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ABSTRACT: 

Recently, power system restructuring, demand response (DR) program and using of distributed generation (DG) are 

important issues to enhance reliability, power flow continuity and power quality for costumers. In this paper, scheduling 

of distributed networks with DR program for a 24-hours optimization problem is modelled. The DR program is based 

on load side participation and in order to solve this optimization problem, a new algorithm called Symbiotic Organism 

Search (SOS) has been used. Objective functions are system losses and operation costs reduction. After exact definition 

of the problem, objective functions and constraints, proposed method for short-term scheduling is simulated on a 33-

bus standard network with MATLAB software for different scenarios. Simulation results show that adoption of demand 

response programs with proposed method has desirable performance to reduce losses and costs. 

 

KEYWORDS: Distributed Network, Symbiotic organism search algorithm, Short-term scheduling, Demand response, 

Distributed generation. 

  

1.  INTRODUCTION 

All of the world's power systems had a vertical 

management structure before the 1990s. These electric 

power systems, which have been exclusively managed 

for more than a century, have recently experienced 

significant changes in their management structure, 

which is known as the restructuring of the electric power 

industry [1]. The power system restructuring affects the 

electric industry to transforms them from a vertical 

integrated unit to independent units. Each unit operates 

independently that is linked to others. In fact, in order to 

create competition and improve services, exclusive 

structure of the electric companies were separated to 

generation, transmission and distribution sections. In 

such situation, the customers can choose any electric 

company which sales power with higher reliability, 

higher quality and lower cost. 

The issue of restructuring has raised new problems 

in power systems that, without solving them will not be 

able to take advantage of this transformation. 

There is always a percentage of power losses in the 

system. In the traditional power systems, losses 

minimization was main purpose and in terms of costs, 

the total cost of final losses along with generation and 

transmission costs formed total costs of operation.    

However, in restructured power systems, each system 

component has a specific legal entity and is therefore 

independent of revenue and costs. 

Recent advances in small power generation 

technologies have led power distribution companies to 

move towards network infrastructure changes to 

enhance the coordination of distribution networks with 

DG units. Also, with the use of DGs, effective activity 

in deregulated environments is possible which will have 

many benefits. Indeed, the use of DGs in distribution 

network is beneficial for both costumers and electric 

companies, especially in areas where centralized 

production is not feasible or there are imperfections in 

the transmission system [2]. 

On the other hand, without implementing 

consumption management programs, electricity markets 

suffered from a number of problems, including price 

volatility, transmission lines congestion, rising 

electricity prices in pick load and the need to install more 

power plants. Therefore, the market controllers quickly 

realized that solving mentioned problems was not 

possible without the costumer's involvement in the 

market, but it is not too easy, since for years the 

electricity has been provided to consumers easily and 

cheaply. Consequently, the task of markets is to 
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encourage customers to change power consumption 

pattern which DR program as a subset of consumption 

management programs, give this incentive to customers 

[3]. 

The issues of DG controlling and load management 

in power systems are very important and great 

dimensions of this issue made it complex. Various 

methods have been proposed to solve this problem, 

including dynamic programming methods, Lagrangian 

relaxation, metaheuristic algorithms such as genetic 

algorithm, particle swarm optimization, hierarchical 

method, unit de-commitment method, exhaustive 

enumeration method, priority list, taboo search and 

simulating annealing method. Among the many studies 

in this field, a few can be mentioned. 

In [4], a novel stochastic scheduling method which 

considers various types of demand response (DR) 

programs is presented. In this paper, all types of 

customers can participate in demand response programs 

which will be considered in either energy or reserve 

scheduling. Distributed equipment connected to the grid 

that is capable of participating in demand response can 

be programmed to process received RTP information 

and react autonomously based on user defined policies 

[5,6]. Faria [7] focused on demand response programs 

and distributed generation resources management by a 

virtual power player that aims to minimize operation 

costs under consumption shifting constraints. In [8] a 

cost minimization problem is formulated to intelligently 

schedule energy generations for microgrids equipped 

with unstable renewable sources and combined heat and 

power (CHP) generators. A stochastic programming 

framework for solving the scheduling problem is 

presented in [9]. Ruelens et al. in [10] proposed a batch 

reinforcement learning algorithm to schedule 

controllable loads such as water heater and heat-pump 

thermostat. The power and customer demand are 

supplied considering DR program and responsive load 

can vary in different time intervals. In [11] a short-term 

Energy Resource Management (ERM) methodology is 

performed. The ERM scheduling is formulated as an 

optimization problem that aims to minimize the 

operation costs from the point of view of a virtual power 

player that manages the network and the existing 

resources. The optimization problem is solved by a 

deterministic mixed-integer non-linear programming 

approach and by a heuristic approach based on genetic 

algorithms. In [12], a stochastic unit commitment 

problem which included the DR model based on the own 

price elasticity is presented. The problem was solved in 

two stages, where the first stage determined the unit 

commitment schedule in the event of generation outage 

and the second stage found the optimal final demand 

level and optimal real time power generation. Though 

the demand side can voluntarily reduce demand, the 

system operator exercises control during emergency 

situation. Kim et al. in [13] proposed a load scheduling 

algorithm based on Q-learning for a microgrid with 

time-of-use pricing scheme. 

In this paper, a short-term scheduling of distributed 

networks with optimization based DR is presented. DR 

is based on load participation and a new optimization 

algorithm called SOS is used in this problem. After 

defining the appropriate model for the grid as well as 

objective functions, the optimization problem is 

simulated by MATLAB software. Different scenarios 

are considered on a 33-bus standard grid and results 

show that this method significantly reduces operation 

costs and power losses. The rest of this paper is 

organized as follow: section 2 is dedicated to problem 

modeling and defining of decision variables, objective 

functions and constraints. Backward/forward Power 

flow method and SOS algorithm introduction are 

presented in section 3 and 4, respectively. Simulation 

results are presented in section 5 for different scenarios 

and section 6 is dedicated to paper conclusion. 

 

2.  PROBLEM FORMULATION 

2.1.  Decision Variables 

Decision variables include DR model and DG source 

placement. Demand side participation is one of the 

important resources that help the operator to schedule 

generation and consumption with lower cost and higher 

security. The loads can be divided into base load and 

changeable load. Base load is expected load based on 

historical data and its continuous feeding is essential.  

Changeable loads or responsive loads can reduce or shift 

into time for economic reasons and system reliability 

improving. Here, the DR means an incentive program to 

satisfy customers to reduce their consumption during 

critical hours. 

DG sizing and placement are considered as another 

decision variables. The DG types is not important in this 

study and DGs sizing and placement are obtained [14]. 

 

2.2.  Objective Functions 

The objective function is a mathematical function 

whose inputs are the problem variables and the output is 

a number that represents the amount of input 

desirability. In this paper, the objective functions are 

minimizing the operation cost and power losses. 

2.2.1. Minimizing of operation cost 

Grid operation with lower costs is desirable. Optimal 

cost equation can be expressed as: 

 

1

( )
T

t t t

grid grid DR
t

Cost P DR 


                             (1) 

 

Where, DR is responsive load value, 𝛾𝐷𝑅
𝑡  represents 

price paid to responsive load, 𝑃𝑔𝑟𝑖𝑑
𝑡  is power purchased 

from the upstream network at t and 𝛾𝑔𝑟𝑖𝑑
𝑡  is price of 
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electricity purchased at t. 

2.2.2. Minimizing of Power Losses 

As mentioned, grid losses are inevitable that must be 

reduce. The total power loss per hour is formulated as 

follows: 
 

2

1

branchN
t t

Loss i i
i

P R I


                                                      (2) 

 

Where, Ri is resistive of ith line, |𝐼𝑖
𝑡|2 is squared 

magnitude current of ith line at t and Nbranch represents 

number of lines. 

 

2.3.  Constraints 

2.3.1. Buses voltage limits 

Busses voltage limits means stability margin of 

system voltage. According to defined limitation for 

buses voltage, following equation can be expressed: 
 

,min ,maxi i i
V V V            i=1, 2… Nbus                  (3) 
 

Where Vi is bus voltage, Vi,min and Vi,max are minimum 

and maximum voltage of ith bus, respectively and Nbus is 

the bus number. 

2.3.2. Permitted line current flow 

Thermal capacity is the most important limitation 

factor for transmission lines, cables or transformers to 

transfer power. The thermal capacity of the lines is 

simply determined based on current flow, so following 

equation can be used for current flow limitation: 
 

,maxi i
I I           i=1, 2… NLine                             (4) 

 

Where Ii is current of ith line, Iimax is maximum 

allowed current for ith line and NLine is number of lines. 

2.3.3. Demand response constraint 

The DR takes place between a maximum and a 

minimum value which means highest and lowest loads 

reduction, so DR constraint is as follows: 
 

min max

t t tDR DR DR                                            (5) 
 

Where 𝐷𝑅𝑚𝑎𝑥
𝑡  and 𝐷𝑅𝑚𝑖𝑛

𝑡  are maximum and 

minimum load reductions at time t, respectively. 

 

2.4.  Load Modeling 

To design a new distribution network or existing 

network development, the most important factor is loads 

dispersion and designed network must meet demands 

until its next development. Usually consumers are 

divided into household, commercial, industrial, 

agricultural, general and lighting groups. With respect to 

the load static features, three general model is proposed 

in power system studies which are constant power 

(powers are independent of voltage), constant current 

(powers are proportional to bus voltage) and constant 

impedance (powers are proportional to square bus 

voltage). In this paper, constant power model is 

considered. 

 

3.  POWER FLOW 

Load flow studies are performed on power systems 

to understand the nature of the installed network. Load 

flow is used to determine the static performance of the 

system. It analyzes the power systems in normal steady-

state operation [15]. Power flow methods in 

transmission networks such as traditional Newton 

Raphson method are quite less effective in the analysis 

of distribution systems due to radial structure and high 

R/X ratio in latter; also, by increasing the DG units 

penetration, the distribution network changes from a 

passive to an active grid [16]. Therefore, common power 

flow methods in distributed networks with DGs are not 

suitable and backward/forward sweep method based on 

current summation is used in this paper. 

 

3.1.  Backward/forward Sweep Method 

The backward/forward sweep method is appropriate 

for radial construction and its effectiveness has already 

been proven. Simple structure, fast convergence and 

suitable for online and offline problems are as main 

advantages of this method [17]. Backward sweep starts 

from farthest point to source and load currents are 

obtained according to default or calculated voltage in 

previous iteration. After that, bus voltages calculate in 

forward sweep and convergence criterion must be 

examined. 

3.1.1. Backward sweep 

Power flow problem starts with backward sweep. In 

first iteration, all buses voltage are equal to source 

voltage (1 p.u.). In next iteration, buses voltage are 

calculated from previous step. With respect to buses 

voltage, the load current can be calculated as follows: 
 

*
( )

i

i i
L

i

P jQ
I

V




                                                         (6) 

 

Where ILi, Pi, Qi and Vi are current, active power, 

reactive power and voltage of ith load. 

After that, it is necessary to calculate the current 

through lines starting from the farthest line relative to the 

reference line. For example, line j can be expressed as: 
 

j iL Lj D
I I


         i=1… N                                  (7) 

 

Where N is bus number, ILi is current of jth line and 

D is total lines which are connected to bus i. 

Consequently, backward sweep is finished and lines 

current are updated. 

3.1.2. Forward sweep 

In the forward sweep starting with source bus, whose 

voltage is known, and considering impedance and lines 

current, the voltage of ith bus is calculated as follows. 
 



Majlesi Journal of Electrical Engineering                                                                          Vol. 12, No. 1, March 2018 
 

26 

 

1 ii i i L
V V Z I


            i=1… N                              (8) 

 

Where Vi is voltage of ith node, Vi-1 is first node 

voltage at ith line and ILi is current of ith line. Upon 

completion of this process, the forward sweep is finished 

and all busses voltage are updated. 

3.1.3. Convergence criterion survey 

After backward/forward sweep, the convergence 

criterion needs to be calculated as (9) to assess need for 

further iterations. 
 

  
max , ,

max
i old i new

V V V    
                      (9) 

 

Where Vi,old is voltage of ith node in previous 

iteration, Vi,new is voltage of ith node in last iteration and 

ε is permissible voltage deviation value. If the above 

equation persists, the power flow will end; otherwise, 

iterations will continue. Fig. 1 shows flowchart of the 

backward/forward sweep method based on current 

summation. 
 

 
Fig. 1. Backward/forward sweep method flowchart. 

 

3.2.  Power Flow in Distributed Network with DG 

Sources 

Distributed systems with DGs are similar to multi 

source network, so busses with DG are modelled as PQ 

or PV bus [16]. In this paper, DG units are controlled 

like a PQ bus and hence, they are considered as a 

negative load. The PQ bus are modeled as follows: 
 

DG

DG

P P

Q Q

 


 

                                                                      (10) 

 

4.  SYMBIOTIC ORGANISM SEARCH (SOS) 

ALGORITHM 

Optimization is a challenging area of study that has 

attracted increasing attention in recent decades [18]. 

Optimization find best solution which is depended on 

problem, limits and constraints. Recently, metaheuristic 

algorithms such as PSO and GA have more attractive 

and they are superior to traditional gradient-based 

approaches. The SOS algorithm is a recently developed 

population based algorithm introduced by Cheng and 

Prayogo in 2014 [18]. This algorithm is inspired from 

the symbiotic interactions that exist between two 

organisms in the ecosystem. Organisms in the real world 

rarely live in isolation due to dependence on other 

species for their survival [19]. This algorithm is based 

on organism behaviors with each other. Three types of 

symbiotic relationships are found in nature. They are 

mutualism, commensalism and parasitism. By 

performing these three phases, the SOS tries to move 

population, called an ecosystem of possible solutions, to 

promising areas of the search space during the search for 

the optimal solution [20]. 

The significant advantages of SOS algorithm over 

other metaheuristic algorithms include simple 

mathematical operations, easier to code, no usage of 

tuning parameters, robust and easy to realize and it needs 

lesser control parameters [21,22]. Operation details of 

these symbiotic interaction three phases are explained 

below. 

 

4.1.  Mutualism Phase 

Mutualism refers to the relationship between two 

different species of organisms where both individuals 

get benefited. Let Xi be the organism corresponding to 

the ith row of the ecosystem. A new organism Xj is 

chosen randomly from the ecosystem to relate with 

organism Xi. The new candidate solutions for Xi and Xj 

are determined based on the following equations. 
 

0 1

                 1

( , )

( - _ )

inew i

best

X X rand

X Mutual Vector BF

 

 
         (11) 

0 1

             2

( , )

( - _ )

jnew j

best

X X rand

X Mutual Vector BF

 

 
            (12) 

2
_

i j
X X

Mutual Vector


                                         (13) 

Where, rand (0, 1) is a vector of random numbers 

between 0 and 1, BF1 and BF2 are benefit factors that 

can be randomly 1 or 2, Xbest is best member in ith 

iteration and Mutual_Vector represents interaction 

between organism Xi and Xj. If the new organism's 

fitness is better than the previous fitness then organisms 

will be updated. 

 

4.2.  Commensalism Phase 

Commensalism describes the symbiotic relationship 

between two organisms in which one benefits but the 

other neutral. In this phase, for each organism Xi another 
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new organism Xj is randomly selected from the 

ecosystem. Now, the organism Xi tries to get benefit 

from the interaction and other organism Xj is neither 

benefits nor effects from this interaction. The new Xinew 

is calculated based on (14): 
 

1 1(- , ) ( - )
inew i best j

X X rand X X                   (14) 
 

Where, rand (-1, 1) is a random number in range of 

(-1, 1). If new organism is better than the previous one, 

it will be accepted, otherwise it will remain unchanged. 

 

4.3.  Parasitism Phase 

Parasitism is a kind of symbiotic relationship where 

one organism is benefited and the other is, effectively, 

harmed. In this phase, one of the organisms selected 

randomly from the ecosystem Xi plays as a “Parasite-

Vector”. The Parasite- Vector is developed in the search 

space by replicating organism Xi, then altering the 

randomly selected dimensions by making use of a 

random number. The newly formed parasite competes 

for survival with the organism Xj. If Xj has lesser fitness 

when compared to the parasite, then the parasite kills the 

organism Xj and takes over its place in the ecosystem. 

Fig. 2 represents the SOS summary flowchart. 

 

 
Fig. 2. The SOS flowchart. 

 

5.  RESULTS AND DISCUSSION 

By introducing decision variables, objective 

functions, problem constraints and SOS algorithms, 

proposed optimization method is simulated by 

MATLAB software under different scenarios. 

The proposed method is applied to a standard 33-bus 

radial distribution network. Configuration of 33-bus 

radial network is shown in Fig. 3 and its data is presented 

in [23]. Total active and reactive loads are equal to 3715 

kW and 2300 kVar, respectively. System nominal 

voltage is equal to 12.66 kV and power loss is about 

202.6 kW. Energy price and hourly load during 24-hours 

is shown in Table 1[24]. There is also two responsive 

load which are connected to bus 15 and 24 and their 

specifications are shown in Table 2 [4]. DGs size and 

place is presented in Table 3. 
 

 
Fig. 3. The standard 33-bus system. 

 

Table 1. Energy price and hourly load during a day. 

Hour Energy 

price 

($/MWh) 

Load 

(p.u.) 

Hour Energy 

price 

($/MWh) 

Load 

(p.u.) 

1 47.47 0.6618 13 60.64 0.7941 

2 31.64 0.6765 14 40.88 0.7500 

3 31.65 0.6912 15 28.5 0.7500 

4 32.6 0.7059 16 38.75 0.7647 

5 40.78 0.7206 17 35.55 0.7794 

6 38.64 0.7500 18 112.42 0.8529 

7 158.95 0.7794 19 575.58 0.9412 

8 384.14 0.8235 20 87.72 0.9853 

9 67.27 0.8824 21 35.06 1.0000 

10 52.29 0.9118 22 47.18 0.9118 

11 44.59 0.8676 23 61.27 0.7353 

12 108.49 0.8382 24 33.9 0.7059 
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Table 2. Responsive loads specification [4]. 

Hour bus 15 bus 28 

 Maximum 

reduction 

(kW) 

Price 

($/kWh) 

Maximum 

reduction 

(kW) 

Price 

($/kWh) 

8 15 6 12 14 

9 9 7 24 9 

10 5 4 5 12 

13 7 10 - - 

14 7 50 - - 

15 21 60 16 12 

16 7 8.5 19 8 

17 10 6 25 60 

18 4 10 18 60 

19 15 20 10 30 

20 28 30 18 10 

21 10 30 21 6 

22 3 30 8 20 

23 6 30 - - 

 

Table 3. DG size and place in 33-bus system. 

Bus P (kW) 

3 50 

6 100 

24 200 

29 100 

 

5.1.  Scenarios 

Short-term scheduling of distributed network with 

DGs and DR program by SOS algorithm is presented to 

reduce power losses and operation costs. Scenarios are 

as follow: 

5.1.1. Scenario 1 (basic mode) 

In this mode, operation cost and losses are calculated 

in the grid without responsive load as well as DG. 

Simulation results show that grid operation cost is $ 

6915800 and power losses is equal to 3100.7 kW. These 

results are calculated for a simple grid, so they will 

reduce in following scenarios. 

5.1.2. Scenario 2 

In this mode, minimizing of operation cost during 

24-hours a day is objective function. The grid with DG 

and responsive load is considered that optimization 

problem has been solved with SOS algorithm. The SOS 

algorithm population and maximum iteration are 

considered equal to 10 and 20, respectively. 

Fig. 4 shows a day operation cost for scenario 2 

compared with scenario 1. After applying DG and 

responsive load, operation costs are reduced in all hours. 

In second scenario, calculated value for grid operation 

cost is equal to $ 5912100 which is about 14.5% lower 

than the previous scenario (basic mode). 

Comparison of total operation cost between first and 

second scenarios is shown in Fig. 5. As can be seen, in 

the second scenario the cost has reduced. 
 

 
Fig. 4. 24-hours grid operation cost for scenario 2 in 

comparison with scenario 1. 
 

 
Fig. 5. Total operation costs for scenario2 and 

scenario1. 

 

Fig. 6 shows status of the responsive loads during 24-

hours for second scenario. This figure shows responsive 

load contribution in demand respond program. As an 

example, responsive load at bus number 15 propose 7 

kW with 60 $/kW in 14th hour but this contribution was 

rejected in first scenario. 

 
Fig. 6. Contribution of responsive loads during 24-

hours for scenario 2. 
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5.1.3. Scenario 3 

In this mode, minimizing of grid with DG as well as 

responsive load power losses during 24-hours a day is 

considered. Optimization problem is solved by SOS 

algorithm in which population and maximum iteration 

are considered equal to 10 and 20, respectively. 

The responsive loads status during 24-hours a day for 

third scenario is shown in Fig. 7. Contribution of each 

responsive load is shown like previous scenario. As an 

example, responsive load at bus number 28 propose 25 

kW circuit with 60 $/kW in 17th hour but this situation 

did not happen in second scenario (see Fig. 6) because 

contribution of this load is necessary to reduce power 

losses. 

 

 
Fig. 7. Contribution of responsive loads during 24-

hours for scenario3. 

 

Fig. 8 shows comparison of grid power losses 

between scenarios 2 and 3. Power loss has been reduced 

in third scenario in the all hours. 

 

 
Fig. 8. 24-hours grid power losses for scenario3 in 

comparison with scenario2. 

 

For a better comparison, grid losses in third scenario 

is compared with first scenario which is shown in Fig. 9. 

Third scenario loss is about 2573 kW which represents 

17% decrease. 

 
Fig. 9. Total power losses for scenario3 and scenario1. 

 

6.  CONCLUSION 

Today, with respect to increased demand, the electric 

industry competitiveness and environmental issues, 

power losses and grid operation costs reduction are one 

of the main concerns of distribution network users. One 

of the most important and effective methods for reducing 

losses and costs in distribution networks is short-term 

scheduling. The purpose of this paper is to provide a 

short-term scheduling in the presence of DG as well as 

DR program in which SOS algorithm is used to optimize 

this problem. 

Simulations are carried out by MATLAB software 

for three different scenarios. In firs scenario, the 

standard 33-bus network is in base mode without any 

DG or DR program. Second scenario is dedicated to grid 

optimization for operation cost in the presence of DG 

and DR program. Also, minimizing grid power losses 

with SOS algorithm in the presence of DG and DR 

program is studied in third scenario. Reduction of 

operation cost in scenario 2 and power losses in scenario 

3 are about 14.5% and 17%, respectively. The results 

showed that SOS has the ability to find the optimal 

solution for problem. 

 

REFERENCES 
[1] M. Shahidehpour, H. Yamin and Z. Li, “Market 

Operations in Electric Power Systems: Forecasting, 

Scheduling, and Risk Management,” Wiley-IEEE 

Press, April 2002. 

[2] S. Kalambe, G. Agnihotri, “Loss Minimization 

Techniques Used in Distribution Network: 

Bibliographical Survey,” Renewable and Sustainable 

Energy Reviews, Vol. 139, pp. 98–112, 2014. 

[3] M.H. Albadi, E.F. El-Saadany, “A Summary of 

Demand Response In Electricity Markets,” Electric 

Power Systems Research, Vol. 78, pp. 1989–1996, 

2008. 

[4] A. Zakariazadeh, S. Jadid and P. Siano, “Smart 

Microgrid Energy and Reserve Scheduling With 

Demand Response Using Stochastic Optimization,” 
Electrical Power and Energy Systems, Vol. 63, pp. 

523–533, 2014. 

5 10 15 20
0

10

20

30

Time [h]

D
R

 1
5
 [

K
W

]

5 10 15 20
0

10

20

30

Time [h]

D
R

 2
8
 [

K
W

]

5 10 15 20
0

50

100

150

200

250

Time [h]

P
lo

s
s
 [

K
w

]

 

 

Before

After

2 3
0

500

1000

1500

2000

2500

3000

3500

Scenario Number

P
lo

s
s



Majlesi Journal of Electrical Engineering                                                                          Vol. 12, No. 1, March 2018 
 

30 

 

[5] YFB Jiang, “Dynamic Residential Demand 

Response and Distributed Generation Management 

in Smart Microgrid with Hierarchical Agents,” 
Energy Proc., Vol. 12, pp. 76–90, 2011. 

[6] M. Cepeda, M. Saguan, “Assessing Long-Term 

Effects of Demand Response Policies in Wholesale 

Electricity Markets,” Electrical Power and Energy 

Systems, Vol. 74, pp. 142–152, 2016. 

[7] P. Faria, Z. Vale and J. Baptista, “Constrained 

Consumption Shifting Management in The 

Distributed Energy Resources Scheduling 

Considering Demand Response,” Energy 

Conversion and Management, Vol. 93, pp. 309–320, 

2015. 

[8] R. Wang, P. Wang and G. Xiao, “A Robust 

Optimization Approach for Energy Generation 

Scheduling in Microgrids,” Energy Conversion and 

Management, Vol. 106, pp. 597–607, 2015. 

[9] M. Alipour, B. Mohammadi-Ivatloo and K. Zare, 

“Stochastic Risk-Constrained Short-Term 

Scheduling of Industrial Cogeneration Systems In 

The Presence Of Demand Response Programs,” 

Applied Energy, Vol. 136, pp. 393–404, 2014. 

[10] F. Ruelens, B. J. Claessens, S. Vandael, B. D. Schutter, 

R. Babuska, and R. Belmans, “Residential Demand 

Response of Thermostatically Controlled Loads 

Using Batch Reinforcement Learning,” IEEE Trans. 

on Smart Grid, Vol. 8, pp. 2149-2159, 2016. 

[11] M. Silva, H. Morais, Z. Vale and P. Faria, “Short-term 

Scheduling Considering Five-minute and Hour-

ahead Energy Resource Management,” IEEE Power 

and Energy Society General Meeting, 2012. 

[12] Q. Wang, J. Wang, and Y. Guan, “Stochastic Unit 

Commitment with Uncertain Demand Response,” 

IEEE Trans. Power Syst., Vol. 28, pp. 562–563, 2013. 

[13] B. Kim, Y. Zhang, M. van der Schaar, and J. Lee, 

“Dynamic Pricing and Energy Consumption 

Scheduling With Reinforcement Learning,” IEEE 

Trans. on Smart Grid, Vol. 7, pp. 2187–2198, 2016. 

[14] P. S. Georgilakis, N. D. Hatziargyriou, “Optimal 

Distributed Generation Placement in Power 

Distribution Networks: Models, Methods, and 

Future Research,” IEEE Trans. on power system, 

Vol. 28, pp. 3420-3428, 2013. 

[15] P. Samal, S. Ganguly, “A Modified Forward 

Backward Sweep Load Flow Algorithm for 

Unbalanced Radial Distribution Systems,” IEEE 

Power & Energy Society General Meeting, 2015. 

[16] S.M. Moghaddas-Tafreshi and Elahe Mashhour, 

“Distributed Generation Modeling for Power Flow 

Studies And A Three-Phase Unbalanced Power 

Flow Solution For Radial Distribution Systems 

Considering Distributed Generation,” Electric 

Power Systems Research, Vol. 79, pp. 680–686, 2009. 

[17] J. A. Michline Rupa, S. Ganesh, “Power Flow 

Analysis for Radial Distribution System Using 

Backward/Forward Sweep Method,” World 

Academy of Science, Engineering and Technology, 

Vol. 8, pp. 1621-1625, 2014. 

[18] M. Cheng, D. Prayogo, “Symbiotic Organisms 

Search: A new metaheuristic optimization 

algorithm,” Computers & Structures, Vol. 139, pp. 

98–112, 2014. 

[19] H. Kahraman, M. Dosoglu, U. Guvenc, S. Duman and 

Y. Sonmez, “Optimal Scheduling of Short-Term 

Hydrothermal Generation Using Symbiotic 

Organisms Search Algorithm,” 4th International 

Istanbul Smart Grid Congress and Fair (ICSG), April 

2016. 

[20] M. Padma Lalitha, P.Suresh babu and B.Adivesh, 

“SOS Algorithm For Dg Placement For Loss 

Minimization Considering Reverse Power Flow In 

The Distribution Systems,” International Conference 

on Advanced Communication Control and Computing 

Technologies (ICACCCT), 2016. 

[21] P. Balachennaiah, M. Suryakalavathi, “Real Power 

Loss Minimization Using Symbiotic Organisms 

Search Algorithm,” IEEE India Conference 

(INDICON), Dec. 2015. 

[22] H. M. Hasanien, A. A. El-Fergany, “Symbiotic 

Organisms Search Algorithm for Automatic 

Generation Control of Interconnected Power 

Systems Including Wind Farms,” IET Generation, 

Transmission & Distribution, Vol. 11, pp. 1692–1700, 

2017. 

[23] M.M. Amran, G.B. Jasmon, A.H.A. Bakar and H. 

Mokhlis, “Optimal Network Reconfiguration Based 

On Maximization of System Loadability Using 

Continuation Power Flow Theorem,” International 

Journal of Electrical Power & Energy Systems, Vol. 

54, pp. 123–133, 2014. 

[24] M. Rostami, A. Kavousi-Fard, and T. Niknam. 

“Expected Cost Minimization of Smart Grids With 

Plug-In Hybrid Electric Vehicles Using Optimal 

Distribution Feeder Reconfiguration,” IEEE 

Transactions on Industrial Informatics, Vol. 11, pp. 

388-397, 2015.

 


