Document Type : Review Article

Authors

1 Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran.

2 Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran

Abstract

In this paper, a model reference adaptive controller (MRAC) with a RST control structure is employed to control the depth of the anesthesia. The polynomial coefficients of the RST controller are adjusted according to a fractional order normalized gradient based adaptation mechanism. The propofol infusion rate and the Bispectral Index (BIS) are considered as the system input and output, respectively. The propofol distribution in the patient model is described with a Pharmacokinetic-Pharmacodynamic (PK-PD) model. The PK-PD model parameters depend on physical specifications of the patient like age, weight, and gender. The proposed MRAC is employed to reach the desired BIS  in the presence of disturbance and the measurement noise for different patients. Simulation results demonstrate the effectiveness of the proposed method.

Keywords

[1] J. M. Bailey and W. M. Haddad, “Drug dosing control in clinical pharmacology,” IEEE Contr. Syst. Mag., vol. 25, pp. 35-51, 2005.
[2] C. Rosow and P. J. Manberg, “Bispectral index monitoring, ” Anesthesiol. Clin N. A., vol. 19, pp. 947-966, 2001.
[3] L. Sheiner and J.-L. Steimer, “Pharmacokinetic/pharmacodynamic modeling in drug development,” Annu. Rev. Pharmacol. Toxicol., vol. 40, pp. 67-95, 2000.
[4] M. Ilyas, M.F.U. Butt, M. Bilal, K. Mahmood, A. Khaqan, and R.A.. Riaz, “A Review of modern control strategies for clinical evaluation of propofol anesthesia administration employing hypnosis level regulation,” Biomed Res. Int., vol. 2017, pp. 1-12, 2017.
[5] F. Padula, C. Ionescu, N. Latronico, M. Paltenghi, A. Visioli, and G. Vivacqua, “Optimized PID control of depth of hypnosis in anesthesia,” Comput. Meth. Prog. Bio., vol. 144, pp. 21-35, 2017.
[6] M. Ilyas, A. Khaqan, J. Iqbal, and R.A. Riaz, “Regulation of hypnosis in propofol anesthesia administration based on non-linear control strategy,” Brazilian Journal of Anesthesiology (English Edition), vol. 67, pp. 122-130, 2017.
[7] A. Khaqan, Q.U. Hasan, S.A. Malik, M. Bilal, M.F.U. Butt, and R.A. Riaz, “Comparison of two nonlinear control strategies for hypnosis regulation,” Arab. J. Sci. Eng., vol. 42, pp. 5165–5178, 2017.
[8] D.V. Caiado, J.M. Lemos, and B.A. Costa, “Robust control of depth of anesthesia based on H∞ design,” Archives of Control Sciences, vol. 23, pp. 41–59, 2013.
[9] N. Sadati, M. Hosseinzadeh, and G. A. Dumont, “Multi-model robust control of depth of hypnosis,” Biomed. Signal Process. Control, vol. 40, pp. 443-453, 2018.
[10] L. Merigo, M. Beschi, F. Padula, N. Latronico, M. Paltenghi, and A. Visioli, “Event-based control of depth of hypnosis in anesthesia,” Comput. Meth. Prog. Bio., vol. 147, pp. 63-83, 2017.
[11] I. Nascu, A. Krieger, C.M. Ionsecu, and E.N. Pistikopoulos, “Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia,” IEEE T. Bio-Med. Eng., vol. 62, pp. 832 - 841, 2015.
[12] A. Krieger, and E.N. Pistikopoulos, “Model predictive control of anesthesia under uncertainty,” Comput. Chem. Eng., vol. 71, pp. 699-707, 2014.
[13] H. Chang, A. Krieger, A. Astolfi, and E.N. Pistikopoulos, “Robust multi-parametric model predictive control for LPV systems with application to anaesthesia,” J. Process Contr., vol. 24, pp. 1538-1547, 2014.
[14] W. M. Haddad, T. Hayakawa, and J. M. Bailey, “Adaptive control for non‐negative and compartmental dynamical systems with applications to general anesthesia,” Int. J. Adapt. Control, vol. 17, pp. 209-235, 2003.
[15] W.M. Haddad, K. Y. Volyanskyy, J. M. Bailey, and J. J. Im, “Neuroadaptive output feedback control for automated anesthesia with noisy EEG measurements,” IEEE T. Contr. Syst. T., vol. 19, pp. 311-326, 2011.
[16] I. Martin-Mateos, J.A. Mendez Perez, J.A. Reboso Morales, and J.F. Gomez-Gonzalez, “Adaptive pharmacokinetic and pharmacodynamic modelling to predict propofol effect using BIS-guided anesthesia,” Comput. Biol. Med., vol. 75, pp. 173-180, 2016.
[17] E. Kharisov, C.L. Beck, and M. Bloom, “Design of adaptive controllers for human patient anesthesia,” Control Eng. Pract., vol. 44, pp. 65–77, 2015.
[18] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, CA, 1999.
[19] D. Copot, A. Chevalier, C. M. Ionescu, and R. De Keyser, “A two-compartment fractional derivative model for propofol diffusion in anesthesia,” 2013 IEEE Int. Control Appliction Conf., pp. 264-269.
[20] G. A. Dumont, A. Martinez, and J. M. Ansermino, “Robust control of depth of anesthesia,” Int. J. Adapt. Control, vol. 23, pp. 435-454, 2009.
[21] G. Navarro‐Guerrero and Y. Tang, “Fractional order model reference adaptive control for anesthesia,” Int. J. Adapt. Control, vol. 31, pp. 1350–1360, 2017.
[22] S. Ladaci and A. Charef, “On fractional adaptive control,” Nonlinear Dynam., vol. 43, pp. 365-378, 2006.
[23] S. Ladaci and Y. Bensafia, “Fractionalization: a new tool for robust adaptive control of noisy plants,” 6th IFAC Workshop on Fractional Differentiation and Its Applications, Grenoble, France, pp. 379-384, 2013.
[24] M. Tabatabaei, “Design of a fractional order adaptive controller for velocity control of a permanent magnet synchronous motor,” COMPEL, vol. 34, pp. 1191-1212, 2015.
[25] T. W. Schnider, C. F. Minto, P. L. Gambus, C. Andresen, D. B. Goodale, S. L. Shafer, et al., “The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers,” Anesthesiology, vol. 88, pp. 1170-1182, 1998.
[26] K. J. Åström and B. Wittenmark, Adaptive Control, 1995.
[27] C.M. Ionescu, R.D. Keyser, B.C. Torrico, T.D. Smet, M.M. Struys and J.E. Normey-Rico, “Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia,” IEEE T. Bio-Med. Eng., vol. 55, pp. 2161-2170, 2008.