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ABSTRACT: 

Optimization algorithms inspired by nature as intelligent optimization methods with classical methods have 

demonstrated significant success. Some of these techniques are genetic algorithms, inspired by biological evolution of 

humans and other creatures) ant colony optimization and simulated annealing method (inspired by the refrigeration 

process metals). The methods for solving optimization problems in many different areas such as determining the optimal 

course of their work, designing optimal control for industrial processes, solving industrial engineering major issues such 

as the optimal layout design for industrial units, problem solving, and queuing in the design of intelligent agents have 

been used. This paper introduces a new algorithm for optimization, which is not a natural phenomenon, but a 

phenomenon inspired teaching-human. It is entitled Education System algorithm (ESA).   Results demonstrate this 

method is better than other method in this area.  
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1. INTRODUCTION 

Metaheuristic algorithms are precise algorithms 

employed to find the optimal solution. Methods and 

optimization algorithms are classified into two 

categories: exact algorithms and approximation 

algorithms. Approximation algorithms are able to find 

good solutions (near optimal) within a short time for 

hard optimization problems. Approximation algorithms 

are classified into three categories: heuristic, 

metaheuristic and hyper-heuristic algorithms, which are 

parts of a package. The main problem with heuristic 

algorithms is placing them into local optimization, and 

their inability to use the various issues. Metaheuristic 

algorithms solve the problems represented as heuristic 

algorithms. The meta-heuristic algorithms and 

optimization algorithms are approximate one of the 

strategies that have been out of local optimum and 

applicable for a wide range of related issues. Various 

classes of these types of algorithms have been developed 

in the recent decades [4]. 

There are different criteria for categorizing 

metaheuristic algorithms: 

1. single-solution-based and population-based: 

algorithms based on a solution in the investigation of a 

solution during the process of change, while in the 

population during search-based algorithms, some 

solutions are considered. 

 2. Inspired by nature and inspired without nature: a 

large number of metaheuristic algorithms are inspired by 

nature, but some metaheuristic algorithms may not have 

been inspired by nature. 

 3. Memory based and without memory based: Some 

metaheuristic algorithms suffer lack of memory, in the 

sense that, these algorithms do not use the information 

obtained during the search (for example, simulated 

annealing). However, in some metaheuristic search, 

algorithms such as prohibited algorithms are used based 

on memory. The memory stores the information 

obtained during the research. 

 4. Deterministic and probable: some metaheuristic 

algorithms use deterministic decisions for solving the 

problems [5]. However, metaheuristic algorithms may 

simulate annealing where a set of rules might be used 

during this research [6]. 

Almost all metaheuristics share the following 

characteristics: they are nature-inspired (based on some 

principles from physics, biology, and ethology); they 

make use of stochastic components (involving random 

variables); they do not use the gradient or Hessian matrix 
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of the objective function; they have several parameters 

which should fit the presented problem [7, 8]. 

One of the interesting branches of the population-

based meta-heuristics is Swarm Intelligence (SI). SI is 

the emergent collective intelligence of groups of simple 

agents. The inspirations of SI techniques originate 

mostly from natural colonies, flock, herds, and schools. 

Some of the most popular SI techniques include ACO, 

PSO, and Artificial Bee Colony (ABC)[8].  

Regardless of the differences between the meta-

heuristics, a common feature is the division of the search 

process into two phases: exploration and exploitation. 

The exploration phase refers to the process of 

investigating the promising area(s) of the search space 

as broadly as possible. An algorithm needs to have 

stochastic operators to randomly and globally search the 

search space in order to support this phase. On the other 

hand, exploitation refers to the local search capability 

around the promising regions obtained in the exploration 

phase. Finding a proper balance between these two 

phases is considered a challenging task due to the 

stochastic nature of meta-heuristics. This paper proposes 

a new SI technique inspired by educational systems. 

 

2. PROPOSED ALGORITHM 

This method is based on the educational system and 

it is designed for universities or the private sectors. At 

first, some students study in this system, classified into 

several classes.  Professors and assistant professors are 

training individuals. Professors and assistant professors 

are the best choice. During the test, after training the 

instructor and assistant professor, the best choices of 

each class are selected. In the next step, leaders of 

academics go to the next step. In this stage the, best 

teacher of all teachers will be selected to instruct other 

teachers. Again, during the exam for answering the first 

stage, the best teacher will be introduced. The process to 

achieve the best results as a final condition is 

metaheuristic algorithms. The flowchart of this 

algorithm is presented in Fig. 1 in which the 

Supplementary Description can be observed. 

 

Algorithm: 

1. Select students, professors, assistant 

professors, and allocate students to professors and 

assistant professors. 

Some random points in the research space as well as 

the primary classes should be selected. Initially, specify 

a cost function and calculate the cost of selected 

points. Costs of points (students) are arranged in an 

ascending order. If we want to build n class, initially we 

should select the best n of points as n professors of class. 

It is followed by the best n so the second points serve as 

n assistant professors. The rest of students claim 

approximately equal size in each class.  

1. Educate students by professor and assistant 

professor 

     In this stage, the professor and assistant professor 

starts teaching their students. This means that these 

students will be allocated to the professors and their 

assistants. 

   

xnew =xold+α.r1(t1-xold)+β.r2(t2-xold)     α>β              (1) 

 

The variable of t1 is professor, t2 is assistance 

professors, xold represents the current position of student, 

and xnew denotes the new position of student. α and β are 

two positive parameters referring to the rate of teaching 

professor and assistant professor respectively. It is clear 

that the rate of professor teaching is more than that of the 

assistant professor. The value of these two parameters 

lies between one and two. In this stage, some lazy 

students do not move toward their professors and 

assistant professors. Therefore, a random value is 

assigned to these students. It is same as motivation in 

genetic algorithm. 

 

3. REPLACEMENT 

In this stage, all students, their professors and 

assistant professors are evaluated by the cost function. 

Then, if there are more best students than their 

professors and assistant professors, they should be 

replaced.  

 

4. Find the best class 

In this stage, the best class and consequently the best 

professors are found. Calculation of the value of the 

objective function for a class is as follows. 

 

FClass=Fprofessor+£1Fassistanceprofessor+£2mean(Fstud

ents)                                                                               (2) 

 

The experiment reveals that the best value for £1 and 

£2 lies between 0 and 0.2. Also the value of £1should be 

larger than £2. 

 

5. Teaching the best professor to other 

professors 

The best professor presents a seminar to the other 

professors. This means that other professors should 

move to the best professor. However, since professors 

hardly accept the problem, they move to the place of the 

best professors.  

 

ynew  =yold+r.(t3-yold)*  cos (θ)                                 (3) 

 

The variable of t3 is the position of the best professor 

and y represents the current position of every professors. 

Also, ynew is the new position of professors and θ is the 
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place of each professor in which they are the best 

professor calculated randomly. 

 

6. Select best candidate 
In this stage the best candidate will be reported. If 

conditions be satisfied, the algorithm can be stop and go. 

forward to step 7, otherwise it go to the second step and 

the next iteration begins. 

 

7. End 

The flowchart of this algorithm is shown in Fig. 1. 

 

 
 

Fig. 1. Flowchart of education system algorithm. 

 

Parameters 

The parameter α specifies the impact factor of 

professor and β parameter determines the impact factor 

of assistant professor. It is clear that the impact factor 

of professor should be larger than impact factor of 

assistant professor. These two parameters should be 

between 0 and 2. These should be multiplied by a 

number between 0 and 1 based on Gaussian 

distribution. Experiments reveal that 0.5 is suitable for 

β, and 2 is suitable for α. The £1 and £2 were used for 

calculating the best class; £1 reveals the role of 

assistance professor and £2 refers to the role of students. 

The value of £1 should be lower than £2. Experiments 

reveal that 0.1 is suitable for £1 and 0.05 is suitable for 

£2. Also, in this algorithm, there are some students and 

professors who do not obey their teachers and do not 

Make selection of students, professors and assistant professors 

Start 

Allocate students to professors and assistance professors 

Educate professors and ass. Professors to the students 

If students are better than their 

professors 

Replace better students   

Select best class and best professor 

Teaching best professor to other professors 

Select best candidate 

If condition satisfied 

End 
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move toward to their teachers.  The percentage of these 

students and professors is approximately five. This 

process is the same as motivation in genetic algorithm. 

 

3. EXPERIMENTS  

In this section, the ESA algorithm is benchmarked 

on 23 bench-mark functions. These 23 benchmark 

functions are the classical functions utilized by many 

researchers [9-14]. Despite the simplicity, we have 

chosen these test functions to be able to compare our 

results to those of the current meta-heuristics. These 

benchmark functions are listed in Tables 1–3 where 

Dim represents the dimension of the function, Range is 

the boundary of the function’s search space, and fmin is 

the optimum. The shapes of these test functions are 

illustrated in Figures 2-4. Generally speaking, the 

benchmark functions used are minimization functions 

and can be divided into three groups: unimodal, 

multimodal, and fixed-dimension multimodal 

functions. Note that a detailed description of the 

composite benchmark functions is available in the CEC 

2005 technical report [17]. 

The ESA algorithm was run 30 times on each 

benchmark function. The statistical results (average and 

standard deviation) are reported in Tables 4–6. For 

verifying the results, the ESA algorithm is compared to 

PSO [18] as an SI-based technique and GSA [19] as a 

physics-based algorithm. In addition, the ESA 

algorithm is compared with three EAs: DE [20], fast 

evolutionary programing (FEP)[21], and gray wolf 

optimization (GWO) [22]. And, three TLBO, ES, ICA 

algorithms have been tested[23,24,25]. 

According to the results of Table 4, ESA is able to 

provide very competitive results. This algorithm 

outperforms all others in F1, F2, and F7. Note that the 

unimodal functions are suitable for benchmarking 

operation. Therefore, these results indicate the superior 

performance of ESA in terms of operating the optimum. 

This is due to the proposed exploitation operators 

previously discussed. 

In contrast to the unimodal functions, multimodal 

functions have many local optima with the number 

increasing exponentially with dimension. This makes 

them suitable for benchmarking the operability of an 

algorithm. According to the results of Tables 6 and 7, 

ESA is also able to provide very competitive results on 

the multimodal benchmark functions. This algorithm 

outperforms GWO, PSO, and GSA on the majority of 

the multimodal functions. Further, ESA shows very 

competitive results compared to DE and FEP and 

outperforms them occasionally. These results suggest 

that the ESA algorithm is advantageous in terms of 

operation. 

 

Table 1. Unimodal benchmark function. 

𝒇𝒎𝒊𝒏 Rang Dim Function 

0 [-100, 100] 30 𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1   

0 [-10, 10] 30 𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|𝑛
𝑖=1

𝑛
𝑖=1   

0 [-100, 100] 30 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗
𝑖
𝑗−1 )

2𝑛
𝑖=1   

0 [-100, 100] 30 𝑓4(𝑥) = max
𝑖

{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛}  

0 [-30, 30] 30 𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]𝑛−1

𝑖=1   

0 [-100, 100] 30 𝑓6(𝑥) = ∑ ([𝑥𝑖 + 0.5])2𝑛
𝑖=1   

0 [-1.28, 1.28] 30 𝑓7(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1]𝑛

𝑖=1   

 

Table 2. Multimodel benchmark function. 

𝒇𝒎𝒊𝒏 Rang Dim Function 

-

418.9829*5  

[-500, 500] 30 𝑓8(𝑥) = ∑ 𝑥𝑖
 − 𝑥𝑖𝑠𝑖𝑛(√|𝑥𝑖|)𝑛

𝑖=1   

0 [-5.12, 5.12] 30 𝑓9(𝑥) = ∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]𝑛

𝑖=1   

0 [-32, 32] 30 
𝑓10(𝑥) = − 20𝑒𝑥𝑝 (−0.2√

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) − exp (

1

𝑛
∑ cos(2𝜋𝑥𝑖)𝑛

𝑖=1 ) +

20 + 𝑒  

0 [-600, 600] 30 𝑓11(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
) + 1𝑛

𝑖=1
𝑛
𝑖=1   
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0 [-50, 50] 30 𝑓12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1) +𝑛−1

𝑖=1

(𝑦𝑛 − 1)2]} + ∑ 𝑢(𝑥𝑖 , 10,100,4), 𝑦𝑖 = 1 +
𝑥𝑖+1

4
 , 𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) =𝑛

𝑖=1

{

𝑘(𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 > 𝑎
0,       − 𝑎 < 𝑥𝑖 < 𝑎
𝑘(−𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖<−𝑎

  

0 [-50, -50] 30 𝑓13(𝑥) = 0.1{𝑠𝑖𝑛2(3𝜋𝑥𝑖) + ∑ (𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] +𝑛
𝑖=1

(𝑥𝑛 − 1)2 [1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4)𝑛
𝑖=1   

 

Table 3. Fixed-dimension multimodal benchmark function. 

𝒇𝒎𝒊𝒏 Rang Dim Function 

1 [-65, 65] 2 

𝑓14(𝑥) = (
1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗
)

6
2
𝑖=1

25
𝑗=1 )

−1

  

0.00030 [-5, 5] 4 
𝑓15(𝑥) = ∑ [𝑎𝑖 −

𝑥1(𝑏𝑖
2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

]
2

11
𝑖=1   

-1.0316 [-5, 5] 2 𝑓16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6+𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  

0.398 [-5, 5] 2 𝑓17(𝑥) = (𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)2 + 10 (1 −

1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10  

3 [-2, 2] 2 𝑓18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 +

3𝑥2
2][30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 +
27𝑥2

2)]  
3.86- [1, 3] 3 𝑓19(𝑥) = − ∑ 𝑐𝑖exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)23

𝑗=1
4
𝑖=1  ) 

3.32- [0, 1] 6 𝑓20(𝑥) = − ∑ 𝑐𝑖exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)26
𝑗=1

4
𝑖=1 (  

10.1532- [0, 10] 4 𝑓21(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−15
𝑖=1   

10.4028- [0, 10] 4 𝑓22(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−17
𝑖=1   

10.5363- [0,10] 4 𝑓23(𝑥) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−110
𝑖=1   

 

Table 4. Results of unimodal benchmark functions. 

ICA ES TlBO FEP DE GSA GWO PSO ESA  Fun

. 

2.74e-

14 

6.70e-

19 

2.91e-

17 

0.0057 8.2e-14 2.53e-

16 

6.59e-

28 

0.00013

6 
1.4413e-

31 

Mean f1 

7.39e-

14 

1.9e-18 2.76e-

16 

0.0001

3 

5.9e-14 9.67e-

11 

6.34e-5 0.00020

2 
5.78e-5 Varianc

e 

8.42e-5 2.45e-

12 

8.39e-9 0.0081 1.5e-09 0.05565

5 

7.18e-

17 

0.04214

4 
2.3628e-

18 

Mean f2 

3.24e-2 4.13e-7 2.48e-5 0.0007

7 

9.9e-10 0.19407

4 

0.02901

4 

0.04542

1 
0.040345 Varianc

e 

7.16e-3 3.65e-5 6.71e-4 0.016 6.8e-11 896.534

7 

3.29e-

06 

70.1256

2 
5.2318e-

8 

Mean f3 

0.00032 0.0001

2 

5.17e-2 0.014 7.4e-11 318.955

9 

79.1495

8 

22.1192

4 
0.00019 Varianc

e 

0.00387 7.91e-7 0.00081 0.3 0 7.35487 5.61e-

07 

1.08648

1 
5.6631e-

10 

Mean f4 

0.00457 2.45e-6 0.00032

5 

0.5 0 1.74145

2 

1.31508

8 

0.31703

9 
0.002165

6 

Varianc

e 

0.07244 5.12e-

10 

1.09456

4 

5.06 0 67.5430

9 

26.8125

8 

96.7183

2 
0 Mean f5 

0.00644 2.37e-8 0.03523

3 

5.87 0 62.2253

4 

69.9049

9 

60.1155

9 
0 Varianc

e 
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Table 5. Results of multimodal benchmark functions. 

 

Table 6. Results of fixed-dimension multimodal benchmark functions 

4.25e-

13 

7.23e-

15 

9.45e-8 0 0 2.5e-16 0.81657

9 

0.00010

2 
3.0815e-

33 

Mean f6 

5.65e-

10 

4.19e-

12 

2.67e-5 0 0 1.74e-

16 

0.00012

6 

8.28e-

05 
2.04e-8 Varianc

e 

0.45767

7 

0.0095

3 

0.67564 0.1415 0.0046

3 

0.08944

1 

0.00221

3 

0.12285

4 
0.000620 Mean f7 

0.06742

3 

0.0456

6 

0.07359 0.3522 0.0012 0.04339 0.10028

6 

0.04495

7 
0.013455 Varianc

e 

ICA ES TlBO FEP DE GSA GWO PSO ESA  Fun

. 

-

7896.9

8 

-

4056.4

3 

-

5653.7

6 

-12554.5 -

1108

0 

-2821.07 -6123.1 -4841.29 -

3951.794

1 

Mean f8 

-

2235.1

6 

-

1243.4

6 

-

3276.3

7 

52.6 574.7 493.037

5 

-4087.44 1152.81

4 
-

2934.762

1 

Varianc

e 

0.0129

4 

4.67e-

10 

6.94e-

03 

0.046 69.2 25.9684

1 

0.31052

1 

46.7042

3 
1.1369e-

13 

Mean f9 

0.0028

4 

2.49e-

06 

0.0082

9 

0.012 38.8 7.47006

8 

47.3561

2 

11.6293

8 
2.1234e-

13 

Varianc

e 

0.0043

2 

53e-12 0.0038

5 

0.018 9.7e-

08 

0.06208

7 

1.06e-13 0.27601

5 
2.931e-14 Mean f10 

0.0029

4 

25e-09 0.0003

4 

0.0021 4.2e-

08 

0.23628 0.07783

5 

0.50901 0.005476 Varianc

e 

0.5038

2 

0.0592

2 

0.2745

9 

0.016 0 27.7015

4 

0.00448

5 

0.00921

5 
0.002275

1 

Mean f11 

0.0284

3 

0.0035

4 

0.0043

4 

0.022 0 5.04034

3 

0.00665

9 

0.00772

4 
0.004822

4 

Varianc

e 

0.3928

8 

0.0639

2 

0.0348

5 

9.2e-6 7.9e-

15 

1.79961

7 

0.05343

8 

0.00691

7 
0.000206

5 

Mean f12 

0.0194

3 

0.0028

3 

0.0422

2 

3.6e-6 8e-15 0.95114 0.02073

4 

0.02630

1 
0.000345

6 

Varianc

e 

23e-05 84e-19 53e-07 0.00016 5.1e-

14 

8.89908

4 

0.65446

4 

0.00667

5 
3.0694e-

27 

Mean f13 

74e-03 42e-14 84e-05 0.00007

3 

4.8e-

14 

7.12624

1 

0.00447

4 

0.00890

7 
2.509e-27 Varianc

e 

ICA ES TlBO FEP DE GSA GWO PSO ESA  Fun

. 

2.90326
5 

3.86262

7 

4.74350

3 

1.22 0.998004 5.85983

8 

4.04249

3 

3.62716

8 
2.67460

1 

Mean f14 

1.88595
9 

2.53704

8 

3.19606

4 

0.56 3.3e-16 3.83129

9 

4.25279

9 

2.56082
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Fig. 2. Search space of unimodal test functions. 
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Fig. 3. Search space in multimodal test functions. 

 

 
Fig. 4. Search space in fixed-dimension multimodal test functions. 
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Difference of Evolutionary Strategy Algorithm with 

Educational System-Based Optimization Algorithm 

 In the educational system-based algorithm, the 

motion operator of the members is used to the best 

of them, which is not in the evolutionary strategy 

algorithm. 

 An evolutionary strategy, which is a family of 

evolutionary algorithms, has junction and 

intersection operators that are inherently different 

with the operators of the training algorithm. 

 The mutant algorithm proposed by the algorithm is 

different from the evolutionary strategy algorithm. 

 In the evolutionary strategy algorithm, the 

parameters of the algorithm are a part of the 

chromosome, but not in the proposed algorithm. 

 In an evolutionary strategy, a jump operator is used, 

in which the size of the steps is set as part of the 

candidate solution, while such an operator does not 

exist in the proposed algorithm. 

 

Difference of colonial competition algorithm with 

educational system-based optimization algorithm 

• The difference between the proposed algorithm and 

ICA's colonial competition algorithm is that in the 

colonial competition algorithm, data is divided into 

several categories that are called a country, but 

ultimately these countries are all divided into one 

country. If the number of batches is fixed in the 

proposed algorithm. 

• The mutation operator in the colonial competition 

algorithm is completely different from the proposed 

algorithm. 

• Operator moving toward the goal in the colonial 

competition algorithm is completely different from 

the proposed algorithm. 

 

Differentiation of TLBO algorithm with training-based 

optimization algorithm 

• The TLBO algorithm is based on a class and a 

master. While the proposed algorithm is based on an 

educational system, several classes have master and 

teacher support. 

• In addition to this, the method of mutation in the 

proposed algorithm completely differs from similar 

algorithms. 

• The TLBO algorithm is different from the proposed 

algorithm, as the students move towards the 

difference between students' average 

• The performance of students in changing their 

position in the TLBO algorithm is quite different 

from that of the proposed algorithm. 

 

The reason for the convergence of the algorithm and 

finding the global extension 

In this algorithm, in each student's class, they move 

toward the professor and the professor. The professor is 

the best class member, but the help professor is not the 

best class member and this does not cause early 

convergence. Also, having a lazy student as a mutation 

operator is also due to the cause. 

 

4. CONCLUSION 

The method mentioned in this article is a new 

metaheuristic algorithm for optimization problems, 

which is based on an educational system. This algorithm 

showed a better performance than the other 

algorithms.  In future studies, we will intend to offer 

another model of the algorithm. Also, solving real 

problems with this algorithm suggested the best 

performance of this algorithm. This algorithm can 

improve by changing some parameters such as the 

number of classes, number of professors, and number of 

assistant professors.   
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