
Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

61

Load Balancing based on Statistical Model in Expert Cloud

Shiva Razzaghzadeh1, Ahmad Habibizad Navin2*, Amir Masoud Rahmani1, Mehdi Hosseinzadeh1

1- Department of Computer engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Email: shiva.razzaghzadeh@srbiau.ac.ir

Email: rahmani@srbiau.ac.ir

Email: hosseinzadeh@srbiau.ac.ir

2- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Email: a.habibizad@srbiau.ac.ir (Corresponding author)

Received: January 2019 Revised: March 2019 Accepted: June 2019

ABSTRACT:

Expert Cloud is a new class of cloud computing which enables the users to achieve their requirements from a collection

containing experts and skills created by the Human Resources (HRs). The acquisition of these skills and experts from

this collection is possible by using the internet and cloud computing concepts without consideration of the HRs location.

The load balancing in cloud computing means equal load distribution among resources, Virtual Human Resources

(VHRs) and servers. The effective load distribution in a heterogeneous environment such as cloud is an important

challenge. The increase in the number of users, the differences of request types and also different resources capabilities

and capacities cause that some resources become overload and some others become idle. This paper presents a dynamic

load balanced task scheduling algorithm in expert cloud. In this method, we utilize the Genetic Algorithm (GA) as a

ranking for making distinction among the VHRs capabilities. In the proposed method, interval estimation and

specification matrix are used to allocate the VHRs and also to determine the service rate. The load balancing and

mapping process are modeled based on Simple Exponential Smoothing and Probability Theory. This statistical load

balancing model allows allocating the VHRs based on service rate and Poisson model. Thus, each task is delivered to

the VHR; which is capable to execute it. The simulation results have shown that the expert cloud could reduce the

execution and tardiness time and improve VHR utilization. The cost of using resources as an effective factor is also

observed.

KEYWORDS: Expert Cloud, Load Balancing, Interval Estimation, Statistical Load Balancing Model.

1. INTRODUCTION

The technologies such as Cloud and Grid connect the

physical world, human societies and information spaces

together. HRs are among the important components of

the organizations and societies. The organizations

achieve success by the use of human knowledge, skills

and experts. A platform called Expert Cloud presents the

HRs which are geographically distributed. The

knowledge, expert and skills of human beings are shared

in this platform. These resources called Virtualized-HRs

(VHRS) can utilize the provided specifications by other

HRs such as discovering, ranking, knowledge all of

which shared the Internet [1].

The cloud computing is a pattern based on

distributed Internet. It is designed to make cooperation

among the different resources and services through the

network. It presents the powerful services according to

the user’s requirements. In other words, according to the

definition of National Institute of Standards and

Technology (NIST), cloud computing is the model to

facilitate the easy access to the set of changeable

processing resources and configuration through the

network. This is done based on user request (such as

networks, servers, applications, storages, etc.). This

access should be able to be supplied or released with the

minimum requirement to the resource management or

direct service interference [2], [3].

Therefore, the existence of the heterogeneous

dynamic VHRs from one hand and the variety of users

request on the other hand cause the lack of load

balancing in the environment. The load balancing

distributes the resources in such a way no additional load

occurs in any machine, and the resources are optimally

utilized. However, it is not much paid attention to this

aspect of cloud computing [4]. In the distributed

computing systems such as parallel computing, Grid

computing and also cloud computing, the load balancing

algorithms are divided into static and dynamic

categories according to the system topology and

information resources availability as well. The static

algorithms are not depended on the existing system state.

These algorithms require prior knowledge from the

mailto:shiva.razzaghzadeh@srbiau.ac.ir
mailto:rahmani@srbiau.ac.ir
mailto:hosseinzadeh@srbiau.ac.ir
mailto:a.habibizad@srbiau.ac.ir
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.nist.gov%2F&ei=Sb2KVLK3L4PxUouAgdAF&usg=AFQjCNHDr2hK4iSbBWNRBUpEAC29fOPNwA&bvm=bv.81828268,d.d24
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.nist.gov%2F&ei=Sb2KVLK3L4PxUouAgdAF&usg=AFQjCNHDr2hK4iSbBWNRBUpEAC29fOPNwA&bvm=bv.81828268,d.d24

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

62

system such as task requirements, the relationship time,

system processing power, memory capacity, etc. Round

Robin is a type of static algorithms. This is a simple

method and uses fewer resources. It cannot detect the

attacked server, and consequently it leads to unequal

distribution [4]. These algorithms are not suitable for the

distributed environments such as cloud. On the other

hand, the dynamic algorithms such as GA are based on

the existing system state and are used to confront the

unpredictable load processing [5]. The load balancing

scheduling algorithms can be divided into two groups:

centralized and distributed [6], [7]. In the centralized

method, a central controller is responsible for the load

distribution, since this controller has a general view over

the resources. It devotes each job to the appropriate

resource. The problem of this method is bottleneck. The

distributed scheduling algorithm makes the load

balancing based on the dynamic information of the

resources. The advantages of this method are the

scalability and high fault tolerance.

In this paper, we present a new dynamic load

balanced task scheduling algorithm in cloud computing.

We present a mechanism for the improvement of some

of the prior methods such as Round Robin, FIFO, Max-

Min, etc. In spite of this fact that most of the algorithms

have presented the solutions for the load balancing in the

distributed environments, only a few number of

algorithms have been proposed for the cloud

environment. Most of the existing algorithms do not pay

attention to the problems such as scalability, task

specifications, the suitable mapping among tasks,

resources, and the proportion between the allocation and

service rate. The purpose of most of these algorithms is

the task allocation to the idle resources without

consideration the capability of these resources. They do

not consider the proportion between the task arrival time

and service rate as well.

Our proposed method attempts to improve execution

time by solving these problems. The main idea of our

method is that we model the load balancing and mapping

process based on Simple Exponential Smoothing and

Probability Theory. Our method uses the interval

estimation and specification matrix to allocate the

resources and also to determine the service rate. The

process is in this way that this method uses GA as a

ranking to make differences in VHRs capabilities. It

utilizes the specification matrix to show the VHRs

specifications. In continuation, the VHR service time is

calculated by confidence interval and task mapping is

done according to Poison process and Probability

Theory. So the tasks are allocated to the VHRs which

have the maximum execution capability and processing

power. In addition to allocating, our method uses

Exponential Smoothing to make load balancing. It

improves the execution time and system performance.

Simulation result proves the performance of our

proposed method.

The rest of the paper is organized in such a way that

we can introduce the related work in Section 2. In

Section 3, we discuss the new method that we have

presented. We express the simulation and the result of

the proposed method in Section 4 and finally in Section

5 we conclude the paper.

2. RELATED WORKS

2.1. The load balancing is one of the important

issues in heterogeneous computer networks. In fact,

load balancing is the equal workloads distribution

among the different computational resources. It

leads to decreased response time, effective resource

utilization, increased system performance, and

elimination of the overload [8]. Different algorithms

have presented different solutions that we intend to

introduce them in this section.

To provide independent infrastructure services, the

VMs has been created and developed. A virtual machine

is a software implementation model of a real computer.

It executes programs similarly to the main computer, but

apart from that and with high performance. In fact, a

virtual machine creates a complete system platform

which supports the function of a full operating system.

The VMs solve heterogeneous hardware and

infrastructure problems. The same topics discussed

about VMs are also about Human Resources (HRs) so

that in the expert cloud, the expertise of HRs is provided

as a service to others. In this infrastructure, the HRs

become their virtual form. In this situation, the need for

individuals to appear face to face disappears, and we can

use their expertise as a virtual person without face-to-

face interaction. Namely the main goal of the expert

cloud is to share the expertise of HRs in the cloud

platform as a Virtual Human Resource (VHR).

One of the algorithms has presented a technique

named Live Virtual Machine [9]. In this method, the

active VM is transferred from a virtual host to another.

In continuation, it has proposed the task based load

balancing by the use of swarm optimization in which the

tasks migrate from overload VMs instead of overload

VMs migration. The Cloudsim has been used to evaluate

this method. The task scheduling model in this method

is based on swarm optimization. This method decreases

the execution time and energy [9]. One of the other

algorithms has presented a mechanism of load balancing

based on reservation policy to distribute the tasks among

the replicated servers. In this method, overloaded servers

store the capacity of the remote servers. Then, the

requests are transferred to the remote ones. No server

shares its capacity to the other one. In this way, the load

transferring is limited among the servers. This method

decreases the response time and the number of not

responded answers [10]. Another algorithm utilizes the

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

63

multi-core clustering processors to make load balancing.

In order to select the best tasks for migration, this

method uses the algorithms inspired of the nature and

also to select the resources to accept these tasks. Each

node selection is stochastic and based on previous

knowledge of the node. This method increases the QoS

and scalability [11]. Another load balancing algorithm is

a dynamic method. This method is based on tree model

and by inspiring of ants algorithms. This method puts the

resources in the suitable sites; by calculating the

competency rank. Tasks allocation is based on the tasks

priority and control word. This method decreases

makespan but it has high overhead [12]. Probabilistic

modeling to achieve load balancing in Expert Clouds has

been presented in [13]. This method provides the

dynamic load balancing based on distributed queues

aware of QoS in expert cloud. This method uses colorful

ants to make distinction among resource capabilities. It

provides the load balancing by labeling resources and

based on Poison model. This method decreases

makespan and tardiness [13]. Another method has

proposed a scheduling method to achieve load

balancing. This method consists of three algorithms.

They are: on-demand scheduling, Querying and

Migration Task (QMT) and also Staged Task Migration

(STM). In a master-slave plan whenever the slave load

is light, the master makes aware this slave of sending its

extra loads. This step is done by QMT. In this method,

QMT scheduling is suitable for dependent tasks and

STM for independent ones. The disadvantage of this

method is the high transferring time [14]. The presented

method in [15] is a heuristic one which is based on

sufferage value. It is to say that this method, primarily,

calculates the subtraction of second earliest completion

time and earliest completion time (sufferage value).

Then, it allocates the tasks to the VMs according to this

value. This method performs better than traditional ones

such as Min-Min and Max-Min. One of the other

existing methods which has been presented in [16] is

LBMM (Load Balance Min-Min). This method is based

on Opportunistic Load Balancing (OLB). OLB is a static

algorithm and keeps the nodes busy without considering

their execution time. This can slow down the processing

time in turn [17]. LBMM adds three layers to the OLB

architecture. The first layer is manager and it receives

the tasks. The second layer is service manager; this layer

divides each task into the subtasks to increase the

processing speeds. Finally, this layer delivers the task to

the third one [16]. Another static algorithm uses control

scheduling controller and resource monitoring. The first

one determines the resource for allocation and the

second one scans the resources information. Then, the

tasks are allocated to the resources with the highest score

by using four phases which are: task submission, virtual

machine request, receiving the resource information and

resource capability computation [18]. Another method

has addressed dynamic load balancing problem and

solved it using Honey Bee Behavior inspired of Load

Balancing (HBB-LB) algorithm. This method provides

the load balancing among the VMs. In this algorithm, the

tasks which should be balanced are regarded as honey

bees and VMs as food sources. The bees destination is

VMs with low load. This method is performed in four

steps: 1. computing the current VM load, 2. making

decisions about scheduling and load balancing. 3. VMs

categorizing, and; finally, tasks scheduling. At the end,

tasks (bees) are transferred from over loads VMs to

underload ones. This method improves the QoS and

decreases the makespan but its main problem is low

scalability [19]. In [20], the MBA (market based control)

method has been presented. This method provides the

load balancing through data allocation and dynamic

migration. In this method, the resources have been

considered as traders in market. This algorithm performs

data allocation and migration intelligently using market

rules [21]. The load balancing process of this method is

formed based on two agents: 1. Data- trading agent. 2.

Data auctioning agent. The first one is responsible to

follow the database nodes load and also the nodes price.

The second one determines which traders can buy and

which ones can sell. This method is dynamic and

improves the response time. One of the other existing

methods concerning resource management and load

balancing is community based video replication. This

algorithm clusters the social relationship with the near

geographical situations that watch the similar videos. It

presents this relationship in the form weighted graph,

follower, and folllowee. In this method, the requests and

tasks are scheduled based on community. The purpose

of this method is to facilitate users access to set of CDN

(Content Delivery Network) nodes which is in common

with this community. This method decreases the cost

and average service delay [22]. One of the methods of

resource management and scheduling is Shuffled Frog

Leaping Algorithm. The purpose of this algorithm is to

model and mimic the behavior of a group of frogs to find

food. They are randomly placed on a rock in a pond. This

method is designed to schedule and manage the flow of

various tasks in the infrastructure as a service, and it

brings the benefits of genetic algorithm and particle

swarm optimization. This algorithm, while minimizing

the total cost of execution, ensures that tasks are

performed within the deadline [23].

The existing algorithms in this section have

presented the suitable methods for load balancing, but

most of them aim to allocate the tasks to the idle

resources. They have paid no attention to the resource

capabilities, resource service rate, tasks and resource

priorities and the probability of task execution in the

resources. This can cause the task execution failure in

the resources and increase response time and tardiness.

To the best of knowledge, our proposed method is

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

64

different from all the existing algorithms. It models the

mapping and allocation process based on Simple

Exponential Smoothing and Probability Theory. Our

method presents the new solution by consideration of the

existing algorithm problems. Contrary to the existing

methods, our proposed method allocates the tasks by

distinction among resource capabilities and also based

on confidence interval and Poisson distribution. It

performs the load balancing based on resource load

prediction and specification matrix as well. Section 3

explains them in details.

3. PROPOSED METHOD: CONCEPTS

In spite of this fact that the existing algorithms in the

field of load balancing have presented the suitable

methods, most of them have paid no attention to the task

priority and its specifications, resource capabilities,

resource service rate, task execution probability over the

resources and load prediction over them. Our proposed

method presents the new solution by consideration of

these problems. This new method utilizes the GA to

make distinction among VHR capabilities. It uses the

interval estimation (namely θ interval estimation is an

interval in the form of θ1̂ < θ < θ2̂ in which θ1̂ and θ2̂

are the amount of the suitable random variables such as

θ1̂ and θ2̂ . The specified 1-α amount is a confidence

interval for θ as well) to find the VHR service rate. In

continuation, our method presents the specification of all

VHRs in the form of specification matrix. It uses the

Exponential Smoothing method to predict VHR load.

Then, it performs mapping by calculation of the task

execution probability in the VHRs. It is worthy saying

that the tasks are separated according to their types.

Finally, it controls the tasks arrival rate to the VHRs by

forming allocation matrix and according to Poison

Process. In the same way, the arrival rate becomes

proportionate to service rate and the load balancing is

achieved as well (Algorithm 1).

Algorithm 1 Our proposed algorithm at a glance.

1. Begin

2. Put VHRs in three sites based on GA

3. For k=1 to z do // z is the number of VHRs in

each site

4. {

5. ΛVHRk =
1

𝜂

6. SVHRk = λ
−1

7. FVHRk = FVHRi-1 + β (AVHRk-1 – FVHRk-1)

8. PVHRij =
xij

∑ xik
m
k=1

 +
Eij

∑ Eik
m
k=1

 0≤ Pij ≤ ,

∑ pij
n
i=1 =1

9. }

10. Forming the specification matrix for each site

(m*4 matrix)

11. Get the task to the manager

12. For i=1 to n do // n is the number of tasks

13. {

14. Sort the tasks based on types

15. }

16. Select the suitable site based on tasks priorities

17. For k=1 to z do // z is the number of VHRs in

each site

18. {

19. If number of input tasks > λVHRk then

20. VHRk is pruned

21. Else

22. {

23. Select the candidate VHRsK

24. Check the PVHRk and FVHRk for

candidate VHRs

25. Select VHRsk with maximum PVHRk

and minimum FVHRk

26. SVHRk = λ
−1

27. Allocate the tasks with SVHRk rate to

the VHRs

28. }

29. }

30. For k=1 to z do

31. {

32. Forming the allocation matrix (m*n matrix)

33. Put 1 value in each row of matrix after

allocation

34. Check ∑ Ti
n
i=1 ≤ λVHRk

35. Do allocation until line 34 is established

36. }

37. If some of input tasks cannot allocate do

38. {

39. For k=1 to z do

40. {

41. σk = √
1

m
∑ (FVHRi − AF)2m

i=1

42. AFk = ∑
FVHR

m

m
i=1

43. Check σk value

44. If σk > f // f=[0-1]

45. {

46. VHR is overload

47. Send the tasks to the manager

48. Go to line 19

49. }

50. If manager not find the VHRs in the first site

51. {

52. Go to site 2 and 3 based on tasks priority

53. Repeat line 19 to 36

54. }

55. end

3.1. The VHRS Ranking by GA

A genetic algorithm is a heuristic search that mimics

the process of natural selection. This search (also

https://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Natural_selection

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

65

sometimes called a meta-heuristic one) is routinely used

to generate useful solutions to optimization and search

problems [24]. We use the GA concept for making

distinction among the VHR capabilities. In this method,

each chromosome is considered as one VHR. If we

consider S = {VHR1, VHR2,….VHRn} as a set of

chromosomes, we can choose the chromosome with the

highest chance by the use of rank selection. In the rank-

based selection scheme, chromosomes in the population

are first stored according to their fitness values. Each

chromosome's rank in the population is used to influence

the selection process instead of its fitness value.

Selection scheme is the following [24]:

𝑃𝑖 =
𝑅(𝑖)

∑ 𝑅(𝑖)𝑛
𝑖=1

 𝑖 = 1,2, … … 𝑛 (1)

Where, Pi denotes the selection probability of

chromosome i, n denotes the population size and R(i) €

[1,n] is the rank of chromosome i. In this case, R(n)

presents the best chromosome, and R(1) is the worst one

in the population. For the calculation of each

chromosome rank, the fitness of each one should be

calculated. In fact, the fitness of each chromosome

depends on its average number of executed tasks by each

VHR (λj) and average response time (𝑦̅).

𝑇𝑓𝑣𝑖 = 𝜆𝑗 𝑖 = 1,2, … … 𝑛 𝑗 = 1,2, … . 𝑚 (2)

𝑆𝑇𝑓𝑣𝑖 = 𝑦 ̅ 𝑖 = 1,2, … … 𝑛 (3)

Where, Tfvi and STfvi denote the fitness from the

view point of the number of the successful executed

tasks and average response time respectively. It is worth

noting that λj and 𝑦̅ are calculated based on section (3.4).

In continuation, Eq. (1) based on our proposed method

is defined as follows:

𝑃𝑇 =
 𝑅𝑇𝑓𝑣(𝑖)

∑ 𝑅𝑇𝑓𝑣 (𝑗)
𝑛
𝑗=1

 i=1,2,……n 𝑗 = 1,2, … . 𝑚 (4)

𝑃𝑆 =
𝑅𝑆𝑇𝑓𝑣 (𝑖)

∑ 𝑅𝑆𝑇𝑓𝑣 (𝑗)
𝑛
𝑗=1

 𝑖 = 1,2, … … 𝑛 𝑗 = 1,2, … . 𝑚

(5)

Where, PT is the indicator of the VHR selection

probability based on a number of successful executed

tasks, RTfv is the rank of each VHR from the view point

of a number of successful executed tasks (λj value is high,

the VHR rank is better), PS is the VHR selection

probability based on service time and finally RSTfv is the

rank of each VHR from the view point of service time.

In continuation, all VHRs are set in three sites based on

PT and PS values. The VHRs with high PT and PS values

are set in the first site, the VHRs with average PT and PS

values are in the second, and finally the VHRs with low

values are set in the third site. Eq. (6) shows this clearly.

 1 if A ≤ PT & PS ≤ B

Site Number = 2 if C ≤ PT & PS ≤ A (6)
 3 if D ≤ PT & PS ≤ C

In Eq. (6), A, B, C and D show the value of selection

probability for each VHR. In our proposed method, the

value of A, B, C and D are: 0.8, 1, 0.4 and 0 respectively.

So, site 1 includes powerful VHRs (PT and PS with high

values), site 2 includes average VHRs (PT and PS with

average values) and finally site 3 includes weak VHRs

(PT and PS with low values). Finally, VHRs are

categorized by the use of GA concept.

3.2. Sites and Tasks Division based on Ranking

We use the VHR ranks to make sites. We consider

three sites with tree structure for this purpose. The VHRs

with high processing power are set in the first site, VHRs

with the average processing power are set in the second

site and; finally, the VHRs with low processing power

are set in the third one. In order to determine the

specifications of each VHR in sites, we allocate a label

for it. Each label consists of three units. λ is the indicator

of the number of executed tasks by each VHR, Ts is the

VHR service time and β shows the rank of VHR. In

addition to VHRs, the submitted tasks by the users

should be labeled. Indeed, this label determines the type

of user request. If the task should be immediately

executed without delay; in this case, this task needs the

powerful and fast VHR, the value of label will be one

(tasks with high priority). If the task can wait for average

time, then the value of task label will be two (tasks with

average priority). At the last step, if a task can wait for a

long time, the label value will be three (tasks with low

priority).

3.3. Specification of Matrix Formulation

The specifications of VHRs in each site are displayed

by a matrix. This matrix which is m*4 one, consists of m

rows showing the VHRs and columns show the VHR

specifications. These specifications are: λ which is the

indicator of successful execution tasks by each VHR,

SVHR is the VHR service rate, PVHR is the probability of

task execution by each VHR and; finally, FVHR shows the

VHR load prediction. In the continuation, we will deal

with these specifications (Eq. 7).

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Search_algorithm

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

66

 (7)

3.4. The Interval Estimation for Service Rate

Calculation

One of the VHR specifications is service rate which

is the same as task execution by each VHR. We use the

interval estimation for the service rate calculation. We

hypothesize that the VHR = {VHR1, VHR2,….VHRm}

are the VHRs set in each site in which each VHR can

process n independent task: T={T1,T2,…..Tn}. If t=

{t1,t2,……tn} is task execution time by each VHR, then

fθ(t) will be probability distribution which depends on

the unknown θ parameter. The purpose of this estimation

is to find the quantity from the observed value

(t1,t2,……tn) as an approximation of unknown θ

parameter. So by using the interval estimation, we

calculate an interval time in which θ is to exist in this

interval. It is hypothesized that two statistics θ1 and θ2

are such as follow:

𝜃1 = 𝑔1(𝑡) (8)

𝜃2 = 𝑔2(𝑡) (9)

We should calculate θ1 and θ2 in such a way that θ is

to be placed in this interval if P{ θ1 < θ < θ2 }= 1-α is

to be established, then the purpose is to find the

confidence interval. We can send the tasks to the VHRs

with full confidence by using this value (1-α) according

to (θ1, θ2) interval. So, we should calculate the estimated

parameter for the calculation of the time interval which

presents service to each VHR. For this purpose, we

present the (𝑡̅ – a, 𝑡̅ + a) in which, with the (1-α)

probability, the E (𝑡̅) will be inside this interval.

𝑡̅=
1

𝑛
∑ 𝑡𝑖𝑛

𝑖=1 (10)

E(𝑡̅)=η (11)

𝜎𝑡̅
2=

 𝜎2

𝑛
 (12)

𝑡̅ is the average task execution time on each VHR and

E(𝑡̅) is the expected value as well. 𝜎2 is also the variance

for a set of n samples(tasks). After the calculation of

these values, we can determine the interval time that

each VHR can give services.

P{𝑡̅ -
𝜎

√𝑛
 * 𝑍1−

𝛼

2
 < η < 𝑡̅ +

𝜎

√𝑛
 * 𝑍1−

𝛼

2
 } = 1-α (13)

Z=
𝑡̅− 𝜂

𝜎

√𝑛

 (14)

Eq. (13) shows the confidence interval of each VHR

in which Z is the normal standard parameter. It is

calculated according to Eq. (14). So the service time of

each VHR is inside θ1 and θ2 interval (namely (θ1 , θ2)).

𝑆𝑉𝐻𝑅 = (𝜃1 , 𝜃2) (15)

After the calculation of SVHR , we can calculate the

task interval rate to each VHR as well. It is to say that

we want to calculate the number of successful tasks that

each VHR can execute and accordingly allocate the task

to each VHR. We use the Poisson distribution for this

purpose.

𝜆 =
1

𝐸(𝑡̅)
 =

1

𝜂
 ∶ 𝜃1 < 𝜂 < 𝜃2 (16)

𝜆 = 1

𝑆𝑉𝐻𝑅
= (

1

⌊𝜃1⌋
,

1

⌊𝜃2⌋
) (17)

The Poisson distribution presents the number of

successful executed tasks in an interval time. So we can

calculate the λ value by using the SVHR interval time

which is the same as exponential distribution. Namely

SVHR= 𝜆−1 . Thus, we can allocate the tasks with λ rate

and in a confident interval time to each VHR by

calculating the λ. In this way, all tasks are successfully

executed. This means that we can make proportionate

the interval rate with the service time.

3.5. Exponential Smoothing for VHR load

Predection

Another specification of VHR is FVHR parameter.

That is the same as VHR load prediction. The

importance of this parameter is revealed during the

allocation. It prevents from additional task allocation to

some VHRs by being aware of the value of this

parameter, and also it stops the lack of load balancing.

We use the exponential smoothing to achieve this

purpose. This method has a plenty of usage for the

request prediction in the future. In this method, it is

given different weights to different periods data. These

weights follow a descending geometric progression.

This method gives the maximum weight to the amount

of the last period requests and whatever we go back; the

weights decrease in the form of exponential. So, we use

the Eq. (18) for the calculation of VHR load prediction

and capacity.
𝐹𝑉𝐻𝑅𝑖 = 𝐹𝑉𝐻𝑅𝑖−1

+ 𝛽(𝑋) 𝑖 =

1,2,3, … … 𝑚 (18)

𝑋 = 𝐴𝑉𝐻𝑅𝑖−1
 − 𝐹𝑉𝐻𝑅𝑖−1

 𝑖 = 1,2,3, … … 𝑚 (19)

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

67

In Eq. (18), FVHRi is the indicator of VHRi load

prediction for the next period. 𝐹𝑉𝐻𝑅𝑖−1 shows the

previous period VHRi load. β is the smoothing

coefficient and is acquired by trial and error. By

consideration of some empirical information, the β value

is between 0.1 to 0.3. 𝐴𝑉𝐻𝑅𝑖−1 is the indicator of the real

VHRi load request in the previous period. Finally, X

shows the prediction error of previous period. So, we

add this parameter as the third VHR specification to the

specification matrix.

3.6. The Probability Theory

One of existing parameters in specification matrix is

PVHRj. That is the same as VHR probability selection to

execute the tasks. We calculate the PVHRj value for each

VHR and choose the most probable VHR based on its

value. It is hypothesized that S={

VHR1,VHR2,……,VHRm } is non empty finite space. The

probability model is presented as Eq. (20) over this

sample space.

𝑃𝑉𝐻𝑅𝑖𝑗
=

𝑥𝑖𝑗

∑ 𝑥𝑖𝑘
𝑚
𝑘=1

 +
𝐸𝑖𝑗

∑ 𝐸𝑖𝑘
𝑚
𝑘=1

 0 ≤ 𝑃𝑖 ≤ 1 , ∑ 𝑝𝑖𝑗

𝑛

𝑖=1

= 1,

𝑗 = 1,2, … . 𝑚, = 1,2, … 𝑛 (20)

𝑥𝑖𝑗=
𝑇𝑎𝑠𝑘𝑖 𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝐻𝑅𝑗𝑠𝑝𝑒𝑒𝑑
 (21)

𝐸𝑖𝑗 = 𝑊𝑉𝐻𝑅 × (1 − 𝐿𝑉𝐻𝑅𝑗) ×
ℎ𝑠𝑝𝑒𝑒𝑑

𝑆
 (22)

𝐿𝑉𝐻𝑅𝑗 =
𝐸𝑇𝑁

𝑇𝑇𝑁
 (23)

According to Eq. (20), 𝑃𝑉𝐻𝑅𝑖𝑗
 value contains

performance evaluation of task execution over the

VHR. Whatever the Pij value is nearer to 1 , the VHR is

more probable for the task execution. In this model, xij is

the same as the task length ratio to each VHR speed. Eij

is calculated according to Eq. (22) in which WVHR is the

number of processors in each host and hspeed is the

indicator of processor speed in each host. S is the

minimum speed required for task execution as well. In

this equation, LVHRj is the same as the load of each VHR

achieved from the division of number of present

execution tasks into the number of total tasks (TTN). In

this way, we can allocate the tasks to the VHRs which

have the most chance of execution by calculating Pij and

consideration of its value. This, in turn, prevents the

unsuccessful task execution.

3.7. Proposed Load Balancing Strategy

Our proposed load balancing is performed over four

steps. This new method which is based on tree structure

and mathematical model emphasizes on GA concept.

The process is, in this way, that in the first step the

existing VHRs based on GA are divided into three

groups. In this way, the powerful VHRs (the resources

with low service time and high number of successful

execution tasks) are located in the first site; the VHRs

with the average processing power in the second site,

and, finally, the weak VHRs in the third one. After this

step, the existing VHRs specifications in each site are

displayed in the form of specification matrix. In this

matrix, the λ, s, F and p columns are the indicators of the

number of the successful executed tasks by each VHR;

the service time (service rate) in each VHR, VHR load

prediction and the probability of each task execution by

VHR, respectively, this is the second step. In the third

one, the user request enters the system. This request is

transferred to the manager. The manager allocates the

requests to the sites of one, two and three by considering

the user type request. When the root node in each site

which acts as a main parent, receives the task, then, it

considers the specification matrix. The aim of this

consideration is to prune the inefficient nodes in order to

decrease the search space. Primarily, it compares the

number of entered tasks with the λ column value in

specification matrix and selects the candidate VHRs.

The candidate VHRs are those which their λ value is

greater or equal with the number of entered tasks. The

parent node considers the second and third columns (F

and P) after selecting the candidate nodes. It selects the

node from the candidate ones in which the value of Pij is

higher (is nearer to 1) and also the F value (load

prediction) is the least. In this step, the tasks are

allocated to the related VHR based on existing service

rate in s column. This is the same as task mapping model.

It considers the service rate proportionate to arrival task

rate based on Poisson model. After the allocation of

tasks to each node, the allocation matrix is formed. This

matrix is n*m; in which, the rows are tasks and the

columns are VHRs. Each time that a task is allocated to

each VHR, the value of its related element becomes 1

(Eq. 24). What is important in this matrix is the control

of task allocation to each VHR.

 𝑉𝐻𝑅1 𝑉𝐻𝑅2 𝑉𝐻𝑅3 ⋯ 𝑉𝐻𝑅𝑚

𝐴𝐿 =

𝑇1

𝑇2

⋮
𝑇𝑛

(

𝐴𝐿11 𝐴𝐿12 𝐴𝐿13 ⋯ 𝐴𝐿1𝑚

𝐴𝐿21 𝐴𝐿22 𝐴𝐿23 ⋯ 𝐴𝐿2𝑚

⋮ ⋮ ⋮ ⋮ ⋮
𝐴𝐿𝑛1 𝐴𝐿𝑛2 𝐴𝐿𝑛3 ⋯ 𝐴𝐿𝑛𝑚

) (24)

∑ 𝑇𝑖
𝑛
𝑖=1 ≤ 𝜆𝑉𝐻𝑅𝑗 i=1,2,……n j=1,2,…..m (25)

Eq. (25) means that the sum of the allocated task

number to each VHR should be less than or equal the λ

value of each VHR. In other words, the sum of each

column values should be less than λ of each VHR. In this

way, we can control the arrival rate to each resource, and

allocate the number of tasks to each one which is capable

to perform them. We allocate the tasks to each VHR by

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

68

consideration of confidence interval (service rate) of

each VHR and with full confidence in each SVHR seconds

as well. This means that we should proportion to the

arrival rate with service time based on Poisson model.

The fourth step is mentioned when the parent node can

allocate just a number of received tasks to the one node

(when a task processing in VHR is prolonged and the

rest of tasks wait to get service). In this condition, the

tasks which are not allocated should be migrated. In fact,

the purpose of the fourth step is to keep load balancing.

In this way that, the standard deviation value (Eq. (26))

is considered for each VHR in ti to ti+1 interval. If σ value

is in k=[0-1] interval, the system is balanced. If σ < k,

the system is underloaded, and finally, if σ > k, the

system is overloaded [4]. So, the parent node transfers

the additional load (not allocated tasks) to the

undeloaded VHRs.

 𝜎 = √
1

𝑚
∑ (𝐹𝑉𝐻𝑅𝑗 − 𝐴𝐹)2𝑚

𝑗=1 (26)

 𝐴𝐹 = ∑
𝐹𝑉𝐻𝑅𝑗

𝑚

𝑚
𝑗=1 (27)

The transfer can be done in two forms: 1. the task

migration should be in the related site. Namely, the

parent node selects the VHR among the candidate ones

according to the mapping rules by the consideration of

PVHR matrix that is to say its λ value is more equal than

the number of entered tasks and P value is maximum

while F one is minimum. It transfers the tasks in each s

seconds. 2. The migration is not possible in the site.

Namely, there is no node that has immigration

conditions. In this condition, the tasks are transferred to

other site. The priority of not allocated task migration in

site 1 is primarily site 2 and, finally, is site 3. The priority

of the task migration in site 2 is primarily site 1 and then

site 3. Finally, the site 3 also considers; primarily, the

site 1 to allocate the remaining tasks and then it goes to

the site 2. In this way, the parent node in each site

receives the not allocated task of another site, and

allocates them based on mapping rules. So, the load

balancing is kept in the sites as well.

(a)

(b)

Fig. 1. (a) The proposed environment model. (b) The

proposed method workflow.

4. SIMULATION RESULTS AND ANALYSIS

In this section, we demonstrate the conclusion of the

proposed algorithm with simulation. In this section, we

have analyzed the performance of our algorithm based

on the results of simulation using Cloudsim and

validated it in Amazon EC2.We have expanded the

Cloudsim classes for the simulation of our algorithm.

The VHRs used to execute the tasks are modeled on a

variety of Amazon M3 samples. We hypothesize that the

number of tasks are 150. The flow of work and the length

of tasks are also entered according to the standard

dataset "LAG-2005.swf". It is supposed that the tasks are

independently executed. The number of data center is

one. It is hypothesized that the existing VHRs in the

environment have been distributed in the form of 3 sites

based on GA. Each site has tree structure; the maximum

depth for each site is three. The existing VHRs in the

environment are different because of their processing

power. We consider the processing power for each

VHR: 2, 1 and 0.5 seconds respectively. The evaluation

parameters in this simulation are: makespan, tardiness,

degree of load imbalance, speed up, and cost. Through

careful attention to the mentioned quantities, makespan

is computed as follow [4]:

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

69

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐶𝑇𝑖𝑗 |𝑖 𝜖 𝑇 ,
 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 𝜖 𝑉𝑀 , 𝑗 = 1,2, … , 𝑚 }
(28)

 Eq. (28) shows makespan where, CTij is the indicator

of taski completion time in VHRj. Considering Fig. 2,

axis x is the indicator of number of tasks and y axis

shows makespan. The comparison between our

proposed method and some of the other famous existing

ones such as FCFS, RR, MET, Max- Min, Min-Min

shows that our method has the lowest makespan. The

maximum makespan in our method is 47720 s and

minimum is 10850 s. This figure shows that FCFS has

the most makespan (84330 s).

Fig. 2. Makespan comparison between methods.

Fig. 3 shows a comparison of the maximum

completion time between the above methods as well.

The effective reduction of the amount of makespan in

the proposed method is due to the fact that, firstly, inputs

are standardized in the simulation environment.

Secondly, the proposed method addresses the effective

distribution of tasks, which leads to a reduction in the

execution time.

Fig. 3. Maximum makespan comparison between

methods.

Afterwards, we calculate the tardiness. Tardiness is

calculated according to the following equations.

𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 = 𝑓𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑑𝑙𝑖𝑛𝑒 (29)

 𝐷𝑒𝑑𝑙𝑖𝑛𝑒 𝑚𝑎𝑥𝑡𝑖𝑚𝑒 + 𝑘 × (𝑚𝑎𝑥𝑡𝑖𝑚𝑒– 𝑚𝑖𝑛𝑡𝑖𝑚𝑒)

0 = 𝑘 < 1 (30)

In the mentioned equations, finish_time is the end

time and deadline is calculated based on Eq. (30). In this

equation, max_time and min_time are highest and

lowest execution times, respectively, and k is also

between zero and one. After calculating the amount of

tardiness and makespan for 150 tasks, Fig. 4 is obtained.

This figure shows the relationship between makespan

and tardiness. In this figure, axis x is the indicator of

makespan and y axis shows tardiness. This figure shows

that with the increase in the number of tasks and also the

makespan, the amount of tardiness will also increase.

This is due to the fact that with the increase in the

number of tasks assigned to the system, the number of

waiting tasks in the queue can be increased and finding

VHRs appropriate to this number of tasks will require

time. This could lead to delay. According to Fig. 4, the

maximum tardiness is 55000s and the minimum is

25000s.

Fig. 4. Relationship between the Makespan and

tardiness in our method

The next parameter to be calculated is DI (Degree of

Imbalance). This parameter is calculated based on Eq.

(31). Where Tmax and Tmin are the maximum and

minimum Ti among all VHRs, Tavg is the average Ti of

VHRs [4]. Our load balancing system reduces the degree

of imbalance drastically. The calculation result of this

parameter is shown in Fig. 5. In this figure, axis x is the

indicator of number of tasks and y axis shows the DI.

This figure shows that our proposed method reduces the

DI. In this figure the maximum DI in proposed method

is 14.3 and its minimum is 4.01.

𝐷𝐼 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
 (31)

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

70

Fig. 5. DI comparison between methods.

The last parameter is the cost. The cost value is

calculated according to Eq. (32). In this equation Cost-

Per-Sec is the cost of execution a task on the resource.

Based on this equation, Fig. 6 is obtained. In this figure,

the x axis presents the number of tasks and the y axis

shows cost. According to the obtained figure, the

maximum cost is when the number of tasks is 150.

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑆𝑒𝑐
× execution_time (32)

Fig. 6. Cost of proposed method

Fig. 7 also shows the cost comparison between the

methods. In this figure, our proposed method has a

maximum cost (1026.64 $), while the FCFS method has

the lowest cost. The reason for the high cost in our

proposed method is to check the quality of service before

assignment. In that way, when the user requests the

service, the system provides him with the appropriate

resource for that request. This will prevent the failure of

the implementation of work and assignment again. This

means spending time and time.

Fig. 7. Maximum cost comparison between methods.

5. CONCLUSION

In this paper, we have presented a new method for

the dynamic load balancing in expert cloud. Our

proposed method provides the load balancing and

effective allocation by controlling the arrival rate and

service time in each VHR. In this method, the GA has

been used for making sites and distinction among the

resource capabilities. The resource specifications have

been expressed in the form of specification matrix. The

tasks also have been categorized according to their

types. The tasks allocation to the resources have been

done according to Poisson model and probability theory.

In our proposed method, the confidence interval has

been used to estimate the service rate and based on this

fact, the arrival rate has been calculated. In this way, it

has presented the mapping model based on proportional

arrival rate and service time. The proposed algorithm has

provided the load balancing by controlling the arrival

rate and also based on a mathematical prediction model.

The proposed algorithm decreases the execution time

and tardiness by effective allocation and making load

balancing. We have compared the result of our proposed

method with the traditional existing ones. The results

show that our proposed method improves the execution

time and cost in comparison with other existing ones.

For the future works, we intend to extend the load

balancing for resources with more specifications such as

fault tolerance and security. This method includes single

point of failure problem which should be solved in future

works. The use of other estimation methods such as

variance estimation, likelihood and also the use of

prediction methods such as linear regression could be

used in the future researchers; it is proposed to develop

the Cloudsim classes, as well.

REFERENCES
[1] N. Jafari Navimipour, A. Habibizad Navin, A. M.

Rahmani, and M. Hosseinzadeh, "Behavioral

Modeling and Automated Verification of a Cloud-

based Framework to Share the Knowledge and

https://www.sciencedirect.com/science/article/pii/S0166361514002127#!
https://www.sciencedirect.com/science/article/pii/S0166361514002127#!
https://www.sciencedirect.com/science/article/pii/S0166361514002127#!

Majlesi Journal of Electrical Engineering Vol. 13, No. 4, December 2019

71

Skills of Human Resources", Computers in Industry,

15-16(42), pp. 6112–6131, 2015.

[2] P. Mell, and T. Grance, "The NIST Definition of

Cloud Computing", National Institute of Standards

and Technology, pp. 1-7, 2011.

[3] F. H. Qusay,. "Demystifying Cloud Computing",

the Journal of Defense Software Engineering, pp. 16–

21, 2011.

[4] D. Babu. L.D, and P.V. Krishna, "Honey Bee

Behavior Inspired Load Balancing of Tasks in

Cloud Computing Environments", Applied Soft

Computing, 13(5), pp. 2292-2303, 2013.

[5] S. L. Chen, and Y.Y. Chen, "CLB: A Novel Load

Balancing Architecture and Algorithm for Cloud

Services." Computers & Electrical Engineering (58),

154-160, 2017.

[6] K.Q. Yan, S.C.Wang, C.P. Chang, and J.S. Lin , "A

Hybrid Load Balancing Policy Underlying Grid

Computing Environment". Computer Standards &

Interfaces, Vol. 29(2), pp. 161-173, 2007.

[7] J. Balasangameshwara, and N. Raju, "A hybrid

policy for Fault Tolerant Load Balancing in Grid

Computing Environments". Journal of Network and

Computer Applications, Vol. 35(1), pp. 412-422,

2012.

[8] P. Kuila, and P. K. Jana,. "Approximation Schemes

for Load Balanced Clustering in Wireless Sensor

Networks", The Journal of Supercomputing,

Springer (68), pp. 87-105, 2014.

[9] F. Ramezani, j. Lu, and F.K. Hussain, "Task-Based

System Load Balancing in Cloud Computing Using

Particle Swarm Optimization." International

Journal of Parallel Programming, Vol. 42(5), pp.

739-754, 2013.

[10] A. Nakai, E. Madeira, and L.E. Buzato,"On the Use

of Resource Reservation for Web Services Load

Balancing." Journal of Network and Systems

Managemen,t, Vol. 23(3), pp. 502-538, 2014.

[11] A. De Falco, E. Laskowski, R. Olejnik, U. Scafuri, E.

Tarantino, and M. Tudruj, "Extremal Optimization

Applied to Load Balancing in Execution of

Distributed Programs." Applied Soft Computing,

Vol. 30, pp. 501-513, 2015.

[12] L.M Khanli, S. Razzaghzadeh, and S.V. Zargari, "A

New Step Toward Load Balancing Based on

Competency Rank and Transitional Phases in

Grid Networks", Future Generation Computer

Systems, Elsevier, Vol. 28, pp. 682-688, 2012.

[13] S. Razzaghzadeh, A.H. Navin, A.M. Rahmani, and M.

hosseinzadeh , " Probabilistic Modeling to Achieve

Load Balancing in Expert Clouds" , Ad Hoc

Networks, Elsevier, Vol. 28, pp.12-23, 2017.

[14] Y. Liu, C. Zhang, B. Li, and J. Niu, "DeMS: A

Hybrid Scheme of Task Scheduling and Load

Balancing in Computing Clusters." Journal of

Network and Computer Applications, Vol. 83, pp.

213-220, 2015.

[15] Maheswaran, M., et al. "Dynamic Mapping of a

Class of Independent Tasks onto Heterogeneous

Computing Systems", Journal of Parallel and

Distributed Computing, Vol. 59: 107-131, 1999.

[16] S.C. Wang, K.Q. Yan, W.P. Liao, and S.S. Wang,

"Towards a Load Balancing in a Three-Level

Cloud Computing Network", 3rd International

Conference on Computer Science and Information

Technology (ICCSIT), IEEE, 2010.

[17] A. Sang, X. Wang, M. Madihian, and R.D. Gitlin,

"Coordinated Load Balancing, Handoff/Cell-Site

Selection, and Scheduling in Multi-Cell Packet

Data Systems", Wireless Networks, Vol. 14(1), pp.

103–120 , 2008.

[18] J. Ni , Y. Huang, Z. Luan, J. Zhang, and D. Qian,

"Virtual machine mapping policy based on Load

Balancing in Private Cloud Environment",

International Conference on Cloud and Service

Computing (CSC), IEEE, pp. 292–295, 2011.

[19] K.R. Babu, and P. Samuel, "Enhanced Bee Colony

Algorithm for Efficient Load Balancing and

Scheduling in Cloud". Innovations in Bio-Inspired

Computing and Applications: Proceedings of the 6th

International Conference on Innovations in Bio-

Inspired Computing and Applications (IBICA 2015)

held in Kochi, India during December 16-18, 2015. V.

Snášel, A. Abraham, P. Krömer, M. Pant and K. A.

Muda. Cham, Springer International Publishing: pp.

67-78, 2016.

[20] T. Wang, Z. Lin, B. Yang, J. Gao, A. Huang, D. Yang,

Q. Zhang, S. Tang, and J. Niu, "MBA: A Market-

Based Approach to Data Allocation and Dynamic

Migration for Cloud Database," Science China

Information Sciences, Vol. 55(9), pp. 1935-1948,

2012.

[21] J. Niu, K. Cai, E.H. Gerding, and S. Parsons,

"Characterizing Effective Auction Mechanisms:

Insights from the 2007 TAC Market Design

Competition". Proceedings of the 7th international

joint conference on Autonomous agents and

multiagent systems - Volume 2. Estoril, Portugal,

International Foundation for Autonomous Agents and

Multiagent Systems: pp. 1079-1086, 2018.

[22] H. Hu, Y. Wen, T.S. Chua, J. Huang, W. Zhu, and X.

Li, "Joint Content Replication and Request

Routing for Social Video Distribution Over Cloud

CDN: a community clustering method", IEEE

Trans. Cir-cuits Syst. Video Technol. Vol. 26(7), pp.

1320–1333 , 2016.

[23] P. Kaur, and S.Mehta, "Resource Provisioning and

Work Flow Scheduling in Clouds using

Augmented Shuffled Frog Leaping Algorithm",

Journal of Parallel and Distributed Computing, Vol.

101, pp. 41-50, 2017.

[24] M. Mitchell, "An Introduction to Genetic

Algorithms". Cambridge, MA: MIT Press.

ISBN 9780585030944.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.crosstalkonline.org/storage/issue-archives/2011/201101/201101-Hassan.pdf
https://www.sciencedirect.com/science/article/pii/S1568494615000691#!
https://www.sciencedirect.com/science/article/pii/S1568494615000691#!
https://www.sciencedirect.com/science/article/pii/S1568494615000691#!
https://www.sciencedirect.com/science/article/pii/S1568494615000691#!
https://www.sciencedirect.com/science/article/pii/S1568494615000691#!
mailto:hosseinzadeh@srbiau.ac.ir
https://www.sciencedirect.com/science/article/pii/S1084804515000922#!
https://www.researchgate.net/profile/Enrico_Gerding
https://www.researchgate.net/profile/Simon_Parsons2
https://ieeexplore.ieee.org/author/37085397727
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780585030944

