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ABSTRACT: 

Since two-wheeled and the self-balancing robot has a complicated and non-linear structure, its model has some 

uncertainties. These uncertainties cause that the system has an incorrect solution while using the classic methods for 

controlling of it. In this paper, a new method based on interval analysis is proposed for modeling the optimal control 

of the two-wheeled and self-balancing robot with interval uncertain parameters which require only lower and upper 

bounds of uncertain parameters, with no need to know about probability distributions. Since the system has 

uncertainties in it, controllability is first analyzed based on interval arithmetic. Afterwards, LQR based method based 

on Pontryagin principle is utilized to solve the problem. Finally, by solving the interval Ricatti equations, the 

confidence interval for feedback controller has been achieved. Final results are compared with Monte Carlo method 

and the results demonstrate the effectiveness of the proposed method. 

 

KEYWORDS: Optimal control, Interval analysis, LQR, Chebyshev inclusion method, Monte Carlo, Two-Wheeled 
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1.  INTRODUCTION 

In most applications, optimal control problems 

(OCPs) are considered as deterministic problems [1]. 

Although, this assumption is not valid practically and 

there are always some uncertainties in the system 

parameters which have to be taken into account during 

the optimization process. These uncertainties can be 

made for different reasons like measurement mistakes, 

having insufficient information about the system 

nature, neglecting some unknown parameters, 

unrecognized dynamics, etc. [2].  

These uncertainties make it impossible to solve the 

OCPs by deterministic methods; i.e. the final solution 

may give the wrong solution due to uncertainties on the 

system dynamics with no well convincing solution for 

the desired control rule. Hence, conventional 

deterministic methods may be failed in solving the 

problems with uncertainties.  

This problem leads researchers to study different 

methods under uncertainties [3]. Recently, some 

different methods are introduced to overcome this 

objection. Stochastic, fuzzy programming and interval 

arithmetic methods are among the most popular 

methods for problems under uncertainties [4-7].  

For example, fuzzy methods are based on expert 

experiences (membership functions); i.e. this method 

will fail if there is no (less) information about the 

system dynamics. In stochastic methods, probabilistic 

distribution is required to utilize the system dynamics. 

Hence, when there is no information about membership 

functions and probabilistic distributions, the best 

solution is to utilize the interval method.  

The main purpose of this study is to use the interval 

analysis in the optimal control problems. In the interval 

based methods, only having information about the 

upper and the lower bounds is needed. Interval methods 

have been introduced over the years [8] but from 1996, 

the interval arithmetic was introduced in simple 

propositions [9].  

In this paper, an interval extension of the LQR 

optimal control is proposed and its application is 

illustrated on a two-wheeled robot system with 

uncertainties. In 2013, Wu et al. introduced a method 

for solving ODE systems by a new orthogonal interval 

system, Chebyshev inclusion method. In this study, we 

propose this method for optimal control problems and 

utilize it for a practical case study. 

The present considered practical case study is a 

two-wheeled and self-balancing robot. This robot 

belongs to a nonlinear, complicated and unstable 

essential motion control system which is considered as 

one of the typical case studies in control. Since the 
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considered robot has more advantages in different 

aspects of stable running, simple structure, strong 

environmental adaption, and high energy utilization 

rate, it has lots of applications from civilian fields to 

military fields.  

Since the 1980s, there are different studies about 

two-wheeled self-balancing robots. In 2017, Qiu et al. 

introduced a fuzzy control based system for the two-

wheeled self-balancing robot system; this technique 

overcomes the instability and nonlinear nature of the 

system, but it relies on the expert’s experience too 

much [10].  

However, they do not consider any uncertainties 

which can be made based on incorrect system 

identification. This objection is studied in this paper. 

Consider a mathematical model of two-wheeled 

self-balancing robots with interval uncertainties. The 

main purpose is to design an optimal feedback 

controller for the system so that it stays stable in the 

designed confidential interval. 

There are some researchers which have worked on 

the feedback control of systems with uncertain intervals 

[11-14]. But, the final results for these methods were a 

real-valued controller with no confidence interval. This 

problem leads us to design a new feedback controller 

based on interval analysis.  

Different methods of robust control are created after 

the appearance of Kharitonov Theorem which utilized 

the interval transfer function to model the system 

dynamics [15-17]. The application of their methods are 

limited; because transfer function representation can be 

made it difficult or even impossible to solve some 

classes of the dynamical objects especially those who 

need to be approximated by state space models. 

The novelty of this study is that the interval optimal 

control based on Riccati equation as a state 

representation of the dynamical systems is proposed. 

An interval-based controller is also designed to achieve 

the confidential interval and finally, this new method is 

applied to a practise based mathematical model of a 

two-wheeled self-balancing robot.  

Since the system has uncertainties, the system is 

first analyzed from the point of controllability and then 

the proposed method is applied to it. 

This method does not guarantee to be globally 

optimal. However, the results provide guaranteed lower 

and upper bounds of the costs which are necessary to 

perform the control task. 

 

2.  INTERVAL ANALYSIS 

This section includes some introduction to the 

interval analysis. System uncertainties can be defined 

by the interval integers. An interval uncertainty can be 

bounded by a set of real integers such that they include 

all the possible uncertainties of the system. Consider a 

real interval integerX ; this interval integer can be 

defined as follows:  
 

[ , ]

| ( ) , , ,

( ) | [ , ], , , ,

X x x

x x I x x x

I X X x x x x x x

 

(1) 

 

 

 

 

where X is an interval integer over ( )I  and x  

x are the lower and upper bounds of X respectively. 

The primary interval operations between two interval 

integersA andB  can be described as follows: 

 

[( ) k, ( ) k]
c c c c

A B A B A B  
(2) 

[( ) k, ( ) k]
c c c c

A B A B A B  
(3) 

[ , ]
c c c c

A B A B A B  
(4) 

1
/ ,

1 1 1
[ , ], 0 [ , ]
c c

A B A
B

b b
B B B

 

(5) 

    where, 

, , ,

1

2c i j i j i j
A a a a  

(6) 

( ) ( )
,

2

x y x y
k  

(7) 

[min{ } , max{ }]
c c c c
A B A B  

(8) 

min{ , , , },ab ab ab ab  (9) 

max{ , , , },ab ab ab ab  (10) 

1 1
{ ( ), ( )},
b b b b

b b b b b b
 

(11) 

 

 

 

     More detailed on the interval arithmetic can be 

found in [9, 18]. An interval can be also extended to an 

interval matrix (vector). An interval matrix A can be 

defined as follows: 

 

, , , ,
{ : },

, 1,2,..., .

m n

i j i j i j i j
A a R a a a

i j n
 

(12) 

 

 

Matrix operations for interval integers are like the 

real integers (non-interval); that is: 

 

, ,i j i j
A B a b  (13) 

, ,
1

P

i k k j
k

A B a b  
(14) 
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, 1,2,...,i j n  (15) 

Monotonic subset property for addition, subtraction, 

and multiplication in between interval matrices holds. 

From the classical integer mathematics, we know 

that a matrix will be invertible if and only if its 

determinant does not contain zero. Similarly, in the 

interval analysis, the square interval matrix A  will be 

invertible if its determinant does not contain interval 

zero ({0} [0,0] | A | ).  

Proposition 1  [19]: if A is invertible, the matrix 

equation AX I and XA I both will have a single 

solution: 
1

| |
X A

A
.  

Proposition 2 [20]: let [ , ] IR .n nA a a  if 

a and a are regular and 1 0a  1 0a , then A  is 

regular and 1 1 1[ , ] 0A a a . 

 

3.  CHEBYSHEV INCLUSION METHOD 

Wu et al. introduced an inclusion based Chebyshev 

function with narrower estimation of the bounds toward 

the interval function with overestimation in interval 

arithmetic [21]. A brief introduction about this method 

is introduced in the following. 

 

3.1.  Chebyshev Approximation Method 

Let’s consider a continuous function ( )f x  in the 

closed interval [ , ]a b ; for any 0 , there is a 

polynomial, ( )p t which can uniformly approximate the 

function ( )f x  as closely as desired by a polynomial 

function such that, 
 

|| ( ) ( ) || , [ , ].f x p x x a b  (16) 

 

The above definition is known as the Weierstrass 

theorem [22, 23]. Making a balance between 

computational cost and accuracy in polynomials is 

significant [24]. 

Consider the Chebyshev polynomial (Ci) which is 

defined in the interval [ 1,1]t  of degree I [25]: 

( ) cos , arccos( ) [0, ]
i
C t i t  (17) 

where i is a nonnegative integer.  

The utilized Chebyshev series for approximation, 

f(x) is a truncated version with an accuracy of degree k:  

0
1

0
1

1
( ) ( ) ( )

2
1

cos( )
2

k

i i
i
k

i
i

f t p t f fC t

f f i
 

(18) 

where
i
f  is the ith constant coefficient. By applying 

the Mehler (Gaussian-Chebyshev) integration formula 

[26] on the formula, the coefficients of Chebyshev 

polynomial are achieved as follows: 

1

2
(cos )cos

p

i j j
j

f f i
p

 
(19) 

where p shows the truncation order.  

 

3.2.  Chebyshev Inclusion Method 

Using interval analysis for generating the truncated 

Chebyshev polynomial results a high accuracy method 

which can control the overestimation efficiently [27]. 

This process turns the scalar t into the interval integer 

[t]. From [27], using the trigonometric representation 

instead of the polynomial representation for the 

Chebyshev polynomials in the interval arithmetic 

results better controlling over the overestimation. By 

considering the trigonometric representation, the 

Chebyshev inclusion function can be described by the 

following formula: 

0
1

1
[ ] cos( [ ])

2k

k

C i
i

f f f i t  
(20) 

 

 

where, [ ] [ 1,1]t and [ ] arccos([ ]) [0, ]t . 

Since [cos]( [ ]) [cos]([0, ]) [ 1,1]i i . 

The Chebyshev inclusion polynomial can be 

reformulated as follows: 

0
1

1
[ ] [ 1,1] | |

2k

k

C i
i

f f f  
(21) 

 

 

Although the Chebyshev inclusion method is not 

the rigorous solution and it neglects the truncated error 

and numerical error of integration error, these errors 

can be neglected compared with the overestimation of 

the interval analysis.  

 

4.  MONTE CARLO METHOD 

Monte Carlo (MC) method is a class of 

computational algorithms which depends on repeated 

random sampling to achieve the numerical results. The 

essential idea in MC is to use the randomness for 

solving the problems that might be deterministic in 

principle. Because of its easy implementation, it is 

usually employed in most of physical and engineering 

applications. In MC method, random variable samples 

are taken based on the probability distribution and then 

the probability distribution of response is computed 

directly as the output. The accuracy of Monte Carlo has 

a direct relationship with the sampling size; in other 

words, by considering the weak law of large number 

and N as the sampling size, the convergence ratio is 
1

2N   [28]. 
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5.  APPROXIMATED TWO-WHEELED AND 

SELF-BALANCING ROBOT WITH INTERVAL 

UNCERTAINTIES 

The two-wheeled and self-balancing robot which is 

studied in this paper is a chassis mounted on the top of 

an axel incorporating two wheels where the chassis has 

no balancing support. Since the regarded robot can be 

considered as the vehicle-mounted inverted pendulum, 

the dynamic system analysis process is more complex.  

One of the important problems which are usually 

not considered in the mathematical modeling of two-

wheeled self-balancing robot is neglecting its some 

unknown terms, resistant value, etc.  

This problem causes the researchers to have a 

deviation in the design. In this paper, a new method 

based on interval analysis is utilized to consider the 

robot identification uncertainties. This method will be 

made the controller more robust and more practical 

against the condition changes. 

In this paper, we first separate the wheel from the 

pendulum analysis in the process of modeling [29], and 

then, the possible uncertainties are added to the system 

model. 

Fig. (1) shows a diagram revolver force analysis. 

According to the revolver, force equation can be 

obtained in the following according to Newton’s law 

[30] and the rotational torque formula [31]: 

,

. .
w fR R

w w R fR

M x H H

I C H R
 

(22) 

where 
w
M represents the weight of the wheel,

w
I  is 

the moment of inertia of the wheel; R represents the 

radius of the wheel, x  is the wheel acceleration of the 

x-axis.-Zis the 
R
H rque and is the right wheel to

R
C    

axis force of the right wheel with the car body.
fR
H is 

the inter-atomic force of the right wheel with the 

ground and
w
 is the angle of the wheel around the Z-

axis direction. 

 
Fig. 1. The force analysis of revolver [29]. 

 

Similarly, for the right wheel, the force equation 

can be achieved by the following formula: 

,

. .
w LR R

w w L fL

M x H H

I C H R
 

(23) 

where 
L
C is the left wheel torque and 

L
H is the Z-

axis force of the left wheel with the car body.
fL
H is the 

inter-atomic force of the left wheel with the ground. 

Since the final Equation will be achieved as follow: 
 

2
2( ) ( ).R Lw

w R L

C CI
M x H H

RR
 

(24) 

 

 

After using Newton’s second law for the horizontal 

and vertical forces [29], the final approximated interval 

system is achieved as follows: 

2

2

( 2 ) 2 ,

(2 ) .

R LW
p W P P

p P P P P P

C CI
M M x M l

RR
M l I M gl M l x

 

(25) 

where 
P

represents the angle of the car body 

deviating from the Z-axis direction, 
P
M is the weight 

of the car body, 
P
I  is the moment of inertia of the car 

body and l is the height of which the car body is apart 

from the shaft.  

In this equation, the output torque for the wheel 

is

( / ) ( / ) ( / )
R L R m a m e w
C C I dw dt k RU k k R

; finally, the state space representation of the two-

wheeled self-balancing robot is achieved as follows: 

 

2 2 2

2

2

2

2

{0} {1} {0} {0}

2 ( )
{0} {0}

{0} {0} {0} {1}

2 ( )
{0} {0}

{0}

2 ( )

{0

m e P P P P

pp

pp m e P P

m P P P

x xk k M lr I M l M gl
x xARr A

k k rB M l M glB

ARr A

k I M l M lr

RrA .
}

2 ( )

a

m P

U

k M l rB

RrA

 

(26) 

 

 

 

 

 

 

 

 

 

 

 

And the output state representation is: 

 

[{0} {0} {1} {0}] .
p

p

x

x
y

 

(27) 

 

 

 

 

where, 2 2[ 2 ( ( / ))]
P P w w

A I M l M I r and 

2[2 (2 / )
w w P

B M I r M , and the terms 

{0} [0, 0]
 

and {1} [1,1] are called degenerate 

integers [32].  
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The final interval state representation of the system 

with uncertainties is given in the following formula. 

 

{0} {1} {0} {0}

{0} [ 0.25, 0.11] [24.6,56.05] {0}
,

{0} {0} {0} {1}

{0} [ 0.61, 0.49] [237,239] {0}

{0}

[0.41, 0.56]
, C {0} {0} {1} {0} .

{0}

[1.9,2.72]

A

B

 

(28) 

 

6.  PROBLEM STATEMENT (INTERVAL 

QUADRATIC REGULATOR) 

Consider a linear multivariable state-space model of 

the plant dynamics with interval uncertainties as 

follows: 
 

( ) ( ) (t),x t Ax t Bu  (29) 

where ( ) nx t is state vector and (t) pu  is an 

input vector. The elements 

, ,
,

i j i j
a b ( , 1,2,..., ; 1,2,..., )i j n k p of matrix 

( )n nA I and matrix ( )n pB I are interval 

integers bounded by a defined upper and lower interval; 

i.e. [ , ]A A A and [ , ]B B B are interval system 

matrix and input matrix where their elements lie 

between upper and lower bounds. 

The boundary conditions of the system are: 

0 0
( ) , ( ) .

f f
x t X x t X  (30) 

where, 
0
X and

f
X describes the initial and the final 

states of the system respectively. Consider the 

performance measure as follows: 

0

1
( ( ), (t), ) ( )F( ) ( )

2
( ) 0 ( )1

[ ( ) ( )] ,
0 ( ) ( )2

f

T

f f f

t

T T

t

J x t u x t t x t

Q t x t
x t u t dt

R t u t

 

(31) 

In this case, shows that the system has interval 

uncertainties, ( )Q t  is positive semi-definite and ( )R t  

is positive definite interval matrices and 

( , ( ), (t), ) [ ( , ( ), (t)), ( , ( ), (t)]J t x t u j t x t u j t x t u des

cribes the interval-valued performance index.  

By expanding the interval arithmetic into the 

Pontryagin principle, the interval Hamiltonian equation 

of the problem is achieved as follows: 

1 1
( ( ), ( ), ( )) ( ) ( ) ( ) ( )

2 2
( )( ( ) (t)),

T TH x t u t t x t Qx t u t Ru t

t Ax t B u
 

(32) 

By applying the optimal control on the interval 

Hamiltonian matrix, 
 

* 1

0 ( ) 0,

( ) ,

T

T

H
Ru t B

u
u t R B

 

(33) 

( ) ( ) ( ) (t)

( ) ( ) ( ) ( )T

H
x t x t Ax t B u

H
t t Q x t A t

x

 

(34) 

That is: 

1

( ) ( )
,

( )( )

,

T

T

A Ex t x t

tt Q A

E BR B

 

(35) 

Note that if R is a matrix (i.e. multi-input systems), 

the inverse matrix of the equation should be first 

achieved by the explained interval inverse matrix 

method.  

For closed-loop optimal control, we assume 

( ) ( ) ( )t P t x t .Since,  

* 1( ) ( ) ( )Tu t R B P x t k x t  (36) 

and, 
 

1( ) ( ) ( )

( ) ( )

T

T

x t Ax t BR B Px t

t Q x A P x t
 

(37) 

 

 

 

By solving the equation above, the final equation 

will become as follows: 

 

1 0T TPA A P PBR B Px Q P  
(38) 

 

 

This equation is the interval matrix extension of the 

Algebraic Riccati Equation (IMARE), where the 

interval solution P is required to achieve the optimal 

interval feedback gain k such that 1 Tk R B P . 

By simplification of the achieved IMARE, some 

interval ordinary differential equations (IODEs) have 

been extracted.  

Since an interval method is required to solve the 

IODEs. Generally, the interval methods experience 

overestimation in the computation because of its 

intrinsic wrapping effect [33]. This shortcoming leads 

researchers to work on methods for reducing the 

overestimation of the interval calculations [34, 35].  

In this study, the Chebyshev inclusion function is 

utilized because of its ability in tightening the interval 

bounds [3].  

More details about Chebyshev inclusion function is 

given in the previous section.  
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From the above, it is clear that the final solutions 

result in interval values for feedback coefficients; that 

is, a confident bound which can provide the considered 

sub-optimal controller under interval uncertainties. 

After achieving the feedback gain coefficients, the final 

feedback law can be achieved from the Eq. 36. 

 

7.  APPLYING THE PROPOSED METHOD ON 

TWO-WHEELED AND SELF-BALANCING 

ROBOT WITH INTERVAL UNCERTAINTIES 

Consider an optimal control problem for the two-

wheeled and self-balancing robot motor speed model 

with interval uncertainties which is described in the 

previous section; a linear differential equation with n = 

4, p = 1 and interval matrices A andB . Despite the 

quadratic systems which have controllability 

guarantees, because of the system uncertainties, we 

need to check its constructability based on interval 

methods like [36].  

 

7.1.  Controllability Test for the Proposed Two-

Wheeled and Self-balancing Robot with Interval 

Uncertainties 

Consider the Eq. (31). This system will be 

controllable if, for the initial condition of 
0

(0)x x and 

for any given vector 
f
x , there exist a limited time 

like
f
t and input (t)u  in the interval [0, ]

f
t  where this 

input maps the system from the
0
x into 

f
x in time 

f
t ; 

i.e. ( )
f f

x t x ; otherwise, the given equation is 

uncontrollable. There are different methods for 

analyzing the controllability of the systems with real 

integer values [37]. In this section, we utilized an 

interval based method from Shashikhin [36]. The 

method can be summarized as follows: 

1) Compute controllability matrix D for the 

interval pair ( , )A B : 

1[ | ,..., ]nD B AB A B  

2) Generate Matrix 
TDD . 

3) Determine the median of
TDD .  

4) Determine the singular values and vectors of 

the interval matrix 
TDD                                    

( ( ( )), 1,..., 1T

i
med DD i n ). 

5) Find the null space of the interval matrix 

( ( )) , 1,..., 1T

i
null med DD i n  

6) Find interval singular values: 

( ) [ ( ( )) , ( ( ))

], 1,..., 1

T T T

i i i i

i

DD med DD med DD

i n
 

7) If all the interval singular values belong to 

positive and definite interval set, the order of 

the interval set is perfect and the system is 

controllable. 

 

 

     From the above, for the case study we have: 
 

2 3[ | | | ]

{0} [0.41, 0.56] [ 0.14, 0.045] [46.74,152.49]

[0.41, 0.56] [ 0.14, 0.0451] [46.74,152.46] [ 57.27, 10.09]

{0} [1.9,2.72] [ 0.34, 0.20] [450.32,650.16]

[1.9,2.72] [ 0.34, 0.2] [450.32,650.16]

D B AB A B A B

.

[ 174.66, 70.51]

 

(39) 

[2185,23254] [ 8754.5, 4737] [21049,91440] [ 26725, 3316]

[ 8754.5, 473.7] [2287,26529] [ 37287, 4553] [21760,10915

[21049,99144] [ 37287, 4553] [202790,422720]

[ 26640, 3316] [21760,108830] [ 113780, 31840]

TDD
0]
.

[ 113780, 31840]

[207760,453220]

 

(40) 

By achieving the median value, 
 

12720 6746 56245 15021

4614 14408 20920 65455
( ) .

60097 20920 312755 72810

14978 65295 72810 330490

Tmed DD
 

(41) 

 

 

 

 

After applying the formula in the flowchart, the 

Eigenvalues and the null values are achieved as 

follows: 
10

1 1
411360; 3.6007e   

 
10

2 2
255930; 2.8086e   

 
11

3 3
3170; 1.6130e   

 
11

4 4
470; 4.7749e     

And the final interval Eigenvalues 

are
1
[411360,411360]  ,

2
[3170,3170] 

,

3
[255930,255930]  and 

4
[470,470]  .  

As it can be seen, the entire interval Eigenvalues are 

positive; so, the system is controllable. 

Note that because of the Low amount of epsilon and 

the high amount of the Eigenvalues, the lower and the 

upper bounds of the interval Eigenvalues are similar to 

the degenerate integers.  

 

7.2.  Optimal Interval Control of the Two-Wheeled 

and Self-Balancing Robot  

To design the optimal control of the considered 

interval LQR, we should first specify the augmented 

system matrices [38]. From the previous subsection, we 

haveA andB matrices. The other required matrices are 

given in the following: 
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[220,223] {0} {0} {0}

{0} [168,172] {0} {0}
( ) ,

{0} {0} [120,122.2] {1}

{0} {0} {0} [187,188.6]

{1.77}.

Q t

R

 

(42) 

By considering the given matrices and generating 

the Interval Algebraic Riccati Equation and solving 

these equations using the proposed interval Chebyshev 

method, the optimum feedback gain ( [ , ]K k k ) is 

obtained as follows: 

[ 11.19, 16.86,221.39,19.90]k  

[ 11.19, 15.20,295.69,23.55]k .  

Here, we consider all the confidence intervals for 

preventing the system from the sudden problems. In the 

following, the simulation results of the proposed 

method and it’s comparison with the Monte Carlo is 

given. The iteration for the Monte Carlo is 100. 

 

 
Fig. 2. Comparison of step response for proposed 

Interval Chebyshev method and MC method (100 

iterations) for the two-wheeled and self-balancing robot 

with interval uncertainties. 

 

    From the above results, it can be seen that while the 

upper bound of the proposed method and MC with 100 

iterations is equal, the lower bound of the proposed 

method includes more surface than the MC. The reason 

is that the MC method depends on the number of its 

iterations.  

     In the following, we consider two random values for 

the system close to the lower bound and analyze the 

results. From the figure, it can be seen that the 

Random1 is included in the lower bound of both MC 

and the proposed method and the Random1 has a small 

error (about 1 3e  ) in the lower bound for about 1.5 

sec. and then it stands on the guaranteed interval. 

 

Table 1. Running time of the proposed method. 

Method Chebyshev 

inclusion 

method 

MC 

method 

Running time (sec.) 1.2 30 

 

 
(a) 

 
(b) 

Fig. 3. Step response for two-wheeled and self-

balancing robot with uncertainties by MC and 

Chebyshev inclusion methods and two random inputs: 

(a) in the time interval [0,50] and (b) [0,1.5]. 
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8.  CONCLUSION 

    An interval extension of the linear quadratic 

regulator is introduced for optimal control of two-

wheeled self-balancing robot. The proposed method is 

developed based on Chebyshev polynomials to solve 

the final interval Riccati equations. The interval-based 

method is utilized for optimal control problem with 

uncertain-but-bounded parameters, without requiring 

complete information. Indeed, this method is a robust 

method for systems with uncertainties. The proposed 

Chebyshev inclusion method compared with the Monte 

Carlo method and the ability of the proposed method 

has been shown in the results. The simulation 

experiments indicate that the proposed method can 

realize the self-balance robust control of the two-

wheeled robot successfully. 
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