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ABSTRACT: 

The weakness of the Direct Vector Control (DVC) is lack of an estimation of the flux amplitude and the rotor position 

with high accuracy. These quantities are sensitive to parameter variations; it is important to use a robust estimation 

system for estimating the rotor flux with respect to parametric uncertainties. In this paper the sliding mode speed 

sensorless vector control based on the Model Reference Adaptive System (MRAS) of double stator induction motor is 

presented. First, the models of the double stator induction motor and the DVC are proposed. Second, the MRAS 

technique of the DSIM is adopted. In order to ensure a robust sensorless control, the sliding mode technique for the 

estimation system was used. The results showed the presented estimator has a positive effect on the system behavior 

especially in changing the reference and/or the parameters variation. 
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1. INTRODUCTION 

In the areas of “control of electrical machines”, the 

research works are oriented increasingly to sensorless 

control techniques [1-3], where the performance of 

control laws depend on the degree of precision in the 

knowledge of the flux amplitude and its position. These 

quantities are easily accessible by steps. Indeed, flux 

sensors are relatively difficult (measurement noise) and 

reduce the strength of the whole. Thus, the 

reconstruction of flux or its position estimators or 

observers becomes a primary goal [4-6]. In this context, 

the sliding mode estimation strategy based on model 

reference adaptive system MRAS has been used [7], 

[8]. 

The Field Oriented Control (FOC), developed for 

Double Stator Induction Machine (DSIM), requires the 

measurement of the speed to perform the coordinate 

transformations. Physically, this measurement is 

performed using a mechanical speed sensor mounted 

on the rotor shaft, which unfortunately increases the 

complexity and cost of installation (additional wiring 

and maintenance) [3-5]. Moreover, the mechanical 

speed sensors are usually expensive, fragile and affect 

the reliability of the control. In this context, our study 

focuses mainly on the speed estimation using the model 

reference adaptive system observer for a sensorless 

vector control of a double stator induction motor. 

The speed estimator based on the theory of model 

reference adaptive system is the most popular 

techniques that have been implemented for the 

sensorless speed controlling of induction motor using 

only the measurements of stator voltage and current 

[8,9]. This approach is based on a reference model of 

the machine (usually it is a voltage model) does not 

depend on the rotor speed, and an adjustable model 

(usually it is a current model) directly dependent on the 

speed. The error between the two models injected in an 

adaptation mechanism. 

The Sliding Mode (SM) is a particular operation 

mode of variable structure systems. The theory of these 

systems has been studied and developed in the Soviet 

Union, first by Professor Emelyanov [10], then by other 

collaborators like Utkin, from the study’s results of the 

mathematician Filippov on the discontinuous second-

member differential equations. Then the works were 

resumed in the United States by Slotine [11] in Japan 

by Young, Harashima and Hashimoto. 

The main contribution of this paper is the 

implementation of a high-performance sliding mode 

sensorless control scheme for a double stator induction 

motor, this control strategy is used to estimate the 

speed and the rotor flux to generate the switching states 

of the inverter and consequently the supply voltages of 

the DSIM. 
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The paper is organized as follows: the DSIM model 

and the vector control strategy are presented in section 

2 and 3 respectively. In Section 4 the Model Reference 

Adaptive System (MRAS) strategies are discussed. 

Section 5 is devoted to the sliding-mode technique, 

section 6 provides the application of the resulting 

sensorless control. Finally, the overall proposed 

sliding-mode MRAS estimator for speed sensorless 

control of DSIM shown in Fig.1 is used for numerical 

simulation and the related results and remarks are 

presented. 

2. DSIM MODEL 

The equations of the double stator induction 

machine can be expressed in (α, β) axes where the 

attributed reference is the stator field [12], [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1. Sliding mode sensorless vector control scheme of DSIM. 
 

Voltages Equations 

By choosing a referential related to the stator field, 

we obtain the following system of equations [12-14]: 
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Where: 

vs1αβ vs2αβ :First and second stator voltages in stationary 

frame  

is1αβ is2αβ :First and second stator currents in stationary 

frame  

Φs1αβ Φs2αβ:First and second stator flux in stationary 

frame  

Φrαβ :Rotor flux in stationary frame  

ωm  :Rotor angular frequency 

Rs12  Rr :First and second stator and rotor resistance                  

 

Flux Equations 

The relations between flux and currents are given by 

[12-14]: 
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Where: 

Ls12            :First and second stator inductance 

Lr               :Rotor inductance 

Lm              :Mutual inductance 

Replacing the system of equations (2) in (1) we obtain 

the mathematical DSIM model (3). 
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Where:  

              :Total leakage factor; 

 Tr             :Rotor time constant. 

 

Mechanical Equations 

The equation of the electromagnetic torque is [14]: 
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Where: 

Tem          : Electromagnetic torque; 

p             :Number of pole pairs 

 

The mechanical equation is: 
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Where: 

J        :Inertia; 

m    :Mechanical rotor speed 

TL      :Load torque 

kf       :Viscous friction coefficient 

 

3. DIRECT FIELD ORIENTED CONTROL OF 

DSIM 

In the direct vector control, knowledge of the rotor 

flux (amplitude and phase) is required to ensure the 

decoupling between the torque and flux. Indeed, the 

position of the rotor flux θs is calculated algebraically 

from the information on the rotor flux [5], [6]. 
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These components can beings expressed from the 

DSIM voltage model; equation (3): 
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The principle of orientation shown in Figure 4 

aligns the rotor flux on the direct axis of Park’s axes 

[4], [13]. 

Thus, we obtain for the orientation of the rotor flux: 
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The following equations of rotor flux and 

electromagnetic torque are used: 
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After Laplace transform, we can write:  

 

 






















    r
*

2sq
*

1sq
*

rm

m
em

*

2sd
*

1sd
*

r

m
r

*

)ii(
LL

L
pT

)ii(
sT1

L

                     (10) 

 

The two stator’s windings are identical, so the 

powers provided by this two windings system are the 

same, hence: 
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4. CONCEPTS OF ESTIMATORS 

Estimators used in open loop, based on the use of 

the model of the controlled system [4-6, 8]. The 

dynamics of an estimator depends on the specific 

modes of the system. Such an approach leads to the 

implementation of simple and fast algorithms, but 

sensitive to modeling errors and parametric variations 

or during operation. Indeed, there is no closure with 

real variables to consider these errors or disturbances. 

Such an estimator is shown in Figure 2. 

The system shown in Figure 2 is defined by the 

state form as follows [4]: 
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Where B is the input matrix of the system, C is the 

output matrix and A(Ω) is the non-stationary transition 

matrix of our system, since it depends on the rotational 

speed. However, it can be considered as quasi-

stationary for the dynamics speed with respect to that 

of the electrical quantities. 

By integrating equation (12), we can reconstruct the 

estimate state. 
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Fig.2. The structure of an estimator. 
 

The convergence speed of the estimation error 

depends on the time constants of the system. It is 

checked in case the eigenvalues of the state matrix are 

defined negative (considering ΔA = 0 and ΔB = 0). 

When modeling errors exist, the terms ΔAX and ΔBU 

behave as inputs in equation (15). In the case of 

electrical machines, we do not control the convergence 

time of the estimation error, and the estimates have 

necessarily a static error due to modeling errors [4]. 
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The approach by the model reference adaptive 
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improves the performance of the speed estimation that 

can be extended to very low speed [16]. 

For the double stator induction machine, the 

adaptive model is described by the current model [4], 

[8]: 
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The reference model is given by the voltage model [4, 

8]: 
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Fig.3. The overall structure of MRAS technique. 

 

The flux error is calculated using the cross product 

[8], [16]: 
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The adaptation law is classically given by a PI 

controller of the following expression [8], [16]: 
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The block diagram of figure.4, illustrates the MRAS 

technique used for sensorless vector control of double 

stator induction motor. 

 

 
Fig.4. Block diagram of the classical MRAS technique applied to the DSIM 

 

The use of classic PI regulator for this estimation 

method has not yielded satisfactory results regarding 

the rotor flux orientation and the imposed robustness 

test. Therefore, it’s necessary to introduce more 

powerful regulators, which are based on a sliding-mode 

technique. 

 

6. SLIDING MODE CONTROL THEORY 

6.1. Multivariable System 

The design of this control method can be divided 

into three stages: 

 

a) Choice of sliding surfaces 

x̂

 

Reference model 
  

  

Adaptive model 

i
S
 

+ 

- 

 
Adaptation 

Mechanis

m 

  

v
S
 

x 

 

Ɛ 

Reference model 

Eq.(17) 

 

Adaptive model 

Eq.(16) 

iSαβ1 

Adaptation 

Mechanism 

Eq.(19) 

 

vSαβ1 

Ɛ m̂  

m̂  

iSαβ2 

M
o

d
el E

q
.(1

8
) 

Model 

Eq.(6) 

r̂  

s̂  

vr  

vr
ˆ

  

ir
ˆ

  

ir
ˆ

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MRAS base speed 

and flux estimation 



Majlesi Journal of Electrical Engineering                                                       Vol. 12, No. 3, September 2018 

 

46 

 

J.J. Slotine proposes a general form of equation to 

determine the sliding surface which ensures the 

convergence of a variable to its desired value [11]: 
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b) Establishment of convergence conditions 

The convergence conditions allow the dynamics of 

the system to converge towards the sliding surfaces. 

We retain from the literature to the following Lyapunov 

function: 
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control and the attractive control: 

 

neq U)t(U)t(U                                                    (24) 

 

The equivalent control Ueq(t) is calculated on basis 

of the system behavior along the sliding mode surface, 

and the Lyapunov condition (23) gives the control Un. 

To check this condition and eliminate the chattering 

phenomenon [4], a simple solution is proposed for Un: 

 

))t,x(S(SmoothKUn                                         (25) 

 

The smooth function is given by: 
 




)t,x(S

)t,x(S
))t,x(S(Smooth                                   (26) 

Where: 

K   is the control gain. 

   is a small positive parameter. 

 

6.2. Sliding Mode Control Application 

a) Speed sliding mode surface 

The speed regulating surface whose relative degree 

r = 1 is of the following form: 

 

  dt)(k)(S m
*
mm

*
mm                       (27) 

 

By deriving the surface S(ωr), we obtain:  

 

)(k)(S m
*
mm

*
mm                                (28) 

 

The mechanical equation gives: 

 















mfL

*
r2sq1sq

rm

m2m kpT)ii(
LL

L
p

J

1

dt

d
 (29) 

 

Where: mm p  

By posing sq2sq1sq i
~

ii  and substituting equation 

(29) into (28), we have: 

sq
*
r

rm

m
2

m
*
m

m
f

L
*
mm

i
~

LL

L

J

p
)(k

J

k
T

J

p
)(S






 

    (30) 

By letting: 

m
f

L
*
m1

J

k
T

J

p
f       

*
r

rm

m
2

2
LL

L

J

p
f 


  

Replacing the current sqi
~

with the control current 

)n(sq)eq(sqsq i
~

i
~

i
~

 in equation (30), we find: 

 

)n(sq2)eq(sq2m
*
m1m i

~
fi

~
f)(kf)(S 

          

(31) 

 

During sliding mode and in the established regime, 

we have 0)(S m  and therefore 0)(S m  and 

0i
~

)n(sq  , hence we drive the formula of the 

equivalent control )eq(sqi
~

from equation (31): 

 

2

m
*
m1

)eq(sq
f

)(kf
i
~ 



                                         

(32)
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During the convergence mode, the Lyapunov 

condition (23) must be checked. By replacing (32) in 

(31), we obtain: 

 

)n(sq2m i
~

f)(S                                                      (33) 

 

We take for the attractive control: 

 

mm

m
)n(sq

)(S

)(S
Ki

~
r 


                                           (34) 

 

b) Rotor flux sliding mode surface 

Taking the same surface as that of the speed: 

 

)(k)(S r
*
rr

*
rr                                 (35) 

 

By posing sd2sd1sd i
~

ii   and substituting equation of 

rotor flux (9) in (35), we find: 

 

)(ki
~

LL

RL

LL

R
)(S r

*
rsd

rm

rm
r

rm

r*
rr 





   (36) 

By letting: 

r
rm

r*
r1

LL

R
f 


   

rm

rm
2

LL

RL
f


  

Replacing the current sdi
~

with the control current 

)n(sd)eq(sdsd i
~

i
~

i
~

 in equation (36), we find: 

 

)n(sd2)eq(sd2r
*
r1r i

~
fi

~
f)(kf)(S           (37) 

 

During sliding mode and in the established regime, 

we have 0)(S r  and therefore 

0)(S r  and 0i
~

)n(sd  , hence we drive )eq(sdi
~

 from 

equation (37): 

 

2

r
*
r1

)eq(sd
f

)(kf
i
~ 



                  

                      (38) 

 

During the convergence mode, the condition (23) 

must be checked. By substituting equation (38) into 

(37), we obtain: 

 

)n(sd2r i
~

f)(S                                                      (39) 

 

We take for the attractive control: 

r

r )(S

)(S
Ki

~

r

r
)n(sd







                                       (40) 

 

c) Estimated speed sliding mode surface 

The sliding surface of the estimated speed is: 

 

  dt.K)(S                                                       (41) 

 

Where: 0K   and irvrvrir
ˆˆˆ

   

The derivative of )(S   gives 

: 

 K)(S                                                              (42) 

 

Where: 

 

vririrvrvririrvr      (43) 

 

The Substituting of the adaptive model equation 

(16) into (43) yields: 
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   (44) 

 

By letting: 
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r

m
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T
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T
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   (45) 

 

irvrirvr2
ˆˆf                                            (46) 

 

Equations (42) and (44) can be written as: 

 

2m1 fˆf                                                               (47) 

 

And 

 

 Kfˆf)(S 2m1
                                               (48) 

 

By replacing m̂ with equivalent and attractive 

control )n(m)eq(mm
ˆˆˆ  in equation (48), we find: 

 

 Kfˆfˆf)(S 2)n(m2)eq(m1
                         (49) 
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During sliding mode and in the established regime, 

we have 0)(S  and therefore 0)(S  and 0ˆ
)n(m  , 

hence: 

 

2

1
)eq(m

f

Kf
ˆ


                                                       (50) 

 

During the convergence mode, the Lyapunov 

condition (23) must be checked. By replacing (50) into 

(49), we obtain: 

 

)n(m2
ˆf)(S                                                           (51) 

 

We take for the attractive control: 

 







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)(S

)(S
Kˆ

)n(m                                                (52) 

 

the block diagram of the sliding-mode MRAS 

estimator applied to the DSIM is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5. Block diagram of the Sliding-mode MRAS 

technique applied to the DSIM. 
 

7. SIMULATION RESULTS  

Using the block diagram of Fig. 1, the simulation 

was carried out under the same conditions as the 

conventional control with the following adjustment 

parameters (Tab.1) 

To validate the static and the dynamic performances 

of the sliding-mode MRAS speed estimator (Fig. 6), 

different simulation scenarios are considered.  

The speed trajectory up to the nominal value 

+280rd /sec and returns to -280rd /sec according to 

different profiles. For this speed step, a load 

disturbance of 14 N.m is applied between 1.5sec and 

2.5sec with a reversal of speed rotation at t = 3.5s. 
 

Table 1. Sliding surfaces setting parameters 

Parameter S( m ) S( r ) S(
m̂

 ) 

K 100 120 130 

ζ 0.4 0.01 0.1 

 

8. DISCUSSION 

Figure.6 illustrates the electromagnetic torque, 

stator phase current, real and estimated rotor flux, real 

and estimated speed and corresponding estimation 

errors of a sliding-mode MRAS speed sensorless direct 

vector control of DSIM. As shown in this figure, the 

sliding-mode estimator has good speed and flux 

tracking with a dynamic error is not important and a 

static error is practically zero. 

 

8.1. Robustness Test 

We perform a robustness test with respect to the 

variation of the different parameters separately; rotor 

resistance, stator resistors, mutual inductance and 

inertia. 

In this simulation, the DSIM runs with the speeds 

150rd/sec and 30rd/sec considering increasing of the 

parameters. At start-up the DSIM operates with the 

nominal values of these parameters, and between the 

time t = 1.5sec and 2.5sec, a step of +50% of each 

parameter is applied separately. 

Figure (7) shows the speed and the rotor flux 

responses for a +50% increase in the rotor resistance. 

We observe that the speed increases (overshoot of 

0.66% of its value) compared to the nominal 

parameters. At low speed (Figure 8), the speed is also 

affected, but the decoupling is maintained. 

Figure (9) shows that the speed is not affected by a 

+50% increase in the stator resistance, but at low speed 

(Figure 10) the speed response is oscillatory and the 

control almost lost. 

In the figures (11) and (12), the speed and rotor flux 

are shown when the mutual inductance increases by + 

50% of its nominal value. We see in these figures, that 

the variation of the mutual inductance has a remarkable 

influence on the speed and especially on the quality of 

the rotor flux orientation. 

Through the figures (13) and (14), we find that a 

+100% increase in the inertia has little effect on the 

control performance for high speed or low speed. 

Indeed, we see a slight increase in the speed response 

time with a small overshoot at startup and at the speed 

reversion. However, the rotor flux is perfectly oriented. 
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Fig. 6. Simulation results for sliding-mode MRAS speed sensorless vector control of DSIM. 
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Fig. 7. Robustness test: for parameter variation of +50%Rr; speed and rotor flux results. 
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Fig. 8. Robustness test: for parameter variation of +50%Rr in low speed. 

 

 
Fig. 9. Robustness test: for parameter variation of +50%Rs1,2; speed and rotor flux results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Robustness test: for parameter variation of +50%Rs1,2 in low speed. 
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Fig. 11. Robustness test: for parameter variation of -50%Lm; speed and rotor flux results. 
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Fig. 12. Robustness test: for parameter variation of -50%Lm in low speed. 
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Fig. 13. Robustness test: for parameter variation of +100%J; speed and rotor flux results. 
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Fig. 14. Robustness test: for parameter variation of +100%J in low speed. 

 

9. CONCLUSION 

In this paper we are presented the sliding-mode 

MRAS estimator for speed sensorless vector control of 

a DSIM.  

The sensorless speed operation increases reliability, 

reduces the complexity and the cost of the system. 

Indeed, the speed variation of the double stator 

induction motor in the low-speed range is a difficult 

problem to be overcome with respect to the parametric 

variation and in particular the stators resistances and 

the mutual inductance, thus causing the instability of 

the system. 

From the obtained results, it can be concluded that 

the studied estimation techniques are valid for the 

nominal conditions, even satisfying the operations in 

variable speed drive and even when the motor is 

loaded, on the other hand they have a good robustness 

to the parameters variation, thus achieving good static 

and dynamic performance.  

 

10. APPENDIX 

Double stator induction motor parameters [4], [12], 

[13] 

Pn=4.5kW, f=50Hz, Vn( /Y)=220/380V, In( /Y)=6.5A, 

Ωn=2751rpm, p=1 

Rs1= Rs2=3.72Ω, Rr =2.12Ω, Ls1= Ls2= 0.022H, Lr = 

0.006H, Lm =0.3672H 

J =0.0625 Kgm2, Kf =0.001 Nm(rad/s)-1 
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