[1] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no.1, pp. 15–27, Feb. 2002.
[2] A. L. M. d. Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. V. d. Auweraer, and L. C. S. Goes, “Multiphysics NVH modeling: Simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469–476, Jan. 2014.
[3] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1327–1334, Jul./Aug. 2012.
[4] H. Chen and J. J. Gu, “Switched reluctance motor drive with external rotor for fan in air conditioner,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 5, pp. 1448–1458, Oct. 2013.
[5] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lazaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690–2699, Jun. 2014.
[6] Wei Xu, Jianguo Zhu, Youguang Guo, “Applied Superconductivity and Electromagnetic Devices,” Proceedings of 2009 IEEE International Conference on Chengdu China, Sept., 2009.
[7] Lovatt, H.C. “Optimization of switched reluctance motors for hybrid electric vehicles,” Power Electronics, Machines and Drives, International Conference , Publ. No. 487, pp. 177 – 182, 2002 .
[8] Jung-Pyo Hong “Stator Pole and Yoke Design for Vibration Reduction of Switched Reluctance Motor,” IEEE Trans. on Magn., Vol. 38, No. 2, March 2002, pp. 929.
[9] Jian Li, Xueguan Song, “Comparison of 12/8 and 6/4 Switched Reluctance Motor: Noise and Vibration Aspects,” IEEE Trans. on Magn., Vol. 44, N0. 11, Nov. 2008, pp. 4131.
[10] J. Corda, A.M. Tataru, P.O. Rasmussen and E. Ritchie, “Analytical estimation of torque enhancement of the SR machine with saw-shaped (shark) pole surfaces,” IEE Proc.-Electr. Power Appl., Vol. 151, No. 2, March 2004.
[11] Shang-Hsun Mao and Mi-Ching Tsai , “Novel Switched Reluctance Motor With C-Core Stators,” IEEE Transactions on Magn, Vol. 41, No. 12, pp. 413, Dec. 2005.
[12] Wen Yang, “Design and research of a new dual-rotor switched reluctance motor for hybrid electric vehicles,” Electrical Machines and Systems (ICEMS), International Conference, pp. 829 – 833, 2010.
[13] Wang Yaling, “Outer-rotor switched reluctance motor and its control system used in electric vehicles”, Electrical Machines and Systems (ICEMS), International Conference, pp. 1 – 4, 2011.
[14] Sakthivel, P., “Design of a 250 w, low speed switched reluctance Hub motor for two wheelers,” Electrical Energy Systems (ICEES), 1st International Conference, pp.176 – 181,2011.
[15] R. Madhavan and B.G. Fernandes, “A Novel Technique for Minimizing Torque Ripple in Axial Flux Segmented Rotor SRM,” IEEE Conference, Energy Conversion Congress and Exposition (ECCE), pp. 3383 – 3390, 2011.
[16] B. G. Fernandes, “A Novel Axial Flux Segmented SRM for Electric Vehicle Application,” XIX International IEEE Conference on Electrical Machines – ICEM, pp 1-6. Sept. 2010.
[17] Salman Khaliq, Mohammad Modarres, Thomas A. Lipo, “Design of novel axial-flux dual stator doubly fed reluctance machine,” IEEE Trans. on magn., Vol. 51, No. 11, pp. 804-807 Nov. 2015
[18] Fernandes B.G., “Comparative analysis of axial flux SRM topologies for electric vehicle application,” Power Electronics, Drives and Energy Systems (PEDES), IEEE International Conference, pp. 1 – 6, Dec.2012.
[19] Madhavan R., “Axial flux segmented SRM with a higher number of Rotor segments for electric Vehicles,” Energy Conversion, IEEE Transactions, Vol. 28, No. 1, pp. 203 – 213, 2013.
[20] WU Qinghai, HE Xiaofeng, JIN Defei, WU Shasha, ZHANG Tao, “Parameter design and FEM analysis for 3-phase 6/4 poles switched reluctance motor,” Proceedings of the 30th Chinese Control Conference, July 2011.
[21] Praveen Vijayraghavan, “Design of switched reluctance motors and development of a universal controller for switched reluctance and permanent magnet brushless DC motor drives,” PhD Report, Blacksburg, Virginia, Nov. 2001.
[22] Ragavan, K., Prathamesh,J., “A novel magnetic-circuit based design approach for electric vehicle motors,” Electric Vehicle Conference (IEVC), IEEE International, , pp. 1 – 5, 2012,
[23] Wen Ding1, Zhonggang Yin2, Ling Liu1, “Magnetic circuit model and finite-element analysis of a modular switched reluctance machine with E-core stators and multi-layer common rotors,” Published in IET Electric Power Applications, March 2014. ISSN 1751-8660.
[24] M.Sc. Tobias Kellerer, Dr.-Ing. Oliver Radler , “Axial Type Switched Reluctance Motor of Soft Magnetic Composite,” Innovative Small Drives and Micro-Motor Systems, GMM/ETG Symposium, pp. 1 – 6, 2013.
[25] Anas Labak and Narayan C. Kar, “Novel Approaches Towards Leakage Flux Reduction in Axial Flux Switched Reluctance Machines,” IEEE Trans. on Magn, Vol. 49, No. 8, Aug. 2013.
[26] A. Chiba, Y. Takano, M. Takeno, T. Imakawa, N. Hoshi M. Takemoto, and S. Ogasawara, “Torque density and efficiency improvements of a switched reluctance motor without rare-earth material for hybrid vehicles,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1240–1246, May/Jun. 2011.
[27] Y. K. Choi, H. S. Yoon, and C. S. Koh, “Pole-shape optimization of a switched-reluctance motor for torque ripple reduction,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1797–1800, Apr. 2007.
[28] J. Li, X. Song, and Y. Cho, “Comparison of 12/8 and 6/4 switched reluctance motor: Noise and vibration aspects,” IEEE Trans. Magn., vol. 44, no. 11, pp. 679–686, Nov. 2008.
[29] Alireza Siadatan, Ebrahim Afjei, “An 8/6 Two Layers Switched Reluctance Motor: Modeling, Simulation and Experimental Analysis,” Majlesi Journal of Electrical Engineering, Vol. 6, No. 1, March 2012.
[30] T. Higuchi, K. Ueda, and T. Abe, “Torque ripple reduction control of a novel segment type SRM with 2-steps slide rotor,” in Proc. IEEE Int. Power Electron. Conf., pp. 2175–2180, Jun. 2010.
[31] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564–2575, Jul. 2013.
[32] Nikunj R. Patel, Varsha A. Shah, and Makarand M Lokhande “Design and performance analysis of axial flux c-core switched reluctance motor for in-wheel electrical vehicle application,” IEEE ITEC Conference, pp 1– 6, June-2016.
[33] Nikunj R. Patel, Varsha A. Shah, and Makarand M Lokhande “A novel approach to the design and Development of 12/15 radial field C-core switched reluctance motor for implementation in electric vehicle application ,” IEEE Transactions on Vehicular Technology, May-2018 [Online Available].
[34] Larminie, J. and Lowry, J., “Electric Vehicle Technology Explained,” John Wiley and Sons ltd, pp. 186 – 192, 2003