[1] K. Subramani and W. Ahmed, Emerging nanotechnologies in dentistry: Processes, materials and applications. William Andrew, 2011.
[2] K. E. Petersen, “Petersen, Kurt E. "Dynamic micromechanics on silicon: Techniques and devices,” IEEE Trans. Electron Devices, vol. 25, no. 10, pp. 1241–1250, 1978.
[3] L. Csepregi, “Micromechanics: A silicon microfabrication technology,” Microelectron. Eng., vol. 3, no. 1–4, pp. 221–234, 1985.
[4] N. M. Elman and U. M. Upadhyay, “Medical Applications of Implantable Drug Delivery Microdevices Based on MEMS (Micro-Electro-Mechanical-Systems),” Curr. Pharm. Biotechnol., vol. 11, no. 4, pp. 398–406, 2010.
[5] W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct., vol. 6, no. 5, p. 530, 1997.
[6] O. Brand, I. Dufour, H. Stephen, and J. Fabien, Resonant MEMS: Fundamentals, Implementation, and Application. John Wiley & Sons, 2015.
[7] S. K. Park and X. L. Gao, “Bernoulli-Euler beam model based on a modified couple stress theory,” J. Micromechanics Microengineering, vol. 16, no. 11, pp. 2355–2359, 2006.
[8] A. Arbind and J. N. Reddy, “Nonlinear analysis of functionally graded microstructure-dependent beams,” Compos. Struct., vol. 98, pp. 272–281, 2013.
[9] H. M. Ma, X. L. Gao, and J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3379–3391, 2008.
[10] B. Akgöz and Ö. Civalek, “Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory,” Compos. Struct., vol. 98, pp. 314–322, 2013.
[11] R. Vatankhah, A. Najafi, H. Salarieh, and A. Alasty, “Boundary stabilization of non-classical micro-scale beams,” Appl. Math. Model., vol. 37, no. 20–21, pp. 8709–8724, 2013.
[12] M. K. Kwak, S. Heo, and M. Jeong, “Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators,” J. Sound Vib., vol. 321, no. 3–5, pp. 510–524, 2009.
[13] V. R. Sonti and J. D. Jones, “Active vibration control of thin cylindrical shells using piezo-electric actuators,” Proc. Conf. Recent Adv. Act. Control Sound Vib. Virginia Polytech. Inst. State Univ. Blacksburg, VA, pp. 21–38, 1991.
[14] H. C. Lester and S. Lefebvre, “Piezoelectric Actuator Models for Active Sound and Vibration Control of Cylinders,” J. Intell. Mater. Syst. Struct., vol. 4, no. 3, pp. 295–306, 1993.
[15] R. L. Clark and C. R. Fuller, “Active Control of Structurally Radiated Sound from an Enclosed Finite Cylinder,” J. Intell. Mater. Syst. Struct., vol. 5, no. 3, pp. 379–391, 1994.
[16] Y. Yildiz, A. Sabanovic, and K. Abidi, “Sliding-Mode Neuro-Controller for Uncertain Systems,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1676–1685, 2007.
[17] H. Xu, M. D. Mirmirani, and P. A. Ioannou, “Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle,” J. Guid. Control. Dyn., vol. 27, no. 5, p. 829–838., 2004.
[18] A. Shahraz and R. Bozorgmehry Boozarjomehry, “A fuzzy sliding mode control approach for nonlinear chemical processes,” Control Eng. Pract., vol. 17, no. 5, pp. 541–550, 2009.
[19] H. Q. T. N. Shin, Jin-Ho, and W.-H. Kim, “Fuzzy sliding mode control for a robot manipulator,” vArtificial Life Robot., vol. 13, no. 1, pp. 124–128, 2008.
[20] S. K. Park and X. Gao, “Bernoulli – Euler beam model based on a,” vol. 2355, pp. 0–5, 2006.
[21] Lai, W. M., Rubin, D. H., Krempl, E., & Rubin, D. (2009). Introduction to continuum mechanics. Butterworth-Heinemann.
[22] A. M. Dehrouyeh-Semnani, M. Nikkhah-Bahrami, and M. R. H. Yazdi, “On nonlinear vibrations of micropipes conveying fluid,” Int. J. Eng. Sci., vol. 117, pp. 20–33, 2017.