACM, 2009, pp. 121–132.

[23] D. Kaseridis, M. F. Iqbal and L. K. John, “Cache

friendliness-aware management of shared last-level

cachesfor high performance multi-core systems”,

IEEE transactions on computers, Vol. 63, 2014, pp.

874-887.

[24] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim,

A.G. Saidi, and S. K. Reinhardt, “The m5 simulator:

Modeling networked systems”, IEEE Micro, Vol. 26,

No. 4,2006, pp. 52–60.

[25] T. Austin, E. Larson and D. Ernst, “Simple scalar:

an infrastructure for computer system modeling”,

IEEE Computer, Vol. 35, No. 2, 2002, pp. 59–67.

[26] Compaq. Alpha 21264 Microprocessor Hardware

Reference Manual. Technical report, Compaq

Computer Corporation, 1999.

[27] The Standard Performance Evaluation Corporation.

http://www.spec.org/.

[28] C. Lee, M. Potkonjakand W. H. M. Smith, “Media

bench: a tool for evaluating and synthesizing

multimedia and communications systems”, In

MICRO 30: Proceedings of the 30th annual

ACM/IEEE international symposium on Micro

architecture, 1997, pp. 330–335.

[29] S. M. Khan, A. R. Alameldeen, C. Wilkerson, J.

Kulkarni and D. A. Jiménez, “Improving multi-core

performance using mixed-cell cache architecture,”
IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), 2013,

pp. 119-130.

[30] W. Zang and A. G. Ross, “A single-pass cache

simulation methodology for two-level unified

caches”, IEEE International Symposium on

Performance Analysis of Systems & Software, Vol. 0,

2012, pp. 168-177.

[31] A. Asaduzzaman, V. R. Suryanarayana, F. N. Sibai,

“On level-1 cache locking for high performance

low-power real-time multi-core systems”,

Computers and electrical engineering, Vol. 39, 2013,

pp. 1333-1345.

[32] I. Kotra, “Performance and power aware cache

memory architectures”, Ph.D. thesis, Department of

Computer and Mathematical Sciences, TOHOKU

University, Sendai, Japan, 2009.

