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ABSTRACT: 

The predictive control based speed, flux and torque prediction of a double stator induction motor is proposed in this 

research paper; the model of the DSIM and the direct vector control of the system have performed, subsequently, the 

classical PI controllers for the speed control, the flux, and thus for setting the stator’s currents have adopted. In order 

to minimize the transient control and to reduce the impact of measurement noise on the control signal, instead of 

vector control technique which requires the flux and torque estimation, the multivariable generalized predictive control 

is used. The results have shown the effectiveness of the proposed method, especially in the parameters variation and/or 

the change of the reference speed. 
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1. INTRODUCTION 

The dual star induction machine (DSIM) or double 

stator induction machine has been the subject of 

numerous studies for a long time. It has the advantage 

of being robust, reliable and poorly functioning in 

degraded operation. Unfortunately, it has a major 

disadvantage, its dynamic structure is highly nonlinear 

and the internal variables such as the electromagnetic 

torque and the rotor flux are strongly coupled, which 

makes the control of this machine complex [1-3]. 

Indeed, the vector control makes it possible to envisage 

a decoupling between the electromagnetic torque and 

the rotor flux of the machine and to achieve a control 

comparable to that of the dc machines [4]. This method 

of control was carried out in 1971 and 1972 by HASS 

and BLASCHKE [5]. Several similar techniques, but 

with some differences in the interpretation of key 

concepts, have been proposed in the field of induction 

machine control [6], [7]. For example, scalar control, 

direct torque control, input/output linearization control, 

etc. Most of these techniques are based on linear 

modeling of the machine. For the reason of facilitation 

processing, the case of a linear model also has the 

advantage of being situated in a very rich theoretical 

context [8]. 

The generalized predictive control proves a sufficiently 

complete structure proposed to solve a very general 

problem, providing a stable system for a set of 

adjustment parameters [9], [10,]. This strategy allows 

to control processes with non-minimal phase shift, with 

unstable or poorly damped poles, with dead times, 

constant or unknown, or with an unknown order model. 

It has proven its efficiency, flexibility and success in 

industrial applications [11]. 

      The main contribution of this paper is the 

implementation of a high-performance predictive 

control law for a double stator induction motor, with as 

objectives:  improve the pursuit of trajectories, 

guarantee the stability, the robustness to the variations 

of the parameters and disturbance rejection. This 

control strategy is used to develop a multivariable 

predictive control technique based on the prediction of 

the electromagnetic torque and the rotor flux to 

generate the switching states of the inverter and 

consequently the supply voltages of the DSIM. 

The paper is organized as follows: the double stator 

induction motor (DSIM) model and the vector control 

strategy are presented in section 2 and 3 respectively. 

In Section 4 the multivariable predictive control 

strategies are discussed. In section 5 and 6 the 

application of the resulting predictive control of DSIM 

is provided. Finally, the overall proposed predictive 

control scheme of DSIM shown in Fig.1 is used for 

numerical simulation and the related results and 

remarks are presented. 
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2. DSIM MODEL 

The Orthogonal subspaces α-β model of the double 

stator induction machine is presented in Fig 2. The 

equations of this machine can be expressed in (α, β) 

axes where the attributed reference is the stator field 

[3], [4]. 

 

1.1. Voltages Equations 

By choosing a referential related to the stator field, 

we obtain the following system of equations [1-4]: 
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Where: 

vs1αβ vs2αβ        :First and second stator voltages in 

                       stationary frame  

is1αβ is2αβ         :First and second stator currents in 

                       the  stationary frame  

Φs1αβ Φs2αβ      :First and second stator flux in the    

                       stationary frame  

Φrαβ                :Rotor flux in stationary frame  

ωr                   :Rotor frequency 

Rs12  Rr           :First and second stator and rotor 

                       resistance                  

1.2. Flux Equations 

The relations between flux and currents are given 

by [1-4]: 
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Where: 

           Ls12            :First and second stator 

inductance 

           Lr               :Rotor inductance 

                  Lm              :Mutual inductance 

Replacing the system of equations (2) in (1), we 

obtain the mathematical DSIM model (3). 
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Fig. 1. MIMO Predictive control of DSIM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Orthogonal subspaces α-β model of DSIM 
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Where:  

              :Total leakage factor; 

 Tr             :Rotor time constant. 

 

1.3. Mechanical Equations 

The equation of the electromagnetic torque is [4], 

[12]: 
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Where: 

           Tem           :Electromagnetique torque; 

            p             :Number of pole pairs 

The mechanical equation is: 

rfLem
r kTT

dt

d
J 


                                         (5) 

Where: 

   J         :Inertia; 

  r      :Mechanical rotor speed 

   TL       :Load torque 

   kf        :Viscous friction coefficient 

 

3. DIRECT FIELD ORIENTED CONTROL OF 

DSIM 

Fig. 3 presents the main blocs of the direct field-

oriented control of a double stator induction machine 

[8]. 
 

3.1. Rotor Flux Amplitude and Position Estimation 

of DSIM 

In the direct vector control, knowledge of the rotor 

flux (amplitude and phase) is required to ensure the 

decoupling between the torque and flux. Indeed, the 

position of the rotor flux θs is calculated algebraically 

from the information on the rotor flux [13], [14]. 
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These components can be expressed from the DSIM 

voltage model; equation (3): 
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3.2. The Rotor Flux Orientation 

The principle of the orientation shown in Fig. 4 

aligns the rotor flux on the direct axis of Park’s axes 

[4], [12]. 

Thus, we obtain the orientation of the rotor flux: 
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The following equations of rotor flux and 

electromagnetic torque are used: 
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After the Laplace transform, we can write:  
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The two stator windings are identical, so the powers 

provided by this two windings system are the same, 

hence: 
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Fig. 3. The direct field-oriented control scheme of DSIM. 
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Fig. 4. Space vector diagram for rotor flux orientation. 

 

3.3. The Compensation Method 

The compensation method is concerned with the 

regulation of four currents loops while neglecting the 

coupling terms [13]. 

Four new independent voltages Vr
ds1, Vr

qs1, Vr
ds2, 

Vr
qs2 are introduced to the decoupling such that: 
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The compensation voltages at the regulator’s output 

are given by [4]: 

 

 

 







































   iLˆV

 
R

L
iLˆV

iLˆV

R

L
iLˆV

r2sd2ss
c

2qs

rg
r

r
2sq2ss

c
2ds

r1sd1ss
c

1qs

rg
r

r
1sq1ss

c
1ds

                          (13) 

 

The references control voltages V*
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and V*
sq2 are reconstructed from voltages Vc
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ds2 and Vc
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After the Laplace transform, we can write: 
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For a perfect decoupling, adding the current control 

loops isd1, isq1, isd2 and isq2, we obtain at their output the 

voltages Vr
ds1, Vr

qs1, Vr
ds2 and Vr

qs2. 

 

4. MULTIVARIABLE PREDICTION 

CONTROL 

The monovariable predictive control is a simple 

extension of multivariable predictive control [13]. In 

contrast to the monovariable system, the resulting 

output / input transfer for a multivariable system is a 

transfer matrix [14]. 

 

4.1. Multivariable Systems 

The multivariable system, as shown in Fig. 5, states 

the model given by [15]; 
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The matrix 
nXmC)z(G   is called the transfer 

matrix linking the input )z(U  to the output )z(Y [16]. 

 

   

 

 

 

 

 

 

 
 

Fig. 5. The multivariable system of m inputs and n outputs. 

 

4.2. System Matrix Determination 

However, if the system is a multidimensional, then 

)q(A 1  and )q(B 1  are transfer matrices. Since )q(G 1  

is also a transfer matrix, the polynomials )q(A 1  and 

)q(B 1  cannot be simply determined by taking the 

denominator and the numerator of )q(G 1
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the Geering publication [17]. 

For simplicity reasons, only the method of 
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     (30) 

 

The dimensions of the individual matrices are: 

A(q-1) : (n X n) Matrix; 

B(q-1) : (n X m) Matrix; 

C(q-1) : (n X n) Matrix; 

y(k)    : (n X 1) Vector; 

u(k)    : (m X 1) Vector; 

ζ(k)    : (n X 1) Vector. 

With: 

 n  : The number of system outputs. 

            m : The number of system inputs. 

 

4.4. The J-Step Ahead Multivariable Predictor 

As in SISO case, a matrix Diophantine equation is 

used for calculating the matrix predictor [19,20]: 

 

)q(Gq)q(F)q(A)q()q(C).q(A 1
j

jd1
j

1111
m

 
 
(31) 

With: 

 

nAm
nAm

2
2

1
10

1
m

na
na,j

2
2,j

1
1,j0,j

1
j

)1j(
1j,j

2
2,j

1
1,j0,j

1
j

qA....qAqAA)q(A

qG....qGqGG)q(G

qF....qFqFF)q(F
















 

 

Where: 

Fj(q-1)  : (n X n) Matrix; 

Gj(q-1) :  (n X n) Matrix ; 

Am(q-1) : (n X n) Matrix ; 
 

After resolving equation (31) for 

)q(F)q(A 1
j

1  and after inserting the result in 

equation (30) which has been multiplied by 
j1

j q)q(F  , the prediction equation can be obtained: 

 

)jk()q(F)q(C)djk(u)q(F)q(B

)k(y)q(G)jk(ŷ)q(C)q(A

1
j

11
j

1

1
j

11
m









 (32) 

 

All noise terms are in the future, too, which means 

they are not known and they can be neglected. 

Therefore, the best prediction is [9], [14]: 

 

)djk(u)q(F)q(B

)k(y)q(G)jk(ŷ)q(C)q(A

1
j

1

1
j

11
m









 
(33) 

And as: 
 

)q(Jq)q(C).q(A).q(H)q(F)q(B 1
j

1j11
m

1
j

1
j

1  
   

(34) 

 

Where, in contrary the one-dimensional case, 

)q(H 1
j

  is a transfer matrix, the part forming the free 

response is completely inside the term )q(Jq 1
j

1j  .  

 

Multivariable 

system 

G(q-1) 

u1 
y1 

u2 

um 

y2 

yn 
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  

  

responsefree

1
j

1
j

responseforced

1
j

11
m

11
m

)1k(u)q(J)k(y)q(G

)djk(u)q(H)q(C)q(A

)jk(ŷ)q(C)q(A













   (35) 

 

Thus, the prediction equation becomes: 

 



  

responsefree

responseforced

1
j )jk(E)djk(u)q(H)jk(ŷ             (36) 

Where: 

)q(C)q(A

)1k(u)q(J)k(y)q(G
)jk(E

11
m

1
j

1
j



 
  

With: 

Hj(q-1) , Jj(q-1) : (n X m) Matrix; 

              E(k)  : (n X 1) Vector. 

 

Therefore, the j-step predictions for a MIMO 

system are: 

 
































)Nk(E)dNk(u)q(H)Nk(ŷ

)3k(E)d3k(u)q(H)3k(ŷ

)2k(E)d2k(u)q(H)2k(ŷ

)1k(E)d1k(u)q(H)1k(ŷ

22
1

N2

1
3

1
2

1
1

2



 

 

Similar to the monovariable system, the term 

)djk(u)q(H 1
j   of equation (36) is associated 

with a multiplication of real matrices U.H . So: 

 

EU.HY                                                              (37) 
 

A quadratic cost function is applied to the 

prediction values of (37) to compute an optimal 

sequence of the control signal [9]. 

     The cost function is the same as for the one-

dimensional control [20]. 
 

     



u2

1

N

1j

2

2N

Nj

refGPC djkujkjkŷJ

 

(38) 

 

As in the one-dimensional case, a multi-

dimensional cost function can be implemented by 

substituting (37) into (38): 
 

UU)WEHU()WEHU(J TT
GPC        (39) 

 

In order to minimize this equation, it is first 

developed in distinct terms [19-20]: 

)WE()WE(HU)WE(

)WE(HUU)IHH(UJ

TT

TTTT
GPC




   (40) 

Due to the identity: 
 

HU)WE()WE(HU TTT                                 (41) 
 

JGPC can be further simplified by: 
 

)WE()WE(

)WE(HU2U)IHH(UJ

T

TTTT
GPC





  
 (42) 

The analytic minimization 0
U
~

d

dJ !
GPC   gives [21], 

[22]: 

   EWHIHHU
~ T1

N
T

u




     
                         (43) 

 

5. MULTIVARIABLE PREDICTION 

CONTROL OF DSIM 

The objective of this control strategy is to control 

simultaneously the electromagnetic torque and the rotor 

flux norm. The multivariable predictive control law 

developed in section (5) is used to track trajectories 

(torque and flux norm) to generate the reference 

voltages (Fig. 6). 

 

5.1. Synthesis of the MIMO Predictive Control law 

The multivariable predictive control for the DSIM 

drive can be designed (Fig. 7). 

In our case the selected outputs and inputs are: 
























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r
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ˆ
Ŷ,

T
Y   and  
















r
qs

r
dsr

s
V

V
U  

The prediction of the outputs is given by equation 

(44): 
 































































)1k(V

)1k(V
)q(J

)1jk(V

)1jk(V
)q(H

)k(T

)k(
)q(G

)jk(T̂

)jk(ˆ

sq

sd1
j

sq

sd1
j

em

r1
j

em

r

        (44) 

With:  

                    Hj(q-1) , Jj(q-1) :  (2 X 2) Matrix; 

                        G j(q-1)         :  (2 X 2) Matrix.   
 

The prediction model is assumed to be linear time 

invariant model (LTI), modeling the dynamic 

interactions between two sets of inputs (Vsd, Vsq) and 

two sets of outputs (Фr, Tem). 

Since from reference flux Фr
* and reference torque 

T*
em, the reference currents (I*

ds et I*
qs) can be deduced 

directly from the equations of the system (45). 
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



















*
qs

*
r

rm

m*
em

*
ds

r

m*
r

I
LL

pL2
T

I
sT1

L2

                                           (45) 

The reference voltages 
r
dsV  and r

qsV are then 

reconstituted from the currents I*
ds and I*

qs by: 



















r
qs

1s1s

*
qs

r
ds

1s1s

*
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V
sLR

1
I

V
sLR

1
I

                                               (46) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Block diagram of the multivariable predictive control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Block diagram of the MIMO predictive control of DSIM.
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Taking into account that the rotor flux is kept 

constant at its reference value, the substitution of (46) 

into (45) gives: 

 



















r
qs
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em

r
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1s1sr

m*
r

V
)sLR)(LL(

pL2
T

V
)sLR)(sT1(

L2

                          (47) 

According to the system (12), the reference 

voltages are decomposed by two voltage vectors:  

 

 *
qs

*
ds

*
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qs
*
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r
qs

c
ds

*
ds

r
ds

VVU;
VVV

VVV












                (48) 

The rewriting of (47) in the matrix form gives: 

 

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
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With: 


















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                            (50) 

 

For a sampling period Te = 0.001sec, the discrete 

transfer matrix is: 





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(51)

The polynomials matrices of the CARIMA model (29) are: 
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(52) 

The matrix form of the prediction equation (44) for j = 1 is: 
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      (53)

 

Where: 
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The multivariable cost function is defined by 

equation (42): 

)WE()WE(
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T
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5.2. Synthesis of the SISO Predictive Control law 

The prediction model is given by the following 

mechanical equation [13], [20]: 
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For km = 1000; 5.62Tm  and Te = 0.001sec, 

equation (57) is represented by the following discrete 

transfer function: 
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The speed prediction equation is given by: 
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The future Tem command is: 
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6. SIMULATION RESULTS  

Using the block diagram of Fig. 7, the simulation 

was carried out under the same conditions as the 

conventional FOC control with the following 

adjustment parameters: 
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Table 1. Predictive control setting parameters. 
                   Predictive 

                        
regulators                                      

Parameter 

MIMO_Predictive 

(Torque/Flux Norm) 

SISO_Predictive 

(Speed) 

N1 1 1 

N2 5 5 

Nu 3 3 

λ Matrix 0.01 IX2 0.002 

6.1. Discussion 

At start-up and during the transient regime (Fig. 8), 

the speed increases linearly as a function of time and 

reaches its reference value 288rd / sec at t = 0.75sec 

without overshoot. The electromagnetic torque of the 

DSIM reaches its maximum value at start-up and then 

reaches the steady state at t = 0.75sec. At the 

beginning, the stator current Is1a reaches a current of 

33A. The stator voltage Vs1a is sinusoidal in shape. The 

rotor flux norm presents at the start-up some peaks for 

a fraction of a second oscillating around their setpoints. 

At time t = 2.5sec, the speed reverses and reaches its 

negative setpoint after 1.2sec without any overshoot. 

This generates an increase in the current Is1a of a 

magnitude equal to that recorded during the start-up, 

which stabilizes after 1.2sec, the electromagnetic 

torque reaches its maximum value at the time of the 

inversion of the speed, which stabilizes once the latter 

reaches its setpoint (-288rd / sec); the torque Tfutur 

progresses in a manner analogous to the reference 

torque; the flux norm Фfuture follows their reference 

value during the inversion of the speed. 

 

6.2. Robustness Test 

Figs. (9.1) to (9.4) respectively show the no load 

characteristics of the DSIM with speed and flux norm 

regulation by a multivariable predictive control, 

followed by increasing the rotor resistance, stator 

resistance and decreasing the mutual inductance 75% 

of its nominal values, and an increase in the inertia 

200% of its nominal value between t = 1.5sec and t = 

2sec. 

The simulations results show clearly the insensitivity of 

the predictive control to the variation of the mutual 

inductance. On the contrary, we note that a 75% 

increase in the value of the rotor resistance, stator 

resistance and inertia, has a little influence on the 

performance. We notice (Fig. 10) a slight decrease in 

speed and a slight increase in the flux norm for a 

simultaneous variation of + 75% Rr, + 75% Rs, -75% 

Lm and + 200% J . 

 

Fig.8. Simulation results for MIMO predictive control of 

DSIM. 

 

 
Fig.9. (1). Robustness test; increasing of +75%Rr 

(speed and rotor flux norm results). 

 

 
Fig.9. (2). Robustness test; increasing of +75%Rs 

(speed and rotor flux norm results). 

 



Majlesi Journal of Electrical Engineering                                                             Vol. 13, No. 1, March 2019 

 

76 

 

 
Fig. 9. (3). Robustness test; decreasing of -75% Lm 

(speed and rotor flux norm results). 
 

 
Fig.9.(4). Robustness test; increasing of +200%J  

(speed and rotor flux norm results). 

 

 
Fig.10. Robustness test for a simultaneous variation of 

+75%(Rs,Rr), -75%Lm and +200%J (speed and rotor 

flux norm results). 

 

7. CONCLUSION 

In this paper we presented the predictive control, 

based speed, torque and flux prediction of Double 

Stator Induction Machine (DSIM). Then we discussed 

the basic idea of multivariable predictive control as a 

decoupling system able to replace the conventional 

FOC control and allowing to control the future torque 

and the future flux to minimize the reference voltages, 

such as the synthesis of this control takes into account 

all the components of the drive system. (Machine, 

Inverters and System estimation). From this fact, it is 

concluded that the adjustment of the speed, the flux and 

the torque by the predictive control, brings remarkable 

improvements over the conventional control. In 

addition, the decoupling between the flux and the 

electromagnetic torque is perfectly ensured. 

The prediction operation of the speed, the flux and the 

torque increases reliability, reduces the complexity and 

the cost of the system. Indeed, the speed variation of 

the double star induction machine in variable speed 

range is a difficult problem to be overcome with 

respect to the parametric variation and in particular the 

mutual inductance, the rotor resistance and the stator 

resistors, thus causing the instability of the system. 

From the obtained results, it can be concluded that 

the studied techniques are valid for the nominal 

conditions, even satisfying the operations in variable 

speed drive and even when the machine is loaded, on 

the other hand they have acceptable robustness to the 

variation of the load, thus achieving good static and 

dynamic performance. 

  

8. APPENDIX 

Double stator induction motor parameters [3], [4], 

[12], [20] 

Pn=4.5kW, f=50Hz, Vn( /Y)=220/380V, In( /Y)=6.5A, 

Ωn=2751rpm, p=1 

Rs1= Rs2=3.72Ω, Rr =2.12Ω, Ls1= Ls2= 0.022H, Lr = 

0.006H, Lm =0.3672H 

J =0.0625 Kgm2, Kf =0.001 Nm(rad/s)-1 
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