[1] M. Rubinoff, "Analogue vs. Digital Computers-A Comparison," Proceedings of the IRE, vol. 41, no. 10, pp. 1254-1262, 1953.
[2] M. D. Hahm, E. G. Friedman, and E. L. Titlebaum, "Analog vs. Digital: A comparison of circuit implementations for low-power matched filters," in Circuits and Systems, 1996. ISCAS'96., Connecting the World., 1996 IEEE International Symposium on, 1996, vol. 4, pp. 280-283.
[3] C. R. Schlottmann and J. Hasler, "High-level modeling of analog computational elements for signal processing applications," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 1945-1953, 2014.
[4] S. W. Smith, "The scientist and engineer's guide to digital signal processing," 1997.
[5] S. M. Kay, "Fundamentals of statistical signal processing," Prentice Hall PTR, 1993.
[6] I. Boucherit and M. Guerti, "Speech analysis in cochlear implant using auditory filter bank model," in Modelling, Identification and Control (ICMIC), 2016 8th International Conference on, 2016, pp. 274-278: IEEE.
[7] T. Qu, Q. Huang, Y. Huang, L. Li, and X. Wu, "An accurate decorrelation method for parametric stereo coding," in Audio, Language and Image Processing (ICALIP), 2016 International Conference on, 2016, pp. 72-76: IEEE.
[8] R. Rehr and T. Gerkmann, "An Analysis of Adaptive Recursive Smoothing with Applications to Noise PSD Estimation," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 2, pp. 397-408, 2017.
[9] F. d. Lacerda, "Conversor DSB-SSB a capacitores chaveados por Transformador de Hilbert em tecnologia CMOS de 180 nm," 2017.
[10] C.-C. Tseng and S.-L. Lee, "Closed-form designs of digital fractional order Butterworth filters using discrete transforms," Signal Processing, vol. 137, pp. 80-97, 2017.
[11] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, "Moving target classification and tracking from real-time video," in Applications of Computer Vision, 1998. WACV'98. Proceedings., Fourth IEEE Workshop on, 1998, pp. 8-14: IEEE.
[12] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman, "Eulerian video magnification for revealing subtle changes in the world," 2012.
[13] S.-N. Mirebrahimi and F. Merrikh-Bayat, "Programmable discrete-time type I and type II FIR filter design on the memristor crossbar structure," Analog Integrated Circuits and Signal Processing, vol. 79, no. 3, pp. 529-541, 2014.
[14] F. M. Bayat, F. Alibart, L. Gao, and D. B. Strukov, "A reconfigurable FIR filter with memristor-based weights," arXiv preprint arXiv:1608.05445, 2016.
[15] B. Gold, T. G. Stockham, A. V. Oppenheim, and C. M. Rader, "Digital processing of signals," 1969.
[16] B. Widrow, "Adaptive adaline Neuron Using Chemical memistors.". 1960.
[17] H. Kim and S. P. Adhikari, "Memistor is not memristor [express letters]," IEEE Circuits and Systems Magazine, vol. 12, no. 1, pp. 75-78, 2012.
[18] R. M. Fano, L. J. Chu, and R. B. Adler, "Electromagnetic fields, energy, and forces," 1968.
[19] L. Chua, "Memristor-the missing circuit element," IEEE Transactions on circuit theory, vol. 18, no. 5, pp. 507-519, 1971.
[20] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," nature, vol. 453, no. 7191, pp. 80-83, 2008.
[21] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054-2066, 2014.
[22] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE Model of Memristor with Nonlinear Dopant Drift," Radioengineering, vol. 18, no. 2, 2009.
[23] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, "A versatile memristor model with nonlinear dopant kinetics," IEEE transactions on electron devices, vol. 58, no. 9, pp. 3099-3105, 2011.
[24] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nature nanotechnology, vol. 3, no. 7, pp. 429-433, 2008.
[25] E. Lehtonen and M. Laiho, "CNN using memristors for neighborhood connections," in Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop on, 2010, pp. 1-4: IEEE.
[26] M. D. Pickett et al., "Switching dynamics in titanium dioxide memristive devices," Journal of Applied Physics, vol. 106, no. 7, p. 074508, 2009.
[27] H. Abdalla and M. D. Pickett, "SPICE modeling of memristors," in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011, pp. 1832-1835: IEEE.
[28] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, "A memristor device model," IEEE electron device letters, vol. 32, no. 10, pp. 1436-1438, 2011.
[29] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM: Threshold adaptive memristor model," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 1, pp. 211-221, 2013.
[30] S. Shin, K. Kim, and S. M. Kang, "Memristor Applications for Programmable Analog ICs," IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 266-274, 2011.
[31] Y. V. Pershin and M. D. Ventra, "Practical Approach to Programmable Analog Circuits With Memristors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1857-1864, 2010.
[32] T. Raja and S. Mourad, "Digital logic implementation in memristor-based crossbars," in 2009 International Conference on Communications, Circuits and Systems, 2009, pp. 939-943.
[33] J. Cong and X. Bingjun, "mrFPGA: A novel FPGA architecture with memristor-based reconfiguration," in 2011 IEEE/ACM International Symposium on Nanoscale Architectures, 2011, pp. 1-8.
[34] D. Biolek, V. Biolkova, and Z. Kolka, "Memristive systems for analog signal processing," in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 2588-2591.
[35] B. Mouttet, "Proposal for Memristors in Signal Processing," in Nano-Net: Third International ICST Conference, NanoNet 2008, Boston, MA, USA, September 14-16, 2008, Revised Selected Papers, M. Cheng, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 11-13.
[36] X. Hu, S. Duan, L. Wang, and X. Liao, "Memristive crossbar array with applications in image processing," Science China Information Sciences, journal article vol. 55, no. 2, pp. 461-472, February 01 2012.
[37] D. Soudry, D. D. Castro, A. Gal, A. Kolodny, and S. Kvatinsky, "Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training," IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2408-2421, 2015.
[38] Y. V. Pershin and M. Di Ventra, "Experimental demonstration of associative memory with memristive neural networks," Neural Networks, vol. 23, no. 7, pp. 881-886, 2010/09/01/ 2010.
[39] X. Liu, Z. Zeng, and S. Wen, "Implementation of Memristive Neural Network With Full-Function Pavlov Associative Memory," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 9, pp. 1454-1463, 2016.
[40] A. A. Emara, M. M. Aboudina, and H. A. Fahmy, "Corrected and accurate Verilog-A for linear dopant drift model of memristors," in Circuits and Systems (MWSCAS), 2014 IEEE 57th International Midwest Symposium on, 2014, pp. 499-502: IEEE.
[41] C. E. Merkel, N. Nagpal, S. Mandalapu, and D. Kudithipudi, "Reconfigurable N-level memristor memory design," in Neural Networks (IJCNN), The 2011 International Joint Conference on, 2011, pp. 3042-3048: IEEE.
[42] F. Alibart, E. Zamanidoost, and D. B. Strukov, "Pattern classification by memristive crossbar circuits using ex situ and in situ training," Nature communications, vol. 4, p. 2 , 072, 2013.
[43] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, vol. 521, no. 7550, pp. 61-64, 2015.
[44] B. Razavi, Design of analog CMOS integrated circuits, Second Edition ed. MA, Boston:McGraw-Hill, 2017.
[45] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing (2nd ed.). Prentice-Hall, Inc., 1999, p. 870.