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ABSTRACT: 

A higher-order sliding approach to control a bioreactor model is proposed by non-commensurate fractional equations. 

According to existing conditions and chattering reduction, a high-order sliding mode approach has been chosen to design 

the controller. A mathematical problem is a barrier to use the high-order sliding mode approach for fractional order 

systems. The contribution of the paper is to choose proper sliding surfaces. High-order sliding mode controllers have 

been taken in accordance with the structure of integer order system. Thus, in order for the system to apply more precise 

calculations, fractional systems should somehow turn to integer order. The sliding surfaces have been selected so 

appropriately that we can benefit from the structure of integer order controllers for fractional order system. The sliding 

surface in both controllers has also been the same so as to provide conditions for comparison. The model outputs are 

reached the desired values using two controllers. Finally, the comparison in simulations indicates that the proposed 

approach has a great impact on chattering reduction. 
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1.  INTRODUCTION 

So far, many researchers from different fields of 

sciences have been tended to work on fractional 

calculus, for practical systems [1-4]. Fractional calculus 

is expanded in modeling the phenomena and systems 

behavior [5-10]. Some of these practical systems or 

natural phenomena might be described more precisely 

by fractional calculus, that is why discovering ways in a 

much better recognition of phenomena is counted as 

influential. In control science, researchers have paid 

attention to fractional order model of systems and 

fractional-order controllers. Fractional-order controllers 

can control a fractional-order or an integer-order system 

[11-17]. Moreover, integer-order controllers have been 

applied to control fractional-order ones [18-21].  

High-order sliding mode controllers have been 

applied by Levant [22-24]. He simulated the model of a 

vehicle tracking a trajectory, to show the efficiency of 

the high-order sliding. Shtessel et al. in 2014 [25] 

explained mathematical basics of high-order sliding 

mode controllers, then they introduced two classes of 

such controllers. Other researchers have used the above 

approach to reduce chattering [26-33].  

Rhif in 2012 [26] used high-order sliding mode to 

control a naval weapon actuator. The form of sliding 

surface was based on lead-lag controller. His results 

indicated a desirable performance of the mentioned 

method. Girin et al. in 2009 [27] controlled an electro-

pneumatic actuator by high-order sliding mode 

controller. The electro-pneumatic actuator tracks a 

desired value by two controllers. Comparing the 

performance of two controllers indicated that one with 

high-order sliding mode has higher efficiency. Liu and 

Han in 2014 [28] designed a high-order sliding mode 

controller for a nonlinear class of multi-input multi-

output (MIMO) systems. Some other researchers have 

also implemented the mentioned controller for other 

systems successfully [29-33]. They have mainly shown 

the efficiency of controllers with high-order sliding 

mode by comparing to other controllers. The previous 

researchers considered integer order systems. Pisano et 

al. in 2010 [33] applied second-order sliding mode so as 

to stabilize a class of fractional-order systems. The state-

space model of the system is linear and includes 

commensurate orders. Their results reached the desired 

performance by a Lyapunov candidate function. 
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Unlike the reviewed papers, this paper presents a 

fractional high-order sliding mode controller for a 

fractional nonlinear problem.   

In the current paper an uncertain model of a 

bioreactor is considered. According to bounded 

uncertainty in parameters of the model, a sliding mode 

approach is a good choice. The most important issue of 

the method is chattering on which there have been a lot 

of attempts made in order to get it removed. A high-

order sliding mode has been used to reduce chattering. 

Derivative orders of the bioreactor model are not the 

same. The appropriate high-order controller must be 

chosen with respect to the relative degree of the system. 

The structure of these controllers was calculated for 

integer order systems  [25]. In this paper, a problem 

caused by fractional orders is ignored by defining 

suitable sliding surfaces.  

The correct estimation of fractional order model is 

not important here; so the selected model is obtained 

simply by using fractional order derivative instead of 

integer order derivative. Orders are selected to obtain a 

general solution; so there will be no specific way to solve 

the problem. Assuming the orders to be taken correctly, 

designing controllers can be started. The goal is to show 

the solution for nonlinear systems with non-

commensurate orders. 

   This paper is organized as follows: In section 2 

mathematical preliminaries of fractional calculus is 

described. In Section 3, first, the problem description is 

discussed; then, standard sliding mode and high-order 

sliding mode strategies are designed separately. In 

Section 4, results and simulations are expressed. Finally, 

discussions and conclusions are presented in Section 5. 

 

2.  MATHEMATICAL PRELIMINARIES  

 Definitions and properties that have been used are 

briefly discussed in this section. Fractional order 

derivative has various definitions. To describe practical 

systems, Caputo definition is normally used because 

initial conditions are measurable in the definition of 

Caputo and it has also a physical concept. 

 

Definition 1: The derivative of the function )(tf  with 

Riemann-Liouville ( R ) definition is shown in (1). Where 

  is the order and mm  1 , Nm [2]. 
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the symbol D  denotes the fractional derivative operator 

and (.) denotes the Gamma function. 

Definition 2: Caputo (C ) defined the derivative of the 

function )(tf  as (2): 
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Property 1: Definitions of Riemann-Liouville and 

Caputo derivative are exchangeable through (3). 
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Property 2:  Integer order derivative can be taken from 

the definitions of Riemann-Liouville and Caputo are as 

relations (4) and (5). 
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3.  DESIGNING CONTROLLERS 

3.1.  Introduction to bioreactor 

Bioreactors are engineered plants treating industrial 

wastewater by a biochemical process. A biochemical 

process is carried out by aerobic or anaerobic 

microorganisms. The high sensitivity of microorganisms 

and the necessity of a certain concentration will 

definitely bring up a need for a system with an ability to 

control. A desired environmental bioreactor feeds the 

process with organic materials so as to make a proper 

growth; meanwhile, the Intended concentration is under 

control. 

Some of these bioreactors use “chemical oxidation” 

to treat wastewater. The main purpose of the process is 

to reduce the concentration of chemical particles in order 

to achieve the standardized quantity defined by the 

Environmental Protection Agency (EPA). Generally, 

there are different ways to refine the industrial 

wastewater, but “active sludge” is one of the most 

popular ways. The block diagram of refining wastewater 

through active sludge is presented in Fig. 1. 

 

 

 

 

 

 

 

Fig. 1. Active sludge process. 

 

Fig. 1 indicates a usual biologically wastewater 

refining. The organic material is decomposed by 

biological oxidation using the existing microorganisms 

in the aeration tank. Refining process then takes place in 

terms of remaining suspended sludge in aeration tissue. 

Suspended materials include organic and inorganic 

particles in which some of those organic particles can get 

decomposed by hydrolysis. The rest of particles 

constitute an inert mass. Decomposing tank separates 
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suspended material from refined water as a secondary 

refiner. Some amount of sludge in the form of sediment 

is refined and the extra gets out of the device. The output 

wastewater can be released to the environment if having 

environmental standards. A mathematical model of 

biologically wastewater refining process discussed in 

this article is in terms of a Nejjari’s model [34] expressed 

in (6). According to the measured initial conditions in 

laboratory, The Caputo’s definition is used to describe 

the system.  
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The growth rate of microorganisms ( )(t ) depends 

on system state variables according to (7). 

s
DOS DOK

DO

SK

S
t  





 max)(                       (7) 

     Where X  indicates the sludge (biomass); rX shows 

recycled sludge; S  is organic substance concentration 

(substrate), and DO  signifies dissolved oxygen. 

Equations of system output variables are subjected to 

bounded disturbances of

)2sin(1.0)(2),cos(01.0)(1 ttdisttdis   . 

      Moreover, few internal variables are not definite 

which we can see in Table 1. Other input parameters of 

the process are discussed in Table 2. 

T
WDu ][ and

TDOSy ][ are the inputs and 

outputs of the system, respectively. 

The purpose is to keep the concentration of materials 

fed ( S ) on 0.1 g.L-1 and to keep the dilution oxygen (

DO ) on 2 mg.L-1 by controlling dilution rate of the 

material ( D ) and an aeration rate of the process (W ). 

 

 

Table 1. Uncertain parameter in model. 

Parameter Definition Value 
Typical 

value 
Unit 

max
 

Maximum 

specific growth 

rate 

0.11 0.12-0.55 h-1 

DOK
 

Saturation 

constant 
0.20 0.01-0.5 mg.L-1 

SK
 

Saturation 

constant 
0.18 0.1-0.18 g.L-1 

Y  
Biomass yield 

factor 
0.67 0.46-0.69 - 

S  

Decay 

coefficient for 

biomass 

0.02 0.002-0.07 h-1 

 

 

Table 2. Constant parameters of input. 

Parameter Definition Value Unit 

inS  Substrate concentrations 

in the influent 
1.2 g.L-1 

inDO
 

Dissolved oxygen 

concentrations in the 

influent 

2 mg.L-1 

SD
 

Dilution of sludge 

compartment 
0.017 h-1 

satDO
 

Dissolved oxygen 

saturation concentration 
8 mg.L-1 

  Oxygen transfer rate 0.0033 - 

R  
Ratio of recycled flow 

of the influent 
1.00 - 

r,  Ratio of waste flow of 

the influent 
0.20 - 

  Parameter of the 

clarifier model 
8 - 

 

 

3.2.  Standard sliding mode 

Standard sliding mode controller is considered by (8) 

to reach the surface in a certain time. 

))(( tSKsignuu eq
SMC                                         (8) 

 

where SMCu   is standard sliding mode controller,  equ  

is a nominal controller, and )(tS  is the sliding surface. 

If the nominal quantity of the model is  ̂  and its 

uncertain amount is    and their differences are 

bounded by a known function A as  ( A ˆ ), then 

by choosing K as (9), it can be guaranteed that 

trajectories reach to sliding surfaces in a finite time. 
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 AK                                                                    (9) 

 

     Where   is an affirmative optional quantity. Proving 

a finite reaching time by (8) is demonstrated in the 

source [35]. 

     According to the problem controlling purpose, 

tracking error in outputs is shown in (10). So a proper 

sliding surface can be recommended as that in (11). 
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    Where 1e and 2e are the tracking errors of the outputs. 

The reason of choosing fractional order for sliding 

surface in calculating the nominal controller is that 

defined states in dynamic equations should appear to 

provide an implementing condition. A Riemann-

Liouville definition has been used to write the sliding 

surfaces; so we can get derivatives from equation (4) to 

achieve nominal controller. Proving the stability of these 

sliding surfaces is able to be discussed through writing 

Hurwitz polynomial. Hurwitz polynomial of sliding 

surfaces in (11) is written through (12). The Hurwitz 

polynomial is calculated by the Laplace transform of the 

sliding surface. 

 

ℒ(𝑆𝑆) = [𝑠𝛼2 + 𝑐1], 𝑠𝛼2 = 𝜆1 

                                   → 𝑃(𝜆1) = [𝜆1
1 + 𝑐1𝜆1

0] 
ℒ(𝑆𝐷𝑂) = [𝑠𝛼3 + 𝑐2], 𝑠𝛼3 = 𝜆2 

                                      → 𝑃(𝜆2) = [𝜆2
1 + 𝑐2𝜆2

0] 
                                                                             (12) 

 

     Stability condition of sliding surfaces is satisfied if 

the roots of Hurwitz polynomial are held in (13). 



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    Where 1c  and 2c  are constants that determine the 

roots of the Hurwitz polynomial. The condition (13) is 

satisfied by taking 121  cc ; therefore sliding 

surfaces will become stable. 

The system model in (6) is considered with 

parameters and initial quantities in Tables 1 and 2. 

Derivative orders are also considered as

5.0,8.0,7.0 321    and 4.04  . 

      The model including values of Table 1 and 2, is seen 

in (14). 
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                                                                                  (14) 

To calculate nominal controllers, the error dynamics 

must be obtained. Through the relations in (14), the error 

dynamics are as in (15). 
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     A nominal controller is calculated through sliding 

surfaces in (11) and applying (4). 
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In order to design a nominal controller and according 

to the fact that the definition of Caputo derivative has 

been used in the system model, the definition of 

Riemann-Liouville will change to the definition of 

Caputo after taking derivatives by (3). 
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To calculate nominal controllers of related equations 

and certain amounts of parameters, they have been put 

in (18) and (19), then they are separated. 
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     Calculations are organized in terms of a matrix. 

 

ubh

W

D

DODO

S

h

h

S

S

DO

s

DO

S

ˆˆˆ

ˆ

ˆ

)8(198.022

022.1





















































 

                                                                             (20) 

 

     Where D̂  and Ŵ are nominal controllers. Ultimate 

controllers are achievable in terms of equation (21). 
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where sign denotes the sign function. Normal sliding 

mode controllers are achieved as in (22) by matrix 

calculations mentioned above. 
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     Simulation is carried out by taking 121  kk . 

These amounts are defined in accordance with a period 

of changes in uncertainties and boundary of 

disturbances. Slight differences in parameters changes 

are about the hundredth. 1k  and 2k  have somehow been 

achieved by trial and error. The reason why they have 

been selected is the logical results of simulation in all 

states after implementing the controllers. 

 

3.3.  High-order sliding mode controllers 

In order implement high-order sliding mode 

controllers,  same previous sliding surfaces were used. 

First of all, virtual controllers  DV  and WV  are added to 

the system dynamic equations. 
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The relative degree of the output with respect to input 

must be calculated to select a suitable controller. The 

relative degree is defined as the time derivative of output 

along the trajectory of the system. This is possible 

through Lie derivative. Therefore, an applicable 

definition of Lie derivative is presented for smooth 

functions [37]. 

Definition 3: if )(xS  is a smooth function, in the case 

that 
nRx  and f  is a smooth vector field, then the 

operator of Lie derivative ( L ) operates as in (24) with 

local coordination. 
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     Practically, in order to achieve a relative degree, it is 

possible to directly take derivative from the output; thus, 

the input will pop up for the first time. The number of 

derivative taking equals the relative degree [25] [37]. 

The relative degree of output SS  with respect to 

input DV  is achieved by the (25). 
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So the relative degree equals 2. 

The relative degree of the output DOS  with respect 

to the input WV  is also achieved by (26). 
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According to (26), the relative degree of output in 

relation to both virtual controllers equals 2. Therefore, 

the structure of second-order sliding mode is selected. 

To avoid fractional calculations in Lie derivative, the 

sliding surface is in the form of integrals. Otherwise, 

there is a possibility of a fractional relative degree 

appearing. Levant designed the high-order controllers 

for systems with integer relative degrees. So, the 

structure of these controllers might not be the best choice 

for the systems with a fractional relative degree. 

A second-order sliding mode controller for the 

virtual input DV  is as that in (27) as following. 
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                                                                             (27) 

 

     Where 0z and 1z  indicate the first and second 

derivative of the SS , respectively. The variable 0v  is 

the robust form of 0z  as described in [25]. A second-

order sliding mode controller for the virtual input WV  is 

as that in (28) as following. 
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                                                                             (28) 

 

      Where 0 and 1  show the first and second 

derivative of DOS , respectively. The variable 0  is the 

robust form of 0 . Coefficients of robust homogeneous 

differentiators are achieved by simulation. 

 

4.  SIMULATION AND RESULTS 

The efficiency of both controllers was compared by 

changing uncertain parameters of the model in restricted 

intervals. The related results are demonstrated 

simultaneously. A step of simulation has been 

considered 0.001. Initial conditions measured as
111 .2)0(,.2.1)0(,.7.0)0(   LmgDOLgSLgX

and 1.7.0)0(  LgX r . In the first part, sliding surfaces 

are plotted. 

 

 

 

 

 
Fig. 2. Sliding surface to control S by Standard 

SMC. 

 

To check the chattering amplitude precisely, the Fig.    

3 is plotted. It is depicted by a reasonable limitation on 

a vertical axis. 

 

 
Fig. 3. Sliding Surface to control S by limitation in      

Y-Axis. 

 

      The amplitude of chattering is less than 10. 

 

 
Fig. 4. Sliding surface to control DO by Standard 

SMC. 
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     The chattering can be seen obviously in Fig. 4. The 

amplitude is about 67. 

 

 
Fig. 5. Sliding surface to control S by 2nd order SMC. 

 

     The Fig. 5 is depicted for 15 seconds, to see the 

behavior of the sliding surface after transient time. 

Limiting the vertical axis leads to Fig. 6. 

 

 
Fig. 6. Sliding surface to control S by 2nd order SMC. 

 

     In Fig. 6 the amplitude of chattering is about 0.00001, 

so it is not visible. 

 

 
Fig. 7. Sliding surface to control DO by 2nd order SMC. 

 

    By limiting the vertical axis Fig. 8 is obtained. 

 

 
Fig. 8. Sliding surface to control DO by 2nd order SMC. 

 

     The Fig. 8 shows the amplitude of chattering, which 

is approximately 1.4. The simulation for first sliding 

surface shows that the chattering amplitude in standard 

SMC is 610 times greater than the high-order sliding 

mode controller. Also, figures of the second sliding 

surface show that the chattering amplitude in standard 

SMC is nearly 47 times greater than the high-order one.  

Chattering is unintended motions with infinite 

frequency on sliding surfaces. These unintended 

motions are influential on trajectories of system and 

controllers. The highest chattering is seen in “Fig. 4” 

which has been implemented by standard sliding mode.  

Trajectories of outputs are depicted as follows: 

 

 
Fig. 9. Trajectory of S by Standard SMC. 
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Fig. 10. Trajectory of DO by Standard SMC. 

 

The simulation results in Fig. 9 and Fig. 10 show that 

outputs in the standard sliding mode controller track 

desired values in a small transient time, successfully. 

 

 
Fig. 11. Trajectory of S by 2nd order SMC. 

 

 
Fig. 12. Trajectory of DO by 2nd order SMC. 

 

The simulation ran during 30 seconds, due to a 

longer transient time in the 2nd order sliding mode 

controller. According to the Fig. 11 and Fig. 12, it can 

be signified that outputs track the desired trajectory, 

successfully. 

 Chattering exists in all Figs because chattering is not 

removable thoroughly in sliding mode. In order for the 

controller to move on an uncertain interval, it is needed 

to contain a discrete structure. In the structure of both 

controllers, the sign function exists. The chattering 

affects the trajectory of outputs.  

The chattering phenomenon is checked for the 

controller since high control activities in a controller has 

a destructive influence on it. High control activities 

cause exhaustion and can excite those neglected high 

frequencies in the system model, consequently. 

 

 
Fig. 13. W designed as standard sliding mode 

controller. 

 

 
Fig. 14. D designed as standard sliding mode 

controller. 
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Fig. 15. W designed as 2nd order SMC. 

 

 
Fig. 16. D designed as 2nd order SMC. 

 

      To compare chattering, related figures are 

demonstrated at the same plots and their restrictions are 

implemented on a vertical axis. Blue color indicates 

standard sliding mode and black one signifies second-

order sliding mode. 

 

 
Fig. 17. Comparison of W designed by Standard SMC 

and 2nd order SMC. 

 

 
Fig. 18. The comparison of D designed by Standard 

SMC and 2nd order SMC 

 

     As seen in Figs 17 and 18, chattering amplitude in 

second-order sliding mode controller is too less than that 

of standard sliding mode. 

 

5.  CONCLUSION 

Despite the presence of bounded uncertainty in the 

system, controllers with standard sliding mode and high-

order sliding mode were designed and simulated. Both 

controllers used fractional order sliding surface due to 

the need for specific calculations. Both controllers have 

fractional-order type of structure because of fractional 

order sliding surface existing in them. Properties of 

fractional calculus were used in a way that we could 

obviate the need for direct calculations in fractional 

order. In order to make it possible to use the designed 

controllers in those including high-order sliding mode, 

system relative degree became an integer by taking a 

suitable output. To show the performance of the 

designed high-order controller, it was compared to a 

standard sliding mode controller, which confirmed the 

efficiency of the high-order controller. Results of the 

simulation also indicated that chattering is not removed 

in this way. Its amplitude reduces highly, though. 
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