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ABSTRACT: 

Recently, the renewable resources such as wind farms assumed more attraction due to their features of being clean, no 

dependency to any type of fuel and having a low marginal cost. The output power of wind units is dependent on the 

wind speed which has a volatile and intermittent nature. This fact confronts the solution of unit commitment problem 

with some challenges when a huge amount of wind resources is penetrated and considerable uncertainties are included 

in the problem. Moreover, the demand of the system has some volatility in comparison with forecasted values. This 

kind of volatility and stochastic nature is another source of uncertainty in the power system. In this paper, thermal and 

wind units are incorporated and the optimization problem is solved by the employment of proper probability 

distribution function and the Monte Carlo simulation approach for dealing with uncertainties. Afterwards, the 

optimization problem is solved by the use of the binary form of gray wolf optimization algorithm and the minimized 

total cost will be obtained. Ultimately, the unit commitment schedule and optimal generation of each unit are 

determined and the optimization results are compared with the solution of genetic algorithm and particle swarm 

algorithm. 

 

KEYWORDS: Security-Constrained Unit Commitment; Wind Power Plant; Gray Wolf Optimization Algorithm; 

Uncertainty; Monte-Carlo. 

 

1.  INTRODUCTION 

In recent years, the tendency to exploit wind 

energy, as a renewable, cheap and large-scale energy 

source, is expanding rapidly. However, the increasing 

penetration of the wind units in the power systems, as 

well as the fluctuating and intermittent nature of their 

output power has encountered the secure and economic 

operation of power networks with various difficulties 

[1-2].  

One of the main issues in power system operation is 

the unit commitment problem (UC) which determines 

the operation cost of the power system. The unit 

commitment problem is an important optimization tool 

to determine the ON/OFF state of units in the power 

system operation. The goal is to minimize the total 

costs of the system operation during the schedule 

period so that the system power equality between 

generation and demand as well as other operational 

constraints must be satisfied. The unit commitment is 

usually a large-scale and mixed-integer nonlinear 

problem. Various methods, including heuristic methods 

[3], dynamic programming [4], genetic algorithm [5], 

particle swarm optimization algorithm [6], neural 

networks, mixed-integer linear programming [7], and 

Lagrangian relaxation method [8] have been employed 

to solve unit commitment problem. The high speed and 

accuracy of optimization algorithms, especially in 

large-scale problems such as unit commitment have 

caused widespread acceptance and prevalent 

employment for these algorithms [9]. A new 

optimization algorithm which is called gray wolf 

optimization (GWO) algorithm is recently proposed 

which has a brilliant performance for optimizing non-

convex and non-smooth problems. It is inspired by the 
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social behavior of wolves while hunting [10]. The 

reference [11] has shown the performance of gray wolf 

optimization algorithm for an economic dispatch 

problem. The presences of distributed generation 

sources such as wind turbines in addition to the 

stochastic nature of wind energy incorporate 

uncertainty into the unit commitment problem. The 

measure of ignoring the uncertainty of such sources, 

considering them as a probabilistic and stochastic 

phenomenon, and modeling them by numerical and 

iterative methods are of suggested solutions to solve 

UC problem [12]. 

In this paper, the aforementioned algorithm is 

improved and readjusted to deal with the binary form 

which declares the novelty and uniqueness of this 

study. The contribution of this work is to solve the unit 

commitment problem employing GWO. Moreover, the 

unit commitment problem is solved by considering the 

presence of the wind and thermal power plants. Hence, 

the available uncertainties of wind power generation 

and forecasted loads are modeled in the problem by 

using the probability distribution function employing 

the Monte Carlo method. This method generates 

different scenarios for modeling the probable 

possibilities.  

In the following parts, first of all, the unit 

commitment problem and its relevant constraints are 

explained. Then a brief description of the gray wolf 

optimization algorithm is addressed and it is expressed 

how to apply it in solving the problem. In addition, the 

Monte Carlo method is described, and different 

scenarios for consideration of uncertainty are defined. 

Finally, in order to find the lowest generation cost, the 

problem is solved in two cases of regard to or 

regardless of the system’s security constraints. The 

results are also compared with simulation results of 

genetic and particle swarm optimization algorithms. 

 

2.  UNIT COMMITMENT PROBLEM WITH 

SECURITY CONSTRAINTS 

2.1.  Generation Costs 

The generation costs of a thermal unit comprise the 

consumed fuel cost, the start-up cost of the unit, and the 

maintenance cost. Other costs such as shutdown cost of 

the unit are negligible. The fuel cost of thermal unit i at 

the time t , is shown by Fi in Eq. (1). It can be 

considered as a quadratic function of the unit’s active 

output power that is defined by Pi as below: 

 

  2

i i i i i i iF P a b P c P    (1) 

 

Where, ai, bi and ci are cost coefficients of the ith 

generator [13]. 

If a unit is turned off, it should necessarily remain 

off for a specific time that is called minimum downtime 

and is shown with MDT. After MDT, if the unit 

changes its state to ON state, the start-up process will 

be done by less cost because the boiler is somewhat 

warm yet. However, if the time of being in OFF state 

exceeds a certain amount of time (that is denoted by 

CST), it requires more start-up cost because the water 

temperature in the boiler is drastically decreased. The 

start-up cost of the ith unit is shown by SUC which has 

two subcategories of hot start-up cost (HSC) and cold 

start-up cost (CSC), and Toff stands for the time when 

the unit has been in OFF state after the elapsed time of 

MDT. The start-up cost can be described by Eq. (2): 

 

   

 

i ,

i

i ,

           

        

,

,   

i off i i i

off i i i

HSC if MDT t T MDT t CST
SUC

CSC if T MDT t CST

   
 

 

 (2) 

 

The maintenance cost can also be obtained from Eq. 

(3) [14]. 
 

( )i i i i iMC P d f P   (3) 
 

Where MC is the maintenance cost of the ith thermal 

unit, P is the generated power of ith thermal unit; d and 

f are constant numbers which are dedicated to each unit 

according to their technical characteristics. Therefore, 

the total cost of the generation, the objective function 

of the unit commitment problem, is proposed in Eq. (4) 

and must be minimized [15].   
 

 
1 1

( ) (1 ( 1)) ( )
N H

i i i i i i i

i t

TC F P MC P SUC I t I t
 

         (4) 

 

     Where TC is the total cost of the thermal units' 

generation, N represents the number of thermal units; H 

is the time domain that is 24 hours in this article. The 

variable of I shows the ON and OFF state of the ith unit. 

If the unit is ON, the value of I is 1, otherwise, it is 0. 

 

2.2.  Unit Commitment Constraints 

The generated power by all ON units must meet the 

required load as well as the system losses. The power 

balance constraint of the system for hour t hour is 

according to Eq. (5) [16]. 

 

,

1 1

( ) (t) ( ) ( ) ( )
WNN

i i W j D Loss

i j

I t P P t P t P t
 

      (5) 

 

Where P and N are the generated power and the 

number of thermal units respectively, Pw and Nw are the 

wind units’ power production and the number of wind 

units respectively, PLoss indicates the network losses, 

and PD is the demand of the system.  

On the other hand, to have sufficient reliability in 

the network, sufficient spinning reserve resources must 

be provided in the network. The presence of wind units 

and their correlated uncertainty increase the network 
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reserve requirements to some extent. According to Eq. 

(6), the required spinning reserve amount is equal to 

5% of the network demand plus by 10% of the total 

wind power generation [17]. 

 

 

,

1 1

,

1

( ) ( ) ( )

1.05 ( ) ( ) 0.1 ( )

W

W
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Max

i i W j

i j
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D Loss W j

j

I t P t P t

P t P t P t

 



  

 
    

 

 



 (6) 

 

However, according to Eq. (7), the ith thermal unit 

has a definite range for power generation [18]. 

 
min max( ) ( ) ( ) ( ) ( )i i i i iI t P t P t I t P t     (7) 

 

Another operational constraint of the unit 

commitment problem is the minimum up/down time 

constraint which means the least time of remaining 

ON/OFF after the unit is turned ON/OFF. When a unit 

is ON/OFF, there is a minimum pre-specified time after 

which the unit can again change its state to OFF/ON. 

Thus, the minimum uptime and minimum downtime 

are shown by MUT and MDT respectively that can be 

obtained by Eq. (8) and Eq. (9).  
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(9) 

 

Where Ui
0 is the duration of being ON until hour 0, 

Yi(t) is the start-up indicator of ith unit at hour t, Li is the 

duration that the unit must stay ON at the beginning of 

the period, Si
0 is the duration of being OFF before hour 

0, Zi(t) is the shutdown indicator of the ith unit at hour t, 

and Bi is the duration that the unit must stay OFF at the 

beginning of the period [19].  

Moreover, the solution of the unit commitment 

problem is simplified by assuming that all the 

generation and consumption centers of the network are 

connected to a common bus. This assumption results in 

ignoring the limits of load flow in the power network. 

These limitations include bus voltage restrictions, 

active and reactive power flow in transmission lines, 

the grid frequency, and the buses’ phase difference, 

which all must be in the permitted range. In this paper, 

load flow results are provided at each algorithm’s 

iteration so that the bus voltage constraints and 

transmission lines’ limits must be in the permitted 

range. The mentioned limitations are considered as the 

network security constraints while solving the problem. 

For stable operation of the system, each bus voltage 

(Vb) needs to be within the specified range (for example 

1.05 p.u. to 0.95 p.u.) permanently [20]. 

 
min max( ) ( ) ( )B B BV t V t V t   (10) 

 

Also, the transmitting power of a line must always 

be within a specified range (between the maximum and 

minimum tolerable transmission power of line). 

 
min max

( , ) ( , ) ( , )( ) ( ) ( )Line i j Line i j Line i jP t P t P t   (11) 

 

3.  THE OPTIMIZATION ALGORITHM  

3.1.  Gray Wolf Optimization Algorithm 

The Gray wolf optimizer algorithm is one of the 

novel evolutionary algorithms which is inspired by the 

hierarchical structure of leadership and social behavior 

of wolves on the hunt, and it is suggested by Mir-Jalili, 

et.al, in 2014 [21]. Gray wolves often prefer to live in a 

group which is called pack and the number of pack’s 

members is usually between 5 to 12 wolves on average. 

They have strict rules in the social hierarchy. 

According to [21], gray wolves’ packs consist of four 

types: 

1. Alpha wolves (α) who are the leaders of the pack. 

The alpha wolves are responsible for making decisions 

which must be performed in the pack.  

2. Beta wolves (β) include those who help Alpha in 

decision-making and other activities. Betas can be male 

or female; they are the best candidates for becoming 

the alpha. 

3. Omega wolves (ω) play the role of victim. They 

should always obey other wolves and they are the last 

that are allowed for eating.  

4. Delta wolves (δ or subordinate) should obey Beta 

and Alpha wolves. But they have domination over the 

omega wolves. Scouts, Sentinels, Elders, Hunters, and 

Caretakers belong to this category. Scouts are 

responsible for inspecting boundaries of the territory 

and warning the pack in dangerous situations. Sentinels 

guarantee the pack security and protect the pack. Elders 

are the experienced wolves who used to be beta and 

alpha type before. Hunters help beta and alpha wolves 

while hunting the prey and maintaining food for the 

pack. The Caretakers are responsible caring of 

wounded, sick or weak wolves in the pack. Fig. 1 

illustrates the position updating in GWO algorithm. 
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Move

1a

1C

AlphaD
BetaD

2a

2C

3a

3C

R

DeltaD







or any other hunters

Estimated position of the prey

Fig.1. Position updating in GWO [21]. 

In the GWO mathematical model of the hierarchy 

of wolves’ pack, the optimal solution is the α type. The 

second and third fittest solutions are β and δ 

respectively. Other solutions are assumed to be a 

candidate for ω. The GWO algorithm uses α, β and δ 

solutions to change the direction of the prey (guiding of 

hunting) and ω wolves follow these three solutions. 

In order to hunt, the pack of wolves encircle the 

prey. In order to simulate the prey encircling behavior, 

Eq. (12) to (15) are used.  

 

( 1) ( )pX t X t A D     (12) 
 

Where t is the number of iteration, A and C  are 

coefficients vectors, pX represents the prey position, 

and X  is the gray wolf position. The value of D  is 

defined by Eq. (13): 
 

( ) ( )pD C X t X t    
(13) 

 

The values of A  and C  can also be calculated by 

Eq. (14) and (15). 

 

12A a r a    (14) 

22C r  (15) 

 

In the above equation, a is a linearly decreasing 

variable over the course of iterations from 2 to 0. 𝑟1 and 

𝑟2 are random vectors within the interval of [0, 1]. The 

hunt is often guided by the Alpha wolves. The beta and 

delta wolves may occasionally participate in the hunt. 

In order to conduct the mathematical modeling of 

the gray wolf hunt behavior, the α (the best candidate 

solution), β (the second-best candidate solution) and δ 

(the third best candidate solution) are used assuming 

that they have the best knowledge about the position of 

their prey respectively. Therefore, the three best 

solutions are determined and the other searching factors 

such as the omega are forced to update their position 

according to the best searching factors’ position. The 

Eq. (16) is used to update the position of wolves. 

 

1 2 3( 1) ( ) 3X t X X X     (16) 

  

Where 1X 2X , and 3X are defined in Eq. (17) to 

(19). 

 

1 1X X A D     (17) 

2 2X X A D     (18) 

3 3X X A D     (19) 

Where X  are the positions of the X  and  X   ،

first three best solutions that are obtained at iteration t. 

1A , 2A , and 3A can be calculated by Eq. (14). In 

addition, D , D , and D are presented in Eq. (20) to 

(22). 

 

1D C X X     (20) 

2D C X X     (21) 

3D C X X     (22) 

Where 1C , 2C and 3C  are defined in Eq. (15).  

The final condition about the GWO is the parameter 

a that is used in Eq. (14). This condition is employed to 

control the trade-off between exploration (searching for 

a prey) and exploitation (attacking to a prey). The 

parameter a will be updated in each iteration in a linear 

manner from 2 to 0 according to the Eq. (23) [22]. 
 

2
2a t

MaxIter
   (23) 

 

Where t is the number of iterations and MaxIter is 
the total number of iterations for optimization. Finally, 
the gray wolf optimization algorithm is described as 
follows: 

𝐢𝐧𝐩𝐮𝐭: 𝑛 Number of 𝑔𝑟𝑎𝑦 wolves in the pack, NIter Number of 
iterations for optimization. 

𝐨𝐮𝐭𝐩𝐮𝐭: 𝑥𝛼 Optimal gray wolf position, f (𝑥𝛼) Best fitness value 
 

𝟏.Initialize a population of n gray wolves’ positions randomly.  

𝟐.Find the α, β and δ solutions based on their fitness values. 

𝟑.𝐰𝐡𝐢𝐥𝐞 Stopping criteria not met do 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 wolf𝑖 ϵ pack 𝐝𝐨 
Update current wolf′s position according to Eq (16).  

𝐞𝐧𝐝 

𝐈 Update a, A and 𝐶 

𝐈𝐈 Evaluate the positions of individual wolves. 

𝐈𝐈𝐈 Update α, β and δ 

𝐞𝐧𝐝 

𝟒.𝑅𝑒𝑡𝑢𝑟𝑛 α 

Fig. 2. The gray wolf optimization algorithm [23]. 
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3.2.  Binary Gray Wolf Optimization (BGWO) 

Algorithm 

In the gray wolf optimization, the wolves change 

their positions continuously at any point in the search 

space. In some specific problems such as feature 

selection, the solutions are limited to binary values 

within [0, 1] which have promoted a developed version 

of GWO. In the binary gray wolf optimization 

(BGWO), the update equation of wolves is a function 

of the three position vectors. It means, X , X 
 and 

X  describe the positions of each wolf regard to the 

three best solutions and can determine the attraction 

rate of each wolf. In the BGWO, the solutions are 

shown in the binary form at any time. All solutions are 

in the corner of the three-dimensional cube [23]. 

In the BGWO method, the original equation can be 

updated according to Eq. (24). 

 
1

1 2 3( , , )t

iX Crossover x x x   (24) 

 

Where Crossover (x, y, z) is a suitable cut between 

x, y, z solutions and x1, x2, x3 which show the binary 

vectors of wolf motion effect toward the alpha, beta 

and delta wolves respectively. x1, x2, x3 are calculated 

using Eq. (25). 

 

   
1 ( ) 1

, , , , 1,2,3
0

d d

d i i

j

if x bstep
x i j

otherwise
  

  
  


 (25) 

 

Where xi
d is the position vector of each of alpha, 

beta, and delta wolves in the dimension of d, and 

bstepi
d is a binary step of wolves in the dimension of d 

that is calculated by Eq. (26). 

 

 
1

, , ,
0

d

d i

i

if cstep rand
bstep i

otherwise
  

 
 


 (26) 

 

Where rand is a random number generated from a 

uniform distribution within [0, 1], and cstepi
d is the 

constant effective step length in dimension d for each 

of alpha, beta, delta wolves and is calculated using the 

sigmoid function in Eq. (27). 

 

 
110( 0.5)

1
, , ,

1
d d

i

d

i A D
cstep i

e
  

 
 


 (27) 

 

Where Di
d and A1

d are calculated using Eq. (20) to 

(22) and Eq. (14) at the dimension of d. A simple 

random cutting strategy in each dimension is the 

cutting solutions for a, b, and c that is shown in Eq. 

(28). 

<1 3

1 3 <2 3

d

d d

d

a rand

x b rand

c otherwise




 



 (28) 

 

Where ad, bd ، cd are binary values for the first, 
second and third parameters in dimension d. xd is the 
output of cutting in the dimension of d, and rand is a 
random number taken from a uniform distribution from 
the interval [0, 1]. Finally, BGWO algorithm is 
described as follows: 

 

𝐢𝐧𝐩𝐮𝐭: 𝑛 Number of 𝑔𝑟𝑎𝑦 wolves in the pack, NIter Number of 
iterations for optimization. 

𝐨𝐮𝐭𝐩𝐮𝐭: 𝑥𝛼 Optimal gray wolf position, f(𝑥𝛼) Best fitness value. 
 

𝟏.Initialize a population of n gray wolves positions random ∈[0,1]  

𝟐.Find the α, β and δ solutions based on their fitness values. 

𝟑.w𝐡𝐢𝐥𝐞 Stopping criteria not met do 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 wolf 𝑖 ϵ pack 𝐝𝐨 

𝐈𝐟 |𝐴|<1  

Calculate 𝑥1, x2, 𝑥3 using Eqs (17), (18), (19) 

𝑥𝐼𝑡+1← 𝐶rossover among 𝑥1, x2, 𝑥1− 𝑥3 using Eq. (24)  

𝐞𝐥𝐬𝐞 

Calculate new𝑥1, x2, 𝑥3 

𝑥𝐼𝑡+1← 𝐶rossover among 𝑥1, x2, 𝑥3 using Eq. (24)  

𝒆𝒏𝒅𝑰𝒇 

𝐞𝐧𝐝 

𝐈 Update a, A and 𝐶 

𝐈𝐈 Evaluate the positions of individual wolves. 

𝐈𝐈𝐈 Update α, β and δ  

𝐞𝐧𝐝 
𝟒.𝑅𝑒𝑡𝑢𝑟𝑛 α 

Fig. 3. The BGWO algorithm [23]. 

 

4.  MONTE CARLO METHOD 
The presence of the wind power plant in the 

network, the stochastic behavior of the wind and load 
consumption have caused the uncertainty in the power 
generation models. This uncertainty has inclusion in 
solving the unit commitment problem with regard to the 
obligation of load and generation balance at any 
moment. The Monte Carlo approach is a probabilistic 
and statistic method in order to take the uncertainty into 
account [24]. In this method a large number of scenarios 
are generated, which is based on the imbalances of all 
uncertain variables. In another word, each scenario 
represents a possible occurrence for forecasted 
variables. When a large number of scenarios are 
defined, the combination of probabilities of scenarios 
will be led to the most optimistic, the most pessimistic, 
and the most possible scenarios. Scenario reduction 
approaches can also be employed to reduce the size of 
the problem, diminish the computational burden, and 
increase the solution speed.      

4.1.  Wind Plants Uncertainty 

The scattering of the mean wind speed in different 

months of a year for the wind site, located in the city of 

Taft, Yazd, Iran, is shown in Fig. 4.  
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Fig. 4. Hourly average wind speed for a specific day. 

The actual amounts of wind speed at each hour 

always have a difference with its average amount. The 

wind speed behavior can be approximated as a random 

variable with a normal distribution function. In the 

Monte Carlo method, the uncertainties can be modeled 

through various scenarios by employing the cumulative 

probability density curve (CDF). The output power of 

wind farm can be calculated by the Eq. (29). 
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In the above equation, 3 3 3( )ci r cib v v v   and
3 3

rP ( )r cia v v  , Pr is the rated power of wind 

turbine, Vci is the cut-in speed, Vr is the rated speed, and 

Vco is the cut-out speed. Moreover, to determine the 

speed in the reference height of hr, the mean daily wind 

speed is used in the following model:  

 

 hr rv v h h


   (30) 

 

Where v is the wind speed at the height of h, Vhr is 

the wind speed at the height of hr, and   is the 

permissible power which is a value between 1
7

 to 1
4

 

[25-27]. The power curve of wind plant speed is shown 

in Fig. 5. 
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Fig. 5. Wind turbine generation curve. 

In the Monte Carlo method, first of all, a random 

number must be generated with a uniform distribution 

function between 0 and 1. Now, by consideration of 

this random number which is assumed to be y in the 

CDF diagram, the corresponded x will be achieved 

through the diagram. The resulted number is the wind 

speed at that hour. Thus, the value of actual wind speed 

is obtained in this scenario; the wind farm generation in 

this scenario will be achieved based on the wind speed. 

Besides, thermal units’ generation level, as well as the 

total cost of production in this scenario, will be 

determined. Assuming, for example, repeating 500 

scenarios of this procedure for 500 times will result in 

500 values for wind speed and therefore, 500 values for 

the wind power generation and a total cost of 

generation will be calculated for each scenario. Finally, 

because the probability of the entire 500 scenarios was 

the same, the total cost is equal to the average of these 

500 costs. If the number of scenarios is Ns, the final 

cost that should be minimized is obtained from Eq. 

(31). 

 

1

1 SCN

S

sS

TC TC
N 

   (31) 

 
The random behavior of network load consumption 

is modeled exactly in the same way by the Monte Carlo 
method in the unit commitment problem with respect to 
satisfying security margins [28]. 

 

4.2.  The Uncertainty of Load Consumption 

To consider the uncertainty of the load, the Monte 

Carlo method is employed. The normal distribution is 

selected to model the load [29].  

 

 
Fig. 6.The hourly changes of the load consumption 

during a day 

The overall scattering diagram of loads of Taft city 

in one year is shown in Fig. 6. Its distribution function 

diagram for 12 p.m. o'clock is shown in Fig. 7. 
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Fig. 7. The probability density function of the load 

consumption at 12 pm. 

 

     The flowchart of Fig. 8 illustrates the methodology 

of the problem including uncertainty modelling for 

forecasted variables. 
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Fig. 8. The probability density function of the load 

consumption at 12 pm. 

5.  SIMULATION RESULTS 

Our goal is to solve the unit commitment problem 

subject to meet the network’s security constraints in the 

presence of the distributed generators by considering 

the wind and load uncertainty. In this paper, the 

standard IEEE 30-bus test system that is shown in Fig. 

9 is used to show the effectiveness of the proposed 

method. This system includes 9 thermal power plants 

and a wind farm, which are dispersed through 10 

different buses of the network. The data of generators 

and network parameters are adopted from [30-31]. The 

wind farm generation curve and the average load 

consumption are both depicted in Fig. 10. 
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Fig. 9. The single-line diagram of the IEEE 30-bus 

system in the presence of a wind farm. 

 
Fig. 10. The wind farm generation curve and the 

average load consumption. 

This problem is solved in two different cases. Once, 

it is solved without consideration of the network 

security constraints, and then it is evaluated by taking 

these constraints into consideration. The Monte Carlo 

method is applied in order to model the uncertainty, 

and the gray wolf optimization algorithm is employed 

to optimize the problem. Two binary variables are 

imposed to represent the ON/OFF state of the 

corresponding thermal unit at each hour. The overall 

results are described in a matrix consists of 9 rows 

representing the 9 thermal units and 24 columns 

representing the 24 hours of a day. Due to inclusion of 

binary variables in the problem, the binary form of the 

gray wolf optimization algorithm is employed to 

minimize the total cost of generation. In order to 

specify the ON/OFF state of thermal units at each hour, 

in the BGWO algorithm, the matrix of optimum states 

for each member of the population should be 
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determined. Consequently, inside the sub-problem 

loop, the economic load dispatch is computed to 

dedicate a specific amount of generation for the units, 

which are deserved to be ON. When the optimized 

power generation of thermal units at each hour is 

determined, the Newton-Raphson load flow method 

will be applied to evaluate the load flow analysis and to 

check bus voltage limitations and lines’ flow condition. 

The total cost of generation is also calculated based on 

the thermal units' power generation for each member of 

the population at all iterations. In the first scenario, by 

the employment of MATLAB 2017a software, 

regardless of the network security constraints, the 

algorithm has reached the optimum amount of the 

generation cost of $124057.1365. Fig. 11 shows the 

unit commitment results and power dispatch within 

thermal units. The total average (within all hours) of 

the mean hourly electricity prices (within all units) is 

$17.3667 in this scenario. Besides, the total start-up 

and shut down cost is about $575 in scenario 1. The 

load flow analysis of this scenario expresses that if the 

optimum power schedule is implemented for the 30-bus 

network, the voltage of 35 buses within entire period of 

study, and the power flow of the lines 1-2 and 1-3 (in 

24 hours), line 2-6 (in 6 hours), and line 3-4 (in 17 

hours) exceed the permitted limit. Therefore, this 

optimal solution does not meet the security of the 

system. 

 

 
Fig. 11. The unit commitment and power dispatch in 

the IEEE 30-bus test system (scenario 1). 

In the second scenario, in all iterations, the unit 

commitment and economic dispatch of the 30-bus 

network are calculated so that the relevant load flow 

results are kept in its allowable ranges, and the bus 

voltages and the transmission line limits do not violate 

the permitted range or tolerable power restrictions. The 

BGWO algorithm has achieved the lowest generation 

cost of $129479.5981, which shows an increased rate 

of 4.37%. The total average (within all hours) of the 

mean hourly electricity prices (within all units) is 

enhanced up to $18.12576 in the second scenario. In 

addition, the accumulated start-up and shut down cost 

has increased to $757.934. Fig. 12 shows the unit 

commitment and the power dispatch between thermal 

units at each hour. As it is obvious, the contribution of 

some units in term of amount of generation is changed, 

which is due to the imposition of transmission and 

voltage limits. In another word, the generation must be 

materialized in less congested areas.   

 

 
Fig. 12. The unit commitment and power dispatch in 

the IEEE 30-bus test system (scenario 2). 

Figs. 13 and 14 demonstrate the hourly total costs 

and hourly average costs of the operation, respectively. 

As it shown, the second scenario has almost always 

higher prices and costs than the first scenario.  

 

 
Fig. 13. The hourly average costs of scenarios. 

 

 
Fig. 14. The hourly total costs of the operation in both 

scenarios. 

To evaluate the performance of the BGWO 

algorithm for determining the optimal response, the 

above problem is also solved again with two very 

applicable algorithms of genetic and particle swarm 

optimization and the results are compared with each 
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other. Fig. 15 shows the obtained total optimal cost in 

different iterations of the three algorithms for solving 

the security constraints unit commitment which are 

illustrated by red, blue and green colors respectively. 

 

 
Fig. 15. The comparison of the lowest generation cost 

by GA, PSO and BGWO. 

As this figure shows, in terms of convergence to the 

optimal solution, the BGWO algorithm has performed 

much better than the two other algorithms. The optimal 

cost of the gray wolf optimization algorithm is lower 

than GA and PSO algorithms. The reason is that the 

BGWO has a more extensive searching space which is 

resulted from the dynamic search path-finding of 

BGWO as the improved form of some algorithms such 

as genetic. Finally, it should be noted that solving the 

unit commitment problem with considering security 

constraints in the presence of wind units that contain 

considerable uncertainty must be modeled by 

probabilistic scenario-based approaches such as the 

Monte Carlo method which requires lots of 

computations and spending lots of time. Therefore, 

employing some algorithms such as the BGWO, which 

have higher convergence rate can be essential and 

helpful. 

 

6.  CONCLUSION 

The integration of the intermittent wind energy in a 

unit commitment scheduling considering security 

constraints as well as the stochastic nature of the load 

consumption include various uncertainties in 

determining the optimal solution of the UC problem. 

The probabilistic and statistical approaches such as the 

Monte Carlo method can be employed to model the 

uncertainty. However, the employment of such 

approaches increases the simulation time due to 

increase in computation size. In this paper, the binary 

form of the gray wolf optimization algorithm, which 

has a better convergence than other optimization 

algorithms, is used. The optimal solution of the unit 

commitment problem is calculated with and without 

taking the security constraints into account. The results 

are compared with two conventional PSO and GA 

algorithms. The results show the better performance of 

the BGWO algorithm compared to two other 

algorithms. 

REFERENCES 
[1] Sh. Chengcheng, X. Wang, M. Shahidehpour, X. 

Wang, and B. Wang. "Security-Constrained Unit 

Commitment with Flexible Uncertainty Set for 

Variable Wind Power." IEEE Transactions on 

Sustainable Energy 8, No. 3, pp. 1237-1246, 2017 

[2] R. Hemmati, H. Saboori, and S. Saboori. "Stochastic 

Risk-Averse Coordinated Scheduling of Grid 

Integrated Energy Storage Units in Transmission 

Constrained Wind-Thermal Systems Within a 

Conditional Value-At-Risk 

Framework." Energy 113, pp. 762-775, 2016. 

[3] F. Bavafa, T. Niknam, R. Azizipanah-Abarghooee, 

and V. Terzija. "A New Biobjective Probabilistic 

Risk-Based Wind-Thermal Unit Commitment 

using Heuristic Techniques." IEEE Transactions on 

Industrial Informatics 13, No. 1, pp. 115-124, 2017. 

[4] R., Aiying, P. B. Luh. "A Dynamic Regrouping 

Based Dynamic Programming Approach for Unit 

Commitment of the Transmission-constrained 

Multi-site Combined Heat and Power 

System." IEEE Transactions on Power Systems, 2017. 

[5] M. Nemati, M. Braun, and S. Tenbohlen. 

"Optimization of Unit Commitment And Economic 

Dispatch in Microgrids Based on Genetic 

Algorithm and Mixed Integer Linear 

Programming." Applied Energy, 2017. 

[6] A. Najafi, M. Farshad, and H. Falaghi. "A New 

Heuristic Method to Solve Unit Commitment by 

using a Time-Variant Acceleration Coefficients 

Particle Swarm Optimization Algorithm." Turkish 

Journal of Electrical Engineering & Computer 

Sciences23, No. 2, pp. 354-369, 2015. 

[7] C., Bruno, J. Soares, P. Faria, and Z. Vale. "Mixed 

Integer Non-Linear Programming and Artificial 

Neural Network Based Approach to Ancillary 

Services Dispatch in Competitive Electricity 

Markets." Applied energy 108, pp. 261-270, 2013. 

[8] Y., Xiang, X. Zhang. "Unit Commitment using 

Lagrangian Relaxation and Particle Swarm 

Optimization." International Journal of Electrical 

Power & Energy Systems 61, pp. 510-522, 2014. 

[9] F. Barani, M. Mirhosseini, H. Nezamabadi-pour, and 

M. M. Farsangi. "Unit Commitment by an 

Improved Binary Quantum GSA." Applied Soft 

Computing 60, pp. 180-189, 2017. 

[10] S. A. Mirjalili, Sh. Saremi, S. M. Mirjalili, and 

Leandro dos S. Coelho. "Multi-Objective Grey Wolf 

Optimizer: A Novel Algorithm for Multi-Criterion 

Optimization." Expert Systems with Applications 47, 

pp. 106-119, 2016. 

[11] S. Mohd Herwan, Z. Mustaffa, M. Rusllim Mohamed, 

and O. Aliman. "Using The Gray Wolf Optimizer 

for Solving Optimal Reactive Power Dispatch 

Problem." Applied Soft Computing 32, pp. 286-292, 

2015. 

[12] Uçkun, Canan, Audun Botterud, and John R. Birge. 

"An Improved Stochastic Unit Commitment 

Formulation to Accommodate Wind 

Uncertainty." IEEE Transactions on Power 

Systems 31, No. 4, pp. 2507-2517, 2016. 

[13] H. Shahinzadeh, S. Hamid Fathi, M. Moazzami, and S. 



Majlesi Journal of Electrical Engineering                                                      Vol. 12, No. 4, December 2018 

 

26 

 

H. Hosseinian. "Hybrid Big Bang-Big Crunch 

Algorithm for Solving Non-Convex Economic Load 

Dispatch Problems." In Swarm Intelligence and 

Evolutionary Computation (CSIEC), 2017 2nd 

Conference on, pp. 48-53. IEEE, 2017. 

[14] H. Shahinzadeh, M. Moazzami, D. Fadaei, and S. 

Rafiee-Rad. "Glowworm Swarm Optimization 

Algorithm for Solving Non-Smooth and Non-

Convex Economic Load Dispatch Problems", 
In Fuzzy and Intelligent Systems (CFIS), 2017 5th 

Iranian Joint Congress on, pp. 103-109. IEEE, 2017. 

[15] R. Hemmati, H. Saboori. "Short-Term Bulk Energy 

Storage System Scheduling for Load Leveling in 

Unit Commitment: Modeling, Optimization, And 

Sensitivity Analysis", Journal of advanced 

research 7, No. 3, pp. 360-372, 2016. 

[16] H. Shahinzadeh, S. M. Nasr-Azadani, and N. 

Jannesari. "Applications of Particle Swarm 

Optimization Algorithm to Solving the Economic 

Load Dispatch of Units in Power Systems with 

Valve-Point Effects." International Journal of 

Electrical and Computer Engineering 4, No. 6, pp. 

858, 2014. 

[17] J. Moradi, H. Shahinzadeh, A. Khandan, and M. 

Moazzami. "A Profitability Investigation into the 

Collaborative Operation of Wind and Underwater 

Compressed Air Energy Storage Units in the Spot 

Market." Energy, 2017. 

[18] C., Mingjian, J. Zhang, H. Wu, B.-Mathias Hodge, D. 

Ke, and Y. Sun, "Wind Power Ramping Product for 

Increasing Power System Flexibility." 
In Transmission and Distribution Conference and 

Exposition (T&D), 2016 IEEE/PES, pp. 1-5. IEEE, 

2016. 

[19] H. Shahinzadeh, A. Gheiratmand, J. Moradi, and S. 

Hamid Fathi. "Simultaneous Operation of Near-To-

Sea and Off-Shore Wind Farms with Ocean 

Renewable Energy Storage." In Renewable Energy 

& Distributed Generation (ICREDG), 2016 Iranian 

Conference on, pp. 38-44. IEEE, 2016. 

[20] M. Moazzami, Gevork B. Gharehpetian, H. 

Shahinzadeh, and S. H. Hosseinian. "Optimal 

Locating and Sizing of Dg and D-Statcom using 

Modified Shuffled Frog Leaping Algorithm." 
In Swarm Intelligence and Evolutionary Computation 

(CSIEC), 2017 2nd Conference on, pp. 54-59. IEEE, 

2017. 

[21] S. A. Mirjalili, S. M. Mirjalili, and A. Lewis. "Grey 

Wolf Optimizer." Advances in Engineering 

Software 69, pp. 46-61, 2014. 

[22] S. A. Mirjalili, "How Effective is the Grey Wolf 

Optimizer in Training Multi-Layer 

Perceptrons." Applied Intelligence 43, No. 1, pp. 

150-161, 2015. 

[23] E. Emary, H. M. Zawbaa, and A. Ella Hassanien. 

"Binary Grey Wolf Optimization Approaches for 

Feature Selection." Neurocomputing 172, pp. 371-

381, 2016. 

[24] P. Graf, Peter, G. Stewart, M. Lackner, K. Dykes, and 

P. Veers. "High-Throughput Computation and the 

Applicability Of Monte Carlo Integration In 

Fatigue Load Estimation Of Floating Offshore 

Wind Turbines." Wind Energy 19, No. 5, pp. 861-

872, 2016. 

[25] M. Moazzami, S. J. Hosseini, and H. Shahinzadeh. 

"Optimal Sizing of an Isolated Hybrid 

Wind/PV/Battery System with Considering Loss of 

Power Supply Probability." Majlesi Journal of 

Electrical Engineering 11, No. 3, 2017. 

[26] H. Shahinzadeh, A. Gheiratmand, S. Hamid Fathi, and 

J. Moradi. "Optimal Design and Management of 

Isolated Hybrid Renewable Energy System 

(WT/PV/ORES)." In Electrical Power Distribution 

Networks Conference (EPDC), 2016 21st Conference 

on, pp. 208-215. IEEE, 2016. 

[27] H. Shahinzadeh, M. Moazzami, S. Hamid Fathi, and 

Gevork B. Gharehpetian. "Optimal Sizing and 

Energy Management Of A Grid-Connected 

Microgrid using HOMER Software." In Smart 

Grids Conference (SGC), pp. 1-6. IEEE, 2016. 

[28] A. Kavousi-Fard, T. Niknam. "Multi-Objective 

Probabilistic Distribution Feeder Reconfiguration 

Considering Wind Power Plants." International 

Journal of Electrical Power & Energy Systems 55, pp. 

680-691, 2014. 

[29] S. M. Mohseni-Bonab, A. Rabiee, S. Jalilzadeh, B. 

Mohammadi-Ivatloo, and S. Nojavan. "Probabilistic 

Multi Objective Optimal Reactive Power Dispatch 

Considering Load Uncertainties using Monte Carlo 

Simulations." Journal of Operation and Automation 

in Power Engineering 3, No. 1, pp. 83-93, 2015. 

[30] A. Daneshi, N. Sadrmomtazi, M. Khederzadeh, and J. 

Olamaei. "Integration of Wind Power and Energy 

Storage in SCUC Problem." In World Non-Grid-

Connected Wind Power and Energy Conference 

(WNWEC), 2010, pp. 1-8. IEEE, 2010. 

[31] M. Shahidehpour, H. Yamin, and Z. Li. "Market 

Overview in Electric Power Systems." Market 

Operations in Electric Power Systems: Forecasting, 

Scheduling, and Risk Management, pp. 1-20, 2002.

 


