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ABSTRACT: 

In this paper, machine learning technique is used to detect and classify all shunt faults in a UPFC compensated trans-

mission line. A four-bus three-machine system with detailed modelling of UPFC has been used for fault simulation 

studies in MATLAB/Simulink. Instantaneous voltage and current signals obtained at local bus terminal are processed 

with DFT and statistical method for feature extraction. The input features of the ANN are minimised by using the sta-

tistical method. Generated features are used for training the ANN module. Trained ANN modules are used for testing 

different fault conditions in the time domain. Rigorous simulation studies have been performed with a wide variety of 

different possible fault situations. Simulation results bring out the superiority of the scheme. Moreover, the error in-

troduced due to CT, CCVT and Dynamic behaviour of the UPFC has been considered for testing the trained ANNs by 

varying the different operating mode of UPFC, and different compensation levels, wherein all the cases, the perfor-

mance is found reliable. 

 

KEYWORDS: ANN, Fault Classification, Fault Detection, FACTS, SSSC, STATCOM, Transmission Line Protec-

tion, UPFC. 

  

1.  INTRODUCTION 

In modern World, energy requirement has been 

fulfilled by increasing power generating capacity or by 

increasing the power transfer capability of the existing 

transmission line. Advancement in the power electronic 

equipment technologies and automatic electronic con-

trol systems evolve the Flexible AC Transmission Sys-

tem (FACTS) technology. Unified power flow control-

ler (UPFC) holds specific identity over the different 

FACTS devices as the ability to control real and reac-

tive power flows as well as bus voltage magnitude sim-

ultaneously among the transmission network [1]. Estab-

lishment of those systems is either manually operated 

or automatically. However, during fault conditions re-

sponse of these FACTS devices affects the different 

functional characteristics of the conventional distance 

relays [2-8]. UPFC is a combination of series and shunt 

FACTS devices known as, static synchronous series 

compensator (SSSC) and static synchronous compensa-

tor (STATCOM). Both compensators are connected 

with the common dc link. UPFC have the different op-

erating mode, these modes of operation are achieved 

with the variation of operating modes of both series and 

shunt converters. However, the most useful and advan-

tageous operating mode of UPFC is Automatic Power 

Flow Control Mode (APFCM) [9]. Moreover, in such 

automatic control action, relaying end measuring sig-

nals are affected at the relaying location. The dynamic 

variations in the relaying measuring signals and equal 

compensation on per phase basis of UPFC could be the 

cause of relay mal-operation.  

Deployment of UPFC into the transmission net-

work would negatively influence the performance of 

the conventional methods, as well as, the nonlinear and 

dynamic behavior of VSCs makes it a challenging task 

[2-8]. In these regards, soft-computing based different 

algorithms have been proposed for the protection of 

UPFC compensated transmission line in last decade, 

which is suitable for the nonlinear and complex prob-

lem. A variety of machine learning and soft computing 

techniques have been presented in the last decade for 

fault analysis in FACTS compensated transmission line 

such as adaptive trip boundary for distance relaying has 

been proposed by using ANN in [10], and fault zone 

identification and classification by using decision tree 

(DT) [11]. DT and SVM have been utilised compara-

mailto:second.author@hostname2.org


Majlesi Journal of Electrical Engineering                                                     Vol. 13, No. 3, September 2019 

 

38 

 

tively for fault zone identification in [12], SVM based 

distance relay zone setting in [13], DT and fuzzy rule-

based differential protection scheme in [14] which re-

quires to transmit and synchronise the measured data of 

both the terminal by means of communication medium. 

Extreme learning machine based adaptive reach setting 

only for the phase to ground fault is proposed in [15]. 

Fast discrete orthonormal S-Transforms (FDOST) for 

fault zone and fault loop status supervision in [16]. In 

[10-16] different feature extraction technique, using 

digital filtering has been used for the training and then 

testing the respective algorithms, which increases the 

computational burden. Moreover, in most of the cases, 

the dynamic behavior of UPFC during a different mode 

of operation and compensation levels has not been ana-

lysed. Application of Artificial Neural Network (ANN) 

in power system studies has been applied successfully 

such as fault directional estimation and fault location 

technique in [17], Fault detection, zone identification 

and fault classification in [18] for the uncompensated 

transmission line. 

In this paper, application of ANN is presented to 

detect and classify shunt faults in FACTS compensated 

transmission line. Instantaneous voltage and current 

signals at relaying location are pre-processed using 

DFT and statistical method to reduce the feature data 

size for training data and the computational burden. 

The proposed ANN-based algorithm have been exam-

ined extensively with the simulated time domain volt-

age and current signals. The reliability of the proposed 

scheme is not affected by the variation of fault location, 

fault resistance, and fault inception angle. Fault detec-

tion and classification accuracy are being unaffected 

during error introduced in voltage and current signals 

due to instrument transformer such as CT and CCVT. 

Moreover, the sensitivity of the proposed scheme is 

unaltered during different mode and compensation lev-

el of UPFC. 

 

2.  SAMPLE SYSTEM 

To demonstrate ANN based algorithms to detect 

and classify shunts faults a four buses 500 kV, 60 Hz, 

UPFC compensated power system network is consid-

ered as illustrated in Fig. 1. In this paper, detailed mod-

el of the UPFC controller is utilised in the sample sys-

tem. The detail parameters of the transmission line and 

UPFC are given in [6]. The UPFC is considered be-

tween bus 1 and bus 2, to control the power flow be-

tween bus 2 and bus 3. The UPFC consists of two Volt-

age Source Converters (VSC), which are connected to a 

common dc link. Based on the control system of UPFC, 

the shunt connected VSC will generally operate in au-

tomatic voltage regulating mode and series connected 

VSC will typically be in Automatic Power Flow Con-

trol Mode (APFCM) [9]. In this paper, initially, the 

UPFC is considered to be in an APFCM, "The natural 

power flow toward bus 2 when zero voltage is generat-

ed by the series converter (zero voltage on converter 

side of the four converter transformers) is P=+870 MW 

and Q=-60 MVAr. Both the magnitude and phase angle 

of the series injected voltage can be varied, thus allow-

ing control of P and Q. The UPFC controllable region 

is obtained by keeping the injected voltage to its maxi-

mum value (0.1 pu) and varying its phase angle from 

zero to 360° [19]". Although the series converter has 

the capability to inject voltage into the line, thereby 

affecting the line current and its ability for limiting the 

flow of line current is limited by the maximum injected 

voltage capability. 

 

Z1 Z2S1 S2

BUS 1 BUS 2

UPFC

BUS 3 BUS 4

S3

LOAD

200 MW
LOAD

200 MW

160 km 80 km

200 km

100 MVA

Z3

Fig. 1. One-line diagram of a simulated system. 

 

3.  PROPOSED FAULT DETECTION AND 

CLASSIFICATION ALGORITHM  

ANN has been proven its applicability for different 

online and offline power system analysis and fault stud-

ies. In this scheme, Block diagram of the proposed al-

gorithm is shown in Fig. 2. The fault detector consists 

of a first single ANN module for all types of shunt 

faults. The ANN has been trained such that, the output 

of the fault detector is 1 for fault situations else 0 for no 

fault situation. Moreover, second ANN module has 

been taken for all 10 types of shunt fault classification. 

Classifier module gives four outputs, from which, three 

outputs represent the three individual phases involved 

and one output represents ground involvement. Based 

on the type of fault in the protected section of the 

transmission line, classifier shows any one of the fault 

types out of 10 types of shunt fault as shown in Fig. 2. 

There are two ANNs that have been trained, one for 

fault detection and the second one is for fault classifica-

tion. The architecture for each ANNs is considered 

such that it consists of 6 inputs, and two hidden layers 

occupied with 30 neurones each. Output neurone is 1 in 

the case of fault detection and 4 in the case of fault 

classification. Each ANNs are trained with Levenberg 

Marquardt algorithm with a high level of performance 

goal of 1.0e-07 and transfer function used in all the lay-

ers are tangent sigmoid.  

 

3.1.  Feature Extraction  

To obtain the various possible faults simulated volt-

age and current signals, power system network model 
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is simulated in MATLAB/Simulink environment using 

SimPower system toolbox [19]. For the feature extrac-

tion, purpose three-phase voltage and current signals 

are measured at the local terminal (bus 1 as shown in 

Fig.1), full cycle DFT is used for pre-processing the

 

Obtain Three Phase Current and 

Voltage Signal at Relaying Bus 

Calculating Fundamental Component for 

three Phase Voltage & Current Signals, and 

Simultaneously Zero Sequence Current 

One Pre-Fault and one Post-fault 

Cycles Data are Extracting from 

Last Stage 

Calculating Standard Deviation of 

Signals to get one Single Value  

Single Values Obtained in Different Fault 

Conditions Through Simulation Studies are 

Used as a Input to the ANN based fault 

Detector and Classifier

ANN Based Fault Detector

ANN Based Fault Classifier

A-G

Fault

B-G

Fault
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Fault

BC-G

Fault

CA-G

Fault

BC

Fault

CA

Fault

AB

Fault

C-G

Fault

ABC

Fault

Output

1 (Fault) 0 (No-Fault)

 
Fig. 2. Block diagram of the proposed algorithm 

 

Instantaneous signals to obtain the fundamental com-

ponent of the signals. One pre-fault and one post-fault 

cycle data have been extracted from the obtained fun-

damental component of voltage and current signals, 

simultaneously zero sequence current signal is calculat-

ed and one cycle pre-fault and post-fault samples are 

extracted. To reduce the training data sample or in-

crease the comparable difference between normal or 

faulted signals, a standard deviation of the two funda-

mental frequency cycle data has been taken. However, 

7 input (six samples for three-phase voltage and current 

signal and one sample for zero sequence current signal) 

samples have been obtained for a single faulted situa-

tion.  Input data matrix has been generated for several 

possible faults. Simulation studies have been done with 

different fault parameters variations. These data matri-

ces have been used to train the two neural networks, 

one for fault detection and one for fault classification. 

The training data for both networks is same, but it only 

differs from the target matrix. ANN for fault detection 

has one neuron, whereas, the ANN fault classification 

module has 4 neurons. n the target matrix, The sam-

pling frequency of the system is 1.2 kHz during data 

processing. Table 1 shows the different conditions for 

which training data set have been generated. The large 

size of data is generated (4700 cases) to cover all the 

possible fault conditions in the sample power system. 

To evaluate the performance of trained ANN to detect 

and classify the faults in the time domain, input pat-

terns are generated in the time domain as depicted in 

Fig. 3. For an example, one instantaneous current sig-

nal has been taken to show the complete process of the 

feature extraction. A single phase to a ground fault has 

been initiated at 0.255s (sample number 306) as illus-

trated in Fig. 3 (a). Further full cycle DFT is applied to 

input signal, which calculate the fundamental compo-

nent of the current signal as depicted in Fig. 3 (b). 

Standard deviation of One cycle pre-fault and one cycle 

post-fault samples (total 40 samples = 2 cycles) has 

been calculated in a recursive manner over a sliding 

window of window length 40 samples (2 cycles) as 

illustrated in Fig. 3(c). Finally obtained standard devi-

ated values as shown in Fig. 3 (d) has been processed to 

test the trained ANNs 

 

Table 1. System parameter for training set. 

Parameter Values  

Fault Type 

LG [AG, BG, CG] 

LLG [ABG, BCG, CAG] 

LL[AB, BC, CA] 

LLL[ABC, ABCG] 

Fault Inception Angle 

[Degree] 
0, 45, 90, 135 

Fault Resistance [Ohm] 0, 50, 100 

Fault Location [km] 
1- 4 (by step of 1) 

5-155 (by step of 5) 

UPFC References 

P[MW],Q[MVAr], V 

[p.u.] 

P = 870; Q = -60;  

V = 1.05 
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Fig. 3. Feature extraction during testing. 

 

A similar process has been carried out to generate a 

test pattern for three-phase voltage and current signals, 

as well as for zero sequence current signals. Test results 

illustrating the different result for fault detection and 

classification have been discussed in proceeding sec-

tion. 

  

4.  CASE STUDIES AND DISCUSSIONS 

In this study, three machine four bus system as 

shown in Fig. 1 has been taken to evaluate various fault 

detection and classification task. Here two trained 

ANN, one for fault detection and one for fault classifi-

cation has been simultaneously tested to evaluate their 

accuracy and reliability with a separate set of test data. 

The test data used in the performance evaluation have 

not been used during the training process of ANN. Ta-

ble 2 shows the different conditions for which testing 

data set (4,64,640) have been generated. Trained ANN 

based fault detection and classification modules have 

been considered at bus 1. In the proceeding sections, 

the evaluation of the trained ANN-module has been 

carried out with the obtained time domain voltage and 

current signals at bus 1. 

 

4.1.  Performance in Case Ground Associated Shunt 

Faults 

In case of unsymmetrical fault situations, FACTS 

devices provide equal three-phase compensation in 

each phase of the transmission line, consequentially 

healthy phases have overcompensation. This 

overcompensation of healthy phase increases the possi-

bility of the incorrect phase selection in the 

conventional distance and current based relaying 

scheme. For an example at time t = 0.255s, and fault 

resistance of 0 Ω phase to a ground fault has been sim-

ulated at near (3 km) from bus 1. Both the trained ANN 

modules are tested in parallel and operating time is 

calculated. Fig. 4 depicts the test result in case of an 

AG internal fault. Fig. 4(a) and 

 

Table 2. System parameter for testing set. 

Parameter Values  

Fault Type 

LG [AG, BG, CG] 

LLG [ABG, BCG, CAG] 

LL[AB, BC, CA] 

LLL[ABC, ABCG] 

Fault Inception Angle 

[Degree] 
0 - 360 (by step of 36) 

Fault Resistance [Ohm] 
0, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 100 

Fault Location [km] 
6-156 (by step of 6)                  

7-154 (by step of 7) 

UPFC References P 

[MW], Q [MVAr], V 

[p.u.] 

P = 1063; Q = 288; V = 1.04        

P = 600; Q = 60; V = 1.04 

STATCOM voltage 

reference [p.u.] 
1.05; 1.03 

SSSC voltage refeence 

[p.u.] 
 0.1; -0.08 
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Fig. 4. Performance of ANN module (Near end) (a) Current Signals (b) Voltage Signals (c) Fault detection (d) Fault 

classification. 

 

 
Fig. 5. Performance of ANN module (Far end) (a) Current Signals (b) Voltage Signals (c) Fault detection (d) Fault 

classification. 

 

Fig. 4 (b) illustrates the fundamental component of 

current and voltage signals during AG fault condition. 

It can be observed from Fig. 4(a) and Fig. 4(b) that the 

current signal in phase A is increased drastically, sim-

ultaneously the voltage signal in phase A reduces. Sud-

den changes in current and voltage signals during shunt 

fault conditions outcomes a large positive value of 

standard deviation.  It can be seen that ANN based fault 

detector module detected a fault within 5 ms for the 

fault associated near the relaying bus as shown in Fig.4 
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(c), simultaneously fault type is accurately classified as 

depicted in Fig 4(d). Fig. 4 enlightens for the fault de-

tection and classification performance of the ANN-

based scheme in case of fault near to the relaying loca-

tion (bus 1). In the case of fault near to remote terminal 

(bus 3) with high resistance (100 Ω), the performance 

of the proposed scheme is exemplified in Fig. 5. From 

Fig. 5(a) and Fig. 5(b) it is clearly depicted that current 

and voltage signals are different in nature from Fig. 

4(a) and Fig. 4(b) which leads the conventional dis-

tance relay to mal operate. However, in case of high 

resistance, fault case current signal is not significantly 

increased, compared to low resistance fault. Also, 

voltage signals are not much deviated during such 

condition. From Fig. 5(c) and Fig. 5(d), it can be clear-

ly observed that proposed scheme is able to detect the 

high resistance fault reliably and classify it correctly. 

     To validate the trained ANN module in different 

fault conditions, fault locations are randomly varied 

from bus 2 to bus 3, fault resistance varies from 0Ω-

100Ω, and fault inception angle (FIA) from 0̊-360̊. Re-

liability of the trained ANN is tested in terms of operat-

ing time, test result for a single line to ground (AG) 

fault are tabulated in Table 3. All the simulation studies 

have been performed in HP Z420 workstation with 4-

GB RAM and Intel(R) Xeon 3.6-GHz processor.  

 

 

Table 3. Fault detection time in case of AG fault with varying fault resistance and fault location. 

Fault loca-

tion/Fault Re-

sistance  

Fault detection time (in ms) 

0 Ω 10 Ω 20 Ω 30 Ω 40 Ω 50 Ω 60 Ω 70 Ω 80 Ω 90 Ω 100 Ω 

7 km 4.2 4.2 4.2 5.0 5.0 5.8 6.7 7.5 8.3 8.3 9.2 

14 km 4.2 4.2 5.0 5.0 5.8 5.8 6.7 7.5 8.3 9.2 9.2 

21 km 4.2 4.2 5.0 5.0 5.8 6.7 6.7 7.5 8.3 9.2 10.0 

28 km 4.2 4.2 5.0 5.0 5.8 6.7 7.5 8.3 8.3 9.2 10.0 

35 km 4.2 5.0 5.0 5.8 5.8 6.7 7.5 8.3 9.2 9.2 10.0 

42 km 4.2 5.0 5.0 5.8 5.8 6.7 7.5 8.3 9.2 10.0 10.0 

49 km 4.2 5.0 5.0 5.8 6.7 7.5 7.5 8.3 9.2 10.0 10.8 

56 km 5.0 5.0 5.8 5.8 6.7 7.5 8.3 9.2 9.2 10.0 10.8 

63 km 5.0 5.0 5.8 5.8 6.7 7.5 8.3 9.2 10.0 10.0 10.8 

70 km 5.0 5.0 5.8 6.7 6.7 7.5 8.3 9.2 10.0 10.8 10.8 

77 km 5.0 5.0 5.8 6.7 7.5 8.3 9.2 9.2 10.0 10.8 11.7 

84 km 5.0 5.0 5.8 6.7 7.5 8.3 9.2 10.0 10.8 10.8 11.7 

91 km 5.0 5.8 5.8 6.7 7.5 8.3 9.2 10.0 10.8 10.8 11.7 

98 km 5.0 5.8 6.7 6.7 7.5 8.3 9.2 10.0 10.8 10.8 11.7 

105 km 5.0 5.8 6.7 7.5 8.3 9.2 10.0 10.8 10.8 11.7 11.7 

112 km 5.0 5.8 6.7 7.5 8.3 9.2 10.0 10.8 11.7 12.5 13.3 

119 km 5.0 5.8 6.7 7.5 8.3 9.2 10.0 10.8 11.7 12.5 13.3 

126 km 5.0 5.8 6.7 8.3 9.2 10.0 10.8 11.7 12.5 13.3 14.2 

133 km 5.8 5.8 6.7 8.3 9.2 10.0 10.8 11.7 12.5 13.3 14.2 

140 km 5.8 5.8 6.7 8.3 9.2 10.0 10.8 11.7 13.3 14.2 15.0 

147 km 5.8 5.8 7.5 8.3 9.2 10.8 11.7 12.5 13.3 14.2 15.8 

154 km 5.8 5.8 7.5 8.3 10.0 10.8 11.7 12.5 13.3 15.0 15.8 
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Table 3 depicts that fault detection time is less than 

half cycle of fundamental frequency in most of the test 

cases whereas it can also be observed that fault detec-

tion time is within one fundamental frequency cycle in 

case of high resistance faults,   which demonstrate the 

ability to fast detection of internal fault including high 

resistance fault. 

 

4.2.  Performance in case of Double Phase to 

Ground (LLG) and Double Phase Fault (LL) 

To evaluate the performance of the proposed 

scheme for discrimination between LLG and LL fault, 

huge amount of test cases have been tested. For an ex-

ample, a CA and CAG fault have been simulated at 157 

km from bus 1 with the fault resistance and FIA of 

100Ω and 108°, respectively. Fig. 6 graphically illus-

trates the test result, from Fig. 6(a) it could be seen that 

LL fault has been detected, meanwhile, LL fault has 

been classified successfully as depicted in Fig. 6(b).  

Fig. 6(b) and Fig. 6(d) clearly differentiate between CA 

and CAG fault. 

Test results illustrating fault detection time for ABG 

fault with the fixed fault resistance of 20Ω and varying 

the fault location and fault inception angle are tabulated 

in Table 4. From Table 4 it can be seen that fault detec-

tion is less than half cycle of fundamental frequency for 

most of the test cases, which demonstrated that sensi-

tivity of the proposed scheme is not much deviated 

with the variation of fault inception angle. 

 

4.3.  Performance in the Presence of CT and CCVT  

To analyse the performance of proposed scheme in 

case of signal distortion in presence of CT and CCVT, 

introduced error, each phase of the measuring point are 

connected with CT and CCVT on per phase basis at bus 

1 of the test system as shown in Fig. 1. However, to 

show the error produced by this instrument, no com-

pensation is used to reduce it. The CT’s are rated 

2000A/5A, 30 VA. When a fault occurs at zero fault 

inception angle; the current contains a high value of dc 

offset, this causes saturation of the CT and thus the 

current in the secondary of CT reduced considerably. 

Due to the presence of dc offset current in the measur-

ing signals, instruments produce magnitude and phase 

angle error at the relay measuring point, consequential-

ly relay will mal-operate in such situation. Fig.7 (a,b) 

shows that voltage and current signals are in the prima-

ry and secondary sides of the instrument transformer. 

 

 
Fig. 6. Performance of ANN module (a) Fault detection (CA) (b) Fault classification (CA) (c) Fault detection (CAG)  

(d) Fault classification(CAG). 
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Table 4. Fault detection time in case of ABG fault with varying fault inception angle and fault location. 

Fault location 

/Fault Inception 

Angle 

Fault detection time (in ms) 

0° 36° 72° 108° 144° 180° 216° 252° 288° 324° 360° 

6 km 5.0 4.1 4.9 7.5 5.8 4.9 4.2 5.8 7.8 5.8 5.0 

12 km 5.0 4.1 5.9 7.5 6.6 4.9 4.2 5.8 7.8 5.8 5.0 

24 km 5.0 5.0 5.9 7.5 6.6 4.9 5.0 5.8 7.8 5.8 5.8 

36 km 5.8 5.0 5.9 7.5 6.6 5.8 5.0 6.6 7.8 5.8 5.8 

48 km 5.8 5.0 6.7 7.5 6.6 5.8 5.0 6.6 7.8 5.8 5.8 

54 km 5.8 5.0 6.7 8.3 6.6 5.8 5.0 6.6 8.3 5.8 5.8 

60 km 5.8 5.8 6.7 8.3 6.6 5.8 5.0 6.6 8.3 5.8 5.8 

66 km 5.8 5.8 6.7 8.3 7.5 5.8 5.8 6.6 8.3 7.5 6.6 

72 km 5.8 5.8 6.7 8.3 7.5 5.8 5.8 7.5 8.3 7.5 6.6 

78 km 5.8 5.8 7.5 8.3 7.5 5.8 5.8 7.5 8.3 7.5 6.6 

84 km 6.7 5.8 7.5 8.3 7.5 6.6 5.8 7.5 8.3 7.5 6.6 

96 km 6.7 5.8 7.5 8.3 7.5 6.6 5.8 7.5 8.3 7.5 6.6 

102 km 6.7 6.6 7.5 8.3 7.5 6.6 5.8 7.5 8.3 7.5 6.6 

114 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 6.6 

120 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 7.5 

126 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 7.5 

132 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 7.5 

138 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 7.5 

144 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 7.5 

150 km 6.7 6.6 7.5 8.3 7.5 6.6 6.7 7.5 8.3 7.5 7.5 

156 km 6.7 7.5 7.5 8.3 7.5 6.6 7.5 7.5 8.3 7.5 7.5 

 
Fig. 7. Performance of the ANN module during CT and CCVT error. (a) Three phase voltage waveforms during an 

ABG fault at 0.25s with and without CCVT transients at bus 1.(c) Fault detection (d) Fault classification. 
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From Fig. 7 (a, b) it is clearly observed that the 

presence of the dc component in the primary fault sig-

nal makes the secondary side measured signals distort-

ed. Consequently, measuring error introduces false 

operation of the relaying algorithms. The trained ANN 

has been tested in such situations and found that it de-

tects and classify the fault successfully as shown in Fig. 

7 (c) and 7 (d). 

 

4.4.  Effect of Different Compensation Level 

Whenever the fault occurred in the transmission 

line, the bus voltage changes suddenly and it affects the 

line flow. UPFC controller is designed to respond in 

case of measuring quantity changes from its reference 

quantity set by the utility. During fault condition meas-

uring quantity changes drastically, consequently, it will 

affect the relaying measuring signals. When both 

STATCOM and SSSC operate together, the UPFC op-

erates as a complete device and its function is to main-

tain bus voltage and regulate the power flow in the 

transmission line. Voltage and current signals received 

at relaying location are mostly influenced by the UPFC 

mode of operation as compared to standalone STAT-

COM and SSSC mode. The relaying algorithms also 

influenced with the different compensation levels or 

setting of the FACTS devices. Depending upon the 

different setting of the reference value of FACTS de-

vice it injects or absorbs the reactive power into the 

system which in turn deviates the characteristics of the 

voltage and current signals at relaying point. In this 

context testing signals have been generated in case of 

different compensation level as shown in Table 2, 

while the training patterns remain same as shown in 

Table 1.Obtained testing patterns have been tested with 

the trained ANN modules and outcome of test results 

proves that proposed scheme is not affected with the 

variation of compensation level. 

 

4.5.  Effect of Different Mode of Operation 

UPFC has other possible modes, in this paper, the 

study has been concentrated on two individual modes 

of operation. In these two modes both the converters 

operate in the reactive power domain. The shunt con-

verter operates as a standalone STATCOM and the 

series converter as SSSC. Under such condition, neither 

converter is capable of absorbing or generating real 

power so that only operation in the reactive power do-

main is possible [9]. In individual STATCOM and 

SSSC mode of operation, UPFC behaves as in particu-

lar shunt and series FACTS device respectively and the 

performance of the proposed protection scheme is dis-

cussed hereunder. 

 

 

 

 

4.5.1. STATCOM mode of operation 

When UPFC operates on STATCOM mode, it regu-

lates the bus voltage at the point of connection. When-

ever any shunt fault occurs, the bus voltage is altered. 

Hence, the associated shunt controller attempts to bring 

it to its reference value. To evaluate the performance 

during such conditions new testing sets with STAT-

COM compensator is generated. The corresponding 

conditions of new testing patterns are tabled in Table 2. 

Whereas the trained model is kept at before conditions 

as shown in Table 1. The trained model has been tested 

with the variation of different fault parameters. For 

example, a CG fault has been simulated in the test sys-

tem with the variation of fault resistance and fault loca-

tion.  Evaluated test results with a STATCOM voltage 

reference value of 1.05pu are depicted in Table 5. The 

fault detection time in case of STATCOM mode of 

operation is within the one fundamental frequency cy-

cle for all the test cases. 

 

4.5.2. SSSC mode of operation 

SSSC mode of operations provides voltage regula-

tions by controlling effective line impedance. In this 

mode of operation, measuring signals are affected due 

to fast control action of the SSSC controller. To vali-

date the performance of the proposed scheme during 

SSSC mode of operation, several fault simulations have 

been performed with the variation of fault location and 

fault resistance. Performance outcomes are tabulated in 

Table 6 that exemplifies adaptability of the proposed 

scheme, as fault detection time is less than half funda-

mental frequency cycle for most of the cases even for 

high resistance, fault detection time is less than one 

fundamental frequency cycle. 
Test results in time domain during STATCOM and 

SSSC mode of operation is exemplified in Fig. 8. A CG 

and CAG fault was simulated at 49 km with 30Ω fault 

resistance and 108° FIA from bus 2 in both the STAT-

COM and SSSC operating mode. Fig. 8 (a, b) shows 

fault detection and classification results during 

STATCOM mode of operation, whereas Fig. 8 (c, d) 

depicts performance of fault detection and classifica-

tion scheme during SSSC mode of operation.  From 

Fig. 8 it can be observed that trained ANN modules for 

fault detection and classification show higher reliability 

during a different mode of operation. However, training 

patterns are different from the testing pattern. 
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Table 5. Fault detection time in case of CG fault with varying fault resistance and fault location (STATCOM). 

Fault location 

/Fault Resistance  

Fault detection time (in ms) 

0 Ω 10 Ω 20 Ω 30 Ω 40 Ω 50 Ω 60 Ω 70 Ω 80 Ω 90 Ω 100 Ω 

7 km 5.8 6.7 6.7 7.5 7.5 7.5 8.3 9.2 9.2 10.0 10.8 

14 km 5.8 6.7 6.7 7.5 7.5 8.3 8.3 9.2 10.0 10.0 10.8 

21 km 6.7 6.7 6.7 7.5 7.5 8.3 8.3 9.2 10.0 10.0 10.8 

28 km 6.7 6.7 6.7 7.5 7.5 8.3 8.3 9.2 10.0 10.8 10.8 

35 km 6.7 6.7 6.7 7.5 7.5 8.3 9.2 9.2 10.0 10.8 10.8 

42 km 6.7 6.7 6.7 7.5 7.5 8.3 9.2 9.2 10.0 10.8 10.8 

49 km 6.7 6.7 6.7 7.5 7.5 8.3 9.2 10.0 10.0 10.8 11.7 

56 km 6.7 6.7 6.7 7.5 7.5 8.3 9.2 10.0 10.0 10.8 11.7 

63 km 6.7 6.7 6.7 7.5 8.3 8.3 9.2 10.0 10.8 11.7 11.7 

70 km 6.7 6.7 6.7 7.5 8.3 8.3 9.2 10.0 10.8 11.7 12.5 

77 km 6.7 6.7 6.7 7.5 8.3 8.3 9.2 10.0 10.8 11.7 12.5 

84 km 6.7 6.7 6.7 7.5 8.3 9.2 9.2 10.0 11.7 11.7 12.5 

91 km 6.7 6.7 6.7 7.5 8.3 9.2 10.0 10.8 11.7 12.5 12.5 

98 km 6.7 6.7 6.7 7.5 8.3 9.2 10.0 10.8 11.7 12.5 12.5 

105 km 6.7 6.7 6.7 7.5 8.3 9.2 10.0 10.8 11.7 12.5 13.3 

112 km 5.8 6.7 6.7 7.5 8.3 9.2 10.8 11.7 11.7 12.5 13.3 

119 km 5.8 6.7 6.7 7.5 8.3 10.0 11.7 11.7 12.5 13.3 13.3 

126 km 5.8 6.7 6.7 7.5 8.3 10.0 11.7 11.7 12.5 13.3 14.2 

133 km 5.8 6.7 6.7 7.5 9.2 10.0 11.7 11.7 12.5 13.3 14.2 

140 km 5.8 5.8 6.7 7.5 9.2 10.0 11.7 12.5 13.3 14.2 14.2 

147 km 5.8 5.8 6.7 7.5 9.2 10.0 11.7 12.5 13.3 14.2 15.0 

154 km 5.8 5.8 6.7 7.5 9.2 10.8 11.7 12.5 13.3 14.2 15.8 

 

 
Fig. 8. Performance of ANN module during SSSC and STATCOM mode of operation (a) Fault detection (CG) (b) 

Fault classification (CG) (c) Fault detection (CAG)  (d) Fault classification(CAG). 
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Table 6. Fault detection time in case of ACG fault with varying fault resistance and fault location (SSSC). 

Fault location 

/Fault Resistance  

Fault detection time (in ms) 

0 Ω 10 Ω 20 Ω 30 Ω 40 Ω 50 Ω 60 Ω 70 Ω 80 Ω 90 Ω 100 Ω 

7 km 3.3 4.2 4.2 4.2 5.0 5.0 5.0 5.8 5.8 6.7 6.7 

14 km 4.2 4.2 4.2 4.2 5.0 5.0 5.8 5.8 6.7 6.7 7.5 

21 km 4.2 4.2 4.2 5.0 5.0 5.0 5.8 5.8 6.7 6.7 7.5 

28 km 4.2 4.2 4.2 5.0 5.0 5.8 5.8 5.8 6.7 7.5 7.5 

35 km 4.2 4.2 5.0 5.0 5.0 5.8 5.8 6.7 6.7 7.5 7.5 

42 km 4.2 4.2 5.0 5.0 5.0 5.8 5.8 6.7 6.7 7.5 8.3 

49 km 4.2 4.2 5.0 5.0 5.8 5.8 6.7 6.7 7.5 7.5 8.3 

56 km 4.2 5.0 5.0 5.0 5.8 5.8 6.7 6.7 7.5 7.5 8.3 

63 km 4.2 5.0 5.0 5.0 5.8 5.8 6.7 6.7 7.5 8.3 8.3 

70 km 4.2 5.0 5.0 5.8 5.8 6.7 6.7 7.5 7.5 8.3 9.2 

77 km 5.0 5.0 5.0 5.8 5.8 6.7 6.7 7.5 8.3 8.3 9.2 

84 km 5.0 5.0 5.0 5.8 5.8 6.7 7.5 7.5 8.3 8.3 9.2 

91 km 5.0 5.0 5.8 5.8 6.7 6.7 7.5 7.5 8.3 9.2 9.2 

98 km 5.0 5.0 5.8 5.8 6.7 6.7 7.5 8.3 8.3 9.2 10.0 

105 km 5.0 5.0 5.8 5.8 6.7 7.5 7.5 8.3 9.2 9.2 10.0 

112 km 5.0 5.0 5.8 5.8 6.7 7.5 7.5 8.3 9.2 10.0 10.0 

119 km 5.0 5.0 5.8 6.7 6.7 7.5 8.3 8.3 9.2 10.0 10.8 

126 km 5.0 5.8 5.8 6.7 6.7 7.5 8.3 9.2 9.2 10.0 10.8 

133 km 5.0  5.8 5.8 6.7 7.5 7.5 8.3 9.2 10.0 10.8 10.8 

140 km 5.0 5.8 5.8 6.7 7.5 8.3 8.3 9.2 10.0 10.8 11.7 

147 km 5.0 5.8 5.8 6.7 7.5 8.3 9.2 10.0 10.0 10.8 11.7 

154 km 5.0 5.8 5.8 6.7 7.5 8.3 9.2 10.0 10.8 11.7 12.5 

 

5. CONCLUSION  

ANN-based Fault detection and classification 

scheme is presented in this paper for transmission line 

compensated with UPFC device. The advantage of the 

proposed scheme over conventional scheme is that it 

has a reach setting up to 99 % of the line length. It has 

the ability to classify all the shunt fault types accurate-

ly. Rigorous simulation studies bring-outs its superiori-

ty in case of large variation in different fault type, fault 

inception angle, fault resistance, CT saturation and 

CCVT transients. Reliability of the scheme is validated 

in the different mode of the UPFC operation, various 

compensation levels or reference values. Moreover, in 

all the simulation cases, fault classification accuracy is  

98.9%. 
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