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ABSTRACT: 

Expert Cloud is a new class of cloud computing which enables the users to achieve their requirements from a collection 

containing experts and skills created by the Human Resources (HRs). The acquisition of these skills and experts from 

this collection is possible by using the internet and cloud computing concepts without consideration of the HRs location. 

The load balancing in cloud computing means equal load distribution among resources, Virtual Human Resources 

(VHRs) and servers. The effective load distribution in a heterogeneous environment such as cloud is an important 

challenge. The increase in the number of users, the differences of request types and also different resources capabilities 

and capacities cause that some resources become overload and some others become idle. This paper presents a dynamic 

load balanced task scheduling algorithm in expert cloud. In this method, we utilize the Genetic Algorithm (GA) as a 

ranking for making distinction among the VHRs capabilities. In the proposed method, interval estimation and 

specification matrix are used to allocate the VHRs and also to determine the service rate. The load balancing and 

mapping process are modeled based on Simple Exponential Smoothing and Probability Theory. This statistical load 

balancing model allows allocating the VHRs based on service rate and Poisson model. Thus, each task is delivered to 

the VHR; which is capable to execute it. The simulation results have shown that the expert cloud could reduce the 

execution and tardiness time and improve VHR utilization. The cost of using resources as an effective factor is also 

observed.   
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1.  INTRODUCTION 

The technologies such as Cloud and Grid connect the 

physical world, human societies and information spaces 

together. HRs are among the important components of 

the organizations and societies. The organizations 

achieve success by the use of human knowledge, skills 

and experts. A platform called Expert Cloud presents the 

HRs which are geographically distributed. The 

knowledge, expert and skills of human beings are shared 

in this platform. These resources called Virtualized-HRs 

(VHRS) can utilize the provided specifications by other 

HRs such as discovering, ranking, knowledge all of 

which shared the Internet [1].  

The cloud computing is a pattern based on 

distributed Internet. It is designed to make cooperation 

among the different resources and services through the 

network. It presents the powerful services according to 

the user’s requirements. In other words, according to the 

definition of National Institute of Standards and 

Technology (NIST), cloud computing is the model to 

facilitate the easy access to the set of changeable 

processing resources and configuration through the 

network. This is done based on user request (such as 

networks, servers, applications, storages, etc.). This 

access should be able to be supplied or released with the 

minimum requirement to the resource management or 

direct service interference [2], [3]. 

Therefore, the existence of the heterogeneous 

dynamic VHRs from one hand and the variety of users 

request on the other hand cause the lack of load 

balancing in the environment. The load balancing 

distributes the resources in such a way no additional load 

occurs in any machine, and the resources are optimally 

utilized. However, it is not much paid attention to this 

aspect of cloud computing [4]. In the distributed 

computing systems such as parallel computing, Grid 

computing and also cloud computing, the load balancing 

algorithms are divided into static and dynamic 

categories according to the system topology and 

information resources availability as well. The static 

algorithms are not depended on the existing system state. 

These algorithms require prior knowledge from the 
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system such as task requirements, the relationship time, 

system processing power, memory capacity, etc. Round 

Robin is a type of static algorithms. This is a simple 

method and uses fewer resources. It cannot detect the 

attacked server, and consequently it leads to unequal 

distribution [4]. These algorithms are not suitable for the 

distributed environments such as cloud. On the other 

hand, the dynamic algorithms such as GA are based on 

the existing system state and are used to confront the 

unpredictable load processing [5]. The load balancing 

scheduling algorithms can be divided into two groups: 

centralized and distributed [6], [7]. In the centralized 

method, a central controller is responsible for the load 

distribution, since this controller has a general view over 

the resources. It devotes each job to the appropriate 

resource. The problem of this method is bottleneck. The 

distributed scheduling algorithm makes the load 

balancing based on the dynamic information of the 

resources. The advantages of this method are the 

scalability and high fault tolerance. 

In this paper, we present a new dynamic load 

balanced task scheduling algorithm in cloud computing. 

We present a mechanism for the improvement of some 

of the prior methods such as Round Robin, FIFO, Max-

Min, etc. In spite of this fact that most of the algorithms 

have presented the solutions for the load balancing in the 

distributed environments, only a few number of 

algorithms have been proposed for the cloud 

environment. Most of the existing algorithms do not pay 

attention to the problems such as scalability, task 

specifications, the suitable mapping among tasks, 

resources, and the proportion between the allocation and 

service rate. The purpose of most of these algorithms is 

the task allocation to the idle resources without 

consideration the capability of these resources. They do 

not consider the proportion between the task arrival time 

and service rate as well. 

Our proposed method attempts to improve execution 

time by solving these problems. The main idea of our 

method is that we model the load balancing and mapping 

process based on Simple Exponential Smoothing and 

Probability Theory. Our method uses the interval 

estimation and specification matrix to allocate the 

resources and also to determine the service rate. The 

process is in this way that this method uses GA as a 

ranking to make differences in VHRs capabilities. It 

utilizes the specification matrix to show the VHRs 

specifications. In continuation, the VHR service time is 

calculated by confidence interval and task mapping is 

done according to Poison process and Probability 

Theory. So the tasks are allocated to the VHRs which 

have the maximum execution capability and processing 

power. In addition to allocating, our method uses 

Exponential Smoothing to make load balancing. It 

improves the execution time and system performance. 

Simulation result proves the performance of our 

proposed method. 

The rest of the paper is organized in such a way that 

we can introduce the related work in Section 2. In 

Section 3, we discuss the new method that we have 

presented. We express the simulation and the result of 

the proposed method in Section 4 and finally in Section 

5 we conclude the paper. 

     

2.  RELATED WORKS 

2.1.  The load balancing is one of the important 

issues in heterogeneous computer networks. In fact, 

load balancing is the equal workloads distribution 

among the different computational resources. It 

leads to decreased response time, effective resource 

utilization, increased system performance, and 

elimination of the overload [8]. Different algorithms 

have presented different solutions that we intend to 

introduce them in this section.  

To provide independent infrastructure services, the 

VMs has been created and developed. A virtual machine 

is a software implementation model of a real computer. 

It executes programs similarly to the main computer, but 

apart from that and with high performance. In fact, a 

virtual machine creates a complete system platform 

which supports the function of a full operating system. 

The VMs solve heterogeneous hardware and 

infrastructure problems. The same topics discussed 

about VMs are also about Human Resources (HRs) so 

that in the expert cloud, the expertise of HRs is provided 

as a service to others. In this infrastructure, the HRs 

become their virtual form. In this situation, the need for 

individuals to appear face to face disappears, and we can 

use their expertise as a virtual person without face-to-

face interaction. Namely the main goal of the expert 

cloud is to share the expertise of HRs in the cloud 

platform as a Virtual Human Resource (VHR).  

One of the algorithms has presented a technique 

named Live Virtual Machine [9]. In this method, the 

active VM is transferred from a virtual host to another. 

In continuation, it has proposed the task based load 

balancing by the use of swarm optimization in which the 

tasks migrate from overload VMs instead of overload 

VMs migration. The Cloudsim has been used to evaluate 

this method. The task scheduling model in this method 

is based on swarm optimization. This method decreases 

the execution time and energy [9]. One of the other 

algorithms has presented a mechanism of load balancing 

based on reservation policy to distribute the tasks among 

the replicated servers. In this method, overloaded servers 

store the capacity of the remote servers. Then, the 

requests are transferred to the remote ones. No server 

shares its capacity to the other one. In this way, the load 

transferring is limited among the servers. This method 

decreases the response time and the number of not 

responded answers [10]. Another algorithm utilizes the 
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multi-core clustering processors to make load balancing. 

In order to select the best tasks for migration, this 

method uses the algorithms inspired of the nature and 

also to select the resources to accept these tasks. Each 

node selection is stochastic and based on previous 

knowledge of the node. This method increases the QoS 

and scalability [11]. Another load balancing algorithm is 

a dynamic method. This method is based on tree model 

and by inspiring of ants algorithms. This method puts the 

resources in the suitable sites; by calculating the 

competency rank. Tasks allocation is based on the tasks 

priority and control word. This method decreases 

makespan but it has high overhead [12]. Probabilistic 

modeling to achieve load balancing in Expert Clouds has 

been presented in [13]. This method provides the 

dynamic load balancing based on distributed queues 

aware of QoS in expert cloud. This method uses colorful 

ants to make distinction among resource capabilities. It 

provides the load balancing by labeling resources and 

based on Poison model. This method decreases 

makespan and tardiness [13]. Another method has 

proposed a scheduling method to achieve load 

balancing. This method consists of three algorithms. 

They are: on-demand scheduling, Querying and 

Migration Task (QMT) and also Staged Task Migration 

(STM). In a master-slave plan whenever the slave load 

is light, the master makes aware this slave of sending its 

extra loads. This step is done by QMT. In this method, 

QMT scheduling is suitable for dependent tasks and 

STM for independent ones. The disadvantage of this 

method is the high transferring time [14].  The presented 

method in [15] is a heuristic one which is based on 

sufferage value. It is to say that this method, primarily, 

calculates the subtraction of second earliest completion 

time and earliest completion time (sufferage value). 

Then, it allocates the tasks to the VMs according to this 

value. This method performs better than traditional ones 

such as Min-Min and Max-Min. One of the other 

existing methods which has been presented in [16] is 

LBMM (Load Balance Min-Min). This method is based 

on Opportunistic Load Balancing (OLB). OLB is a static 

algorithm and keeps the nodes busy without considering 

their execution time. This can slow down the processing 

time in turn [17]. LBMM adds three layers to the OLB 

architecture. The first layer is manager and it receives 

the tasks. The second layer is service manager; this layer 

divides each task into the subtasks to increase the 

processing speeds. Finally, this layer delivers the task to 

the third one [16]. Another static algorithm uses control 

scheduling controller and resource monitoring. The first 

one determines the resource for allocation and the 

second one scans the resources information. Then, the 

tasks are allocated to the resources with the highest score 

by using four phases which are: task submission, virtual 

machine request, receiving the resource information and 

resource capability computation [18]. Another method 

has addressed dynamic load balancing problem and 

solved it using Honey Bee Behavior inspired of Load 

Balancing (HBB-LB) algorithm. This method provides 

the load balancing among the VMs. In this algorithm, the 

tasks which should be balanced are regarded as honey 

bees and VMs as food sources. The bees destination is 

VMs with low load. This method is performed in four 

steps: 1. computing the current VM load, 2. making 

decisions about scheduling and load balancing. 3. VMs 

categorizing, and; finally, tasks scheduling.  At the end, 

tasks (bees) are transferred from over loads VMs to 

underload ones. This method improves the QoS and 

decreases the makespan but its main problem is low 

scalability [19]. In [20], the MBA (market based control) 

method has been presented. This method provides the 

load balancing through data allocation and dynamic 

migration. In this method, the resources have been 

considered as traders in market. This algorithm performs 

data allocation and migration intelligently using market 

rules [21]. The load balancing process of this method is 

formed based on two agents: 1. Data- trading agent. 2. 

Data auctioning agent. The first one is responsible to 

follow the database nodes load and also the nodes price. 

The second one determines which traders can buy and 

which ones can sell.  This method is dynamic and 

improves the response time. One of the other existing 

methods concerning resource management and load 

balancing is community based video replication. This 

algorithm clusters the social relationship with the near 

geographical situations that watch the similar videos. It 

presents this relationship in the form weighted graph, 

follower, and folllowee.  In this method, the requests and 

tasks are scheduled based on community. The purpose 

of this method is to facilitate users access to set of CDN 

(Content Delivery Network) nodes which is in common 

with this community. This method decreases the cost 

and average service delay [22]. One of the methods of 

resource management and scheduling is Shuffled Frog 

Leaping Algorithm. The purpose of this algorithm is to 

model and mimic the behavior of a group of frogs to find 

food. They are randomly placed on a rock in a pond. This 

method is designed to schedule and manage the flow of 

various tasks in the infrastructure as a service, and it 

brings the benefits of genetic algorithm and particle 

swarm optimization. This algorithm, while minimizing 

the total cost of execution, ensures that tasks are 

performed within the deadline [23]. 

The existing algorithms in this section have 

presented the suitable methods for load balancing, but 

most of them aim to allocate the tasks to the idle 

resources. They have paid no attention to the resource 

capabilities, resource service rate, tasks and resource 

priorities and the probability of task execution in the 

resources. This can cause the task execution failure in 

the resources and increase response time and tardiness. 

To the best of knowledge, our proposed method is 
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different from all the existing algorithms. It models the 

mapping and allocation process based on Simple 

Exponential Smoothing and Probability Theory. Our 

method presents the new solution by consideration of the 

existing algorithm problems. Contrary to the existing 

methods, our proposed method allocates the tasks by 

distinction among resource capabilities and also based 

on confidence interval and Poisson distribution. It 

performs the load balancing based on resource load 

prediction and specification matrix as well. Section 3 

explains them in details.  

 

3.  PROPOSED METHOD: CONCEPTS 

In spite of this fact that the existing algorithms in the 

field of load balancing have presented the suitable 

methods, most of them have paid no attention to the task 

priority and its specifications, resource capabilities, 

resource service rate, task execution probability over the 

resources and load prediction over them. Our proposed 

method presents the new solution by consideration of 

these problems. This new method utilizes the GA to 

make distinction among VHR capabilities. It uses the 

interval estimation (namely θ interval estimation is an 

interval in the form of  θ1̂ < θ < θ2̂  in which θ1̂ and  θ2̂ 

are the amount of the suitable random variables such as 

θ1̂ and  θ2̂ . The specified 1-α amount is a confidence 

interval for θ as well) to find the VHR service rate. In 

continuation, our method presents the specification of all 

VHRs in the form of specification matrix. It uses the 

Exponential Smoothing method to predict VHR load. 

Then, it performs mapping by calculation of the task 

execution probability in the VHRs. It is worthy saying 

that the tasks are separated according to their types. 

Finally, it controls the tasks arrival rate to the VHRs by 

forming allocation matrix and according to Poison 

Process. In the same way, the arrival rate becomes 

proportionate to service rate and the load balancing is 

achieved as well (Algorithm 1). 

 

Algorithm 1 Our proposed algorithm at a glance. 

1. Begin 

2. Put VHRs in three sites based on GA 

3. For k=1 to z do // z is the number of VHRs in 

each site 

4. { 

5.      ΛVHRk = 
1

𝜂
    

6.      SVHRk = λ
−1

 

7.      FVHRk = FVHRi-1 + β (AVHRk-1 – FVHRk-1) 

8.      PVHRij = 
xij

∑ xik
m
k=1

  + 
Eij

∑ Eik
m
k=1

        0≤ Pij ≤ ,     

∑ pij
n
i=1 =1 

9.   } 

10. Forming the specification matrix for each site 

(m*4 matrix) 

11. Get the task to the manager 

12. For i=1 to n do // n is the number of tasks 

13. { 

14.       Sort the tasks based on types 

15. } 

16. Select the suitable site based on tasks priorities 

17. For k=1 to z do // z is the number of VHRs in 

each site 

18. { 

19.        If number of input tasks > λVHRk then  

20.          VHRk is pruned  

21.        Else 

22.            { 

23.               Select the candidate VHRsK  

24.               Check the  PVHRk and FVHRk for 

candidate VHRs 

25.               Select VHRsk with maximum PVHRk 

and minimum FVHRk 

26.                 SVHRk = λ
−1

 

27.               Allocate the tasks with SVHRk rate to 

the VHRs 

28.              } 

29. } 

30. For k=1  to  z  do 

31. { 

32.    Forming the allocation matrix (m*n matrix) 

33.     Put 1 value in each row of matrix after 

allocation 

34.     Check ∑ Ti
n
i=1   ≤ λVHRk    

35.     Do allocation until line 34  is established  

36.   } 

37. If some of input tasks cannot allocate do  

38.       { 

39. For k=1 to z do 

40. { 

41. σk = √
1

m
∑ (FVHRi − AF)2m

i=1    

42. AFk = ∑
FVHR

m

m
i=1    

43.  Check  σk value 

44. If  σk > f  // f=[0-1]      

45. { 

46.    VHR is overload 

47.    Send the tasks to the manager 

48.     Go to line 19 

49. } 

50. If manager not find the VHRs in the first site  

51.  { 

52.      Go to site 2 and 3 based on tasks priority 

53.       Repeat line 19 to 36 

54.  } 

55. end 

 

3.1.  The VHRS Ranking by GA 

A genetic algorithm is a heuristic search that mimics 

the process of natural selection. This search (also 

https://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Natural_selection
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sometimes called a meta-heuristic one) is routinely used 

to generate useful solutions to optimization and search 

problems [24]. We use the GA concept for making 

distinction among the VHR capabilities.  In this method, 

each chromosome is considered as one VHR. If we 

consider S = {VHR1, VHR2,….VHRn} as a set of 

chromosomes, we can choose the chromosome with the 

highest chance by the use of rank selection. In the rank-

based selection scheme, chromosomes in the population 

are first stored according to their fitness values. Each 

chromosome's rank in the population is used to influence 

the selection process instead of its fitness value. 

Selection scheme is the following [24]: 

 

𝑃𝑖 =
𝑅(𝑖)

∑ 𝑅(𝑖)𝑛
𝑖=1

        𝑖 = 1,2, … … 𝑛                             (1) 

 

Where, Pi denotes the selection probability of 

chromosome i, n denotes the population size and R(i) € 

[1,n] is the rank of chromosome i. In this case, R(n) 

presents the best chromosome, and R(1) is the worst one 

in the population. For the calculation of each 

chromosome rank, the fitness of each one should be 

calculated. In fact, the fitness of each chromosome 

depends on its average number of executed tasks by each 

VHR (λj) and average response time (𝑦̅).  

 

𝑇𝑓𝑣𝑖 =  𝜆𝑗      𝑖 = 1,2, … … 𝑛   𝑗 = 1,2, … . 𝑚     (2)                                                                                                                       

 

𝑆𝑇𝑓𝑣𝑖 = 𝑦 ̅                  𝑖 = 1,2, … … 𝑛                       (3)                                                                                                              

 

Where, Tfvi and STfvi denote the fitness from the 

view point of the number of the successful executed 

tasks and average response time respectively. It is worth 

noting that λj and 𝑦̅ are calculated based on section (3.4). 

In continuation, Eq. (1) based on our proposed method 

is defined as follows: 

 

𝑃𝑇 = 
  𝑅𝑇𝑓𝑣(𝑖)

∑ 𝑅𝑇𝑓𝑣 (𝑗)
𝑛
𝑗=1

       i=1,2,……n   𝑗 = 1,2, … . 𝑚    (4) 

 

𝑃𝑆 =
𝑅𝑆𝑇𝑓𝑣 (𝑖)

∑ 𝑅𝑆𝑇𝑓𝑣 (𝑗)
𝑛
𝑗=1

     𝑖 = 1,2, … … 𝑛   𝑗 = 1,2, … . 𝑚                                                   

(5)       
 

 

Where, PT is the indicator of the VHR selection 

probability based on a number of successful executed 

tasks, RTfv is the rank of each VHR from the view point 

of a number of successful executed tasks (λj value is high, 

the VHR rank is better), PS is the VHR selection 

probability based on service time and finally RSTfv is the 

rank of each VHR from the view point of service time. 

In continuation, all VHRs are set in three sites based on 

PT and PS values. The VHRs with high PT and PS values 

are set in the first site, the VHRs with average PT and PS 

values are in the second, and finally the VHRs with low 

values are set in the third site. Eq. (6) shows this clearly.  

 

                    1       if     A ≤ PT & PS ≤ B 

Site Number =     2      if     C ≤ PT & PS ≤ A              (6) 
                            3       if     D ≤ PT & PS ≤ C 

 

 

In Eq. (6), A, B, C and D show the value of selection 

probability for each VHR. In our proposed method, the 

value of A, B, C and D are: 0.8, 1, 0.4 and 0 respectively. 

So, site 1 includes powerful VHRs (PT and PS with high 

values), site 2 includes average VHRs (PT and PS with 

average values) and finally site 3 includes weak VHRs 

(PT and PS with low values). Finally, VHRs are 

categorized by the use of GA concept.  

 

3.2.  Sites and Tasks Division based on Ranking 

We use the VHR ranks to make sites. We consider 

three sites with tree structure for this purpose. The VHRs 

with high processing power are set in the first site, VHRs 

with the average processing power are set in the second 

site and; finally, the VHRs with low processing power 

are set in the third one. In order to determine the 

specifications of each VHR in sites, we allocate a label 

for it. Each label consists of three units. λ is the indicator 

of the number of executed tasks by each VHR, Ts is the 

VHR service time and β shows the rank of VHR. In 

addition to VHRs, the submitted tasks by the users 

should be labeled. Indeed, this label determines the type 

of user request. If the task should be immediately 

executed without delay; in this case, this task needs the 

powerful and fast VHR, the value of label will be one 

(tasks with high priority). If the task can wait for average 

time, then the value of task label will be two (tasks with 

average priority). At the last step, if a task can wait for a 

long time, the label value will be three (tasks with low 

priority). 

 

3.3.  Specification of Matrix Formulation 

The specifications of VHRs in each site are displayed 

by a matrix. This matrix which is m*4 one, consists of m 

rows showing the VHRs and columns show the VHR 

specifications. These specifications are: λ which is the 

indicator of successful execution tasks by each VHR, 

SVHR is the VHR service rate, PVHR is the probability of 

task execution by each VHR and; finally, FVHR shows the 

VHR load prediction. In the continuation, we will deal 

with these specifications (Eq. 7). 

 

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29
https://en.wikipedia.org/wiki/Search_algorithm
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               (7) 

 

3.4.  The Interval Estimation for Service Rate 

Calculation 

One of the VHR specifications is service rate which 

is the same as task execution by each VHR. We use the 

interval estimation for the service rate calculation. We 

hypothesize that the   VHR = {VHR1, VHR2,….VHRm} 

are the VHRs set in each site in which each VHR can 

process n independent task: T={T1,T2,…..Tn}. If t= 

{t1,t2,……tn} is task execution time by each VHR, then 

fθ(t) will be probability distribution which depends on 

the unknown θ parameter. The purpose of this estimation 

is to find the quantity from the observed value 

(t1,t2,……tn) as an approximation of unknown θ 

parameter. So by using the interval estimation, we 

calculate an interval time in which θ is to exist in this 

interval. It is hypothesized that two statistics θ1 and θ2 

are such as follow: 

 

𝜃1 = 𝑔1(𝑡)                                                                  (8) 

𝜃2 = 𝑔2(𝑡)                                                                  (9) 

 

We should calculate θ1 and θ2 in such a way that θ is 

to be placed in this interval if P{ θ1 < θ < θ2 }= 1-α  is 

to be established, then the purpose is to find the 

confidence interval. We can send the tasks to the VHRs 

with full confidence by using this value (1-α) according 

to (θ1, θ2) interval. So, we should calculate the estimated 

parameter for the calculation of the time interval which 

presents service to each VHR. For this purpose, we 

present the (𝑡̅ – a, 𝑡̅ + a) in which, with the (1-α) 

probability, the E (𝑡̅) will be inside this interval.  

 

𝑡̅=
1

𝑛
∑ 𝑡𝑖𝑛

𝑖=1                                                                (10)                                                                           

  

E(𝑡̅)=η                                                                      (11)                                                               

 

𝜎𝑡̅
2=

 𝜎2

𝑛
                                                       (12)                                                                              

 

𝑡̅ is the average task execution time on each VHR and 

E(𝑡̅) is the expected value as well. 𝜎2  is also the variance 

for a set of n samples(tasks). After the calculation of 

these values, we can determine the interval time that 

each VHR can give services. 

 

P{𝑡̅ - 
𝜎

√𝑛
 * 𝑍1−

𝛼

2
 < η < 𝑡̅ + 

𝜎

√𝑛
 * 𝑍1−

𝛼

2
 } = 1-α            (13)                                                                      

   

Z=
𝑡̅− 𝜂

𝜎

√𝑛

                                                                       (14)                                                                                                                       

 

Eq. (13) shows the confidence interval of each VHR 

in which Z is the normal standard parameter. It is 

calculated according to Eq. (14). So the service time of 

each VHR is inside θ1 and θ2 interval (namely (θ1 , θ2)). 

 

𝑆𝑉𝐻𝑅 = (𝜃1 , 𝜃2)                                                       (15) 

                                            

After the calculation of SVHR , we can calculate the 

task interval rate to each VHR as well. It is to say that 

we want to calculate the number of successful tasks that 

each VHR can execute and accordingly allocate the task 

to each VHR. We use the Poisson distribution for this 

purpose. 

 

𝜆 =
1

𝐸(𝑡̅)
 =  

1

𝜂
       ∶ 𝜃1 < 𝜂 < 𝜃2                              (16) 

                                                                             

𝜆 = 1

𝑆𝑉𝐻𝑅
= (

1

⌊𝜃1⌋
,

1

⌊𝜃2⌋
)                                       (17)   

 

The Poisson distribution presents the number of 

successful executed tasks in an interval   time. So we can 

calculate the λ value by using the SVHR interval time 

which is the same as exponential distribution. Namely 

SVHR= 𝜆−1 . Thus, we can allocate the tasks with λ rate 

and in a confident interval time to each VHR by 

calculating the λ. In this way, all tasks are successfully 

executed. This means that we can make proportionate 

the interval rate with the service time. 

 

3.5.  Exponential Smoothing for VHR load 

Predection 

Another specification of VHR is FVHR parameter. 

That is the same as VHR load prediction. The 

importance of this parameter is revealed during the 

allocation. It prevents from additional task allocation to 

some VHRs by being aware of the value of this 

parameter, and also it stops the lack of load balancing. 

We use the exponential smoothing to achieve this 

purpose. This method has a plenty of usage for the 

request prediction in the future. In this method, it is 

given different weights to different periods data. These 

weights follow a descending geometric progression. 

This method gives the maximum weight to the amount 

of the last period requests and whatever we go back; the 

weights decrease in the form of exponential. So, we use 

the Eq. (18) for the calculation of VHR load prediction 

and capacity. 
𝐹𝑉𝐻𝑅𝑖 = 𝐹𝑉𝐻𝑅𝑖−1

+  𝛽(𝑋)       𝑖 =

1,2,3, … … 𝑚                                                                     (18) 

  

𝑋 =  𝐴𝑉𝐻𝑅𝑖−1
 −  𝐹𝑉𝐻𝑅𝑖−1

 𝑖 = 1,2,3, … … 𝑚         (19)    

 



Majlesi Journal of Electrical Engineering                                                      Vol. 13, No. 4, December 2019 

 

67 

 

In Eq. (18), FVHRi is the indicator of VHRi load 

prediction for the next period. 𝐹𝑉𝐻𝑅𝑖−1  shows   the 

previous period VHRi load. β is the smoothing 

coefficient and is acquired by trial and error. By 

consideration of some empirical information, the β value 

is between 0.1 to 0.3. 𝐴𝑉𝐻𝑅𝑖−1  is the indicator of the real 

VHRi load request in the previous period. Finally, X 

shows the prediction error of previous period. So, we 

add this parameter as the third VHR specification to the 

specification matrix. 

 

3.6.  The Probability Theory 

One of existing parameters in specification matrix is 

PVHRj. That is the same as VHR probability selection to 

execute the tasks. We calculate the PVHRj value for each 

VHR and choose the most probable VHR based on its 

value. It is hypothesized that S={ 

VHR1,VHR2,……,VHRm } is non empty finite space. The 

probability model is presented as Eq. (20) over this 

sample space. 
 

𝑃𝑉𝐻𝑅𝑖𝑗
=

𝑥𝑖𝑗

∑ 𝑥𝑖𝑘
𝑚
𝑘=1

 +  
𝐸𝑖𝑗

∑ 𝐸𝑖𝑘
𝑚
𝑘=1

 0 ≤  𝑃𝑖 ≤  1 , ∑ 𝑝𝑖𝑗

𝑛

𝑖=1

= 1,    

𝑗 = 1,2, … . 𝑚, = 1,2, … 𝑛                                        (20) 

 

𝑥𝑖𝑗= 
𝑇𝑎𝑠𝑘𝑖 𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝐻𝑅𝑗𝑠𝑝𝑒𝑒𝑑
                                                     (21)                                                                                                                  

𝐸𝑖𝑗 = 𝑊𝑉𝐻𝑅 ×  (1 −  𝐿𝑉𝐻𝑅𝑗  )  ×
ℎ𝑠𝑝𝑒𝑒𝑑

𝑆
                    (22)                                                                                                                         

𝐿𝑉𝐻𝑅𝑗 =
𝐸𝑇𝑁

𝑇𝑇𝑁
                                                              (23) 

                                                                    

According to Eq. (20), 𝑃𝑉𝐻𝑅𝑖𝑗
 value contains 

performance evaluation of task execution over  the 

VHR. Whatever the Pij value is nearer to 1 , the VHR is 

more probable for the task execution. In this model, xij is 

the same as the task length ratio to each VHR speed. Eij 

is calculated according to Eq. (22) in which WVHR is the 

number of processors in each host and hspeed is the 

indicator of processor speed in each host. S is the 

minimum speed required for task execution as well. In 

this equation, LVHRj is the same as the load of each VHR 

achieved from the division of number of present 

execution tasks into the number of total tasks (TTN). In 

this way, we can allocate the tasks to the VHRs which 

have the most chance of execution by calculating Pij and 

consideration of its value. This, in turn, prevents the 

unsuccessful task execution.  

  
3.7.   Proposed Load Balancing Strategy 

Our proposed load balancing is performed over four 

steps. This new method which is based on tree structure 

and mathematical model emphasizes on GA concept. 

The process is, in this way, that in the first step the 

existing VHRs based on GA are divided into three 

groups. In this way, the powerful VHRs (the resources 

with low service time and high number of successful 

execution tasks) are located in the first site; the VHRs 

with the average processing power in the second site, 

and, finally, the weak VHRs in the third one. After this 

step, the existing VHRs specifications in each site are 

displayed in the form of specification matrix. In this 

matrix, the λ, s, F and p columns are the indicators of the 

number of the successful executed tasks by each VHR; 

the service time (service rate) in each VHR, VHR load 

prediction and the probability of each task execution by 

VHR, respectively, this is the second step. In the third 

one, the user request enters the system. This request is 

transferred to the manager. The manager allocates the 

requests to the sites of one, two and three by considering 

the user type request. When the root node in each site 

which acts as a main parent, receives the task, then, it 

considers the specification matrix. The aim of this 

consideration is to prune the inefficient nodes in order to 

decrease the search space. Primarily, it compares the 

number of entered tasks with the λ column value in 

specification matrix and selects the candidate VHRs. 

The candidate VHRs are those which their λ value is 

greater or equal with the number of entered tasks. The 

parent node considers the second and third columns (F 

and P) after selecting the candidate nodes. It selects the 

node from the candidate ones in which the value of Pij is 

higher (is nearer to 1) and also the F value (load 

prediction) is the least. In this step, the tasks are 

allocated to the related VHR based on existing service 

rate in s column. This is the same as task mapping model. 

It considers the service rate proportionate to arrival task 

rate based on Poisson model. After the allocation of 

tasks to each node, the allocation matrix is formed. This 

matrix is n*m; in which, the rows are tasks and the 

columns are VHRs. Each time that a task is allocated to 

each VHR, the value of its related element becomes 1 

(Eq. 24).  What is important in this matrix is the control 

of task allocation to each VHR.  

 

         𝑉𝐻𝑅1   𝑉𝐻𝑅2  𝑉𝐻𝑅3 ⋯     𝑉𝐻𝑅𝑚 

𝐴𝐿 =

 

𝑇1

𝑇2

⋮
𝑇𝑛

(

𝐴𝐿11 𝐴𝐿12 𝐴𝐿13 ⋯ 𝐴𝐿1𝑚

𝐴𝐿21 𝐴𝐿22 𝐴𝐿23 ⋯ 𝐴𝐿2𝑚

⋮ ⋮ ⋮ ⋮ ⋮
𝐴𝐿𝑛1 𝐴𝐿𝑛2 𝐴𝐿𝑛3 ⋯ 𝐴𝐿𝑛𝑚

)               (24) 

 

∑ 𝑇𝑖
𝑛
𝑖=1   ≤ 𝜆𝑉𝐻𝑅𝑗      i=1,2,……n     j=1,2,…..m    (25)                                          

 

Eq. (25) means that the sum of the allocated task 

number to each VHR should be less than or equal the λ 

value of each VHR. In other words, the sum of each 

column values should be less than λ of each VHR. In this 

way, we can control the arrival rate to each resource, and 

allocate the number of tasks to each one which is capable 

to perform them. We allocate the tasks to each VHR by 
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consideration of confidence interval (service rate) of 

each VHR and with full confidence in each SVHR seconds 

as well. This means that we should proportion to the 

arrival rate with service time based on Poisson model. 

The fourth step is mentioned when the parent node can 

allocate just a number of received tasks to the one node 

(when a task processing in VHR is prolonged and the 

rest of tasks wait to get service). In this condition, the 

tasks which are not allocated should be migrated. In fact, 

the purpose of the fourth step is to keep load balancing. 

In this way that, the standard deviation value (Eq. (26)) 

is considered for each VHR in ti to ti+1 interval. If σ value 

is in k=[0-1] interval, the system is balanced. If σ < k, 

the system is underloaded, and finally, if    σ > k, the 

system is overloaded [4]. So, the parent node transfers 

the additional load (not allocated tasks) to the 

undeloaded VHRs.  

 

 𝜎 = √
1

𝑚
∑ (𝐹𝑉𝐻𝑅𝑗 − 𝐴𝐹)2𝑚

𝑗=1                             (26) 

  𝐴𝐹 = ∑
𝐹𝑉𝐻𝑅𝑗

𝑚

𝑚
𝑗=1                                                      (27)    

                                                          

The transfer can be done in two forms: 1. the task 

migration should be in the related site. Namely, the 

parent node selects the VHR among the candidate ones 

according to the mapping rules by the consideration of 

PVHR matrix that is to say its λ value is more equal than 

the number of entered tasks and P value is maximum 

while F one is minimum. It transfers the tasks in each s 

seconds. 2. The migration is not possible in the site. 

Namely, there is no node that has immigration 

conditions. In this condition, the tasks are transferred to 

other site. The priority of not allocated task migration in 

site 1 is primarily site 2 and, finally, is site 3. The priority 

of the task migration in site 2 is primarily site 1 and then 

site 3. Finally, the site 3 also considers; primarily, the 

site 1 to allocate the remaining tasks and then it goes to 

the site 2. In this way, the parent node in each site 

receives the not allocated task of another site, and 

allocates them based on mapping rules. So, the load 

balancing is kept in the sites as well.  

                   

 
(a) 

 

 
(b) 

 

Fig. 1. (a) The proposed environment model. (b) The 

proposed method workflow. 

 

4.  SIMULATION RESULTS AND ANALYSIS 

In this section, we demonstrate the conclusion of the 

proposed algorithm with simulation. In this section, we 

have analyzed the performance of our algorithm based 

on the results of simulation using Cloudsim and 

validated it in Amazon EC2.We have expanded the 

Cloudsim classes for the simulation of our algorithm. 

The VHRs used to execute the tasks are modeled on a 

variety of Amazon M3 samples. We hypothesize that the 

number of tasks are 150. The flow of work and the length 

of tasks are also entered according to the standard 

dataset "LAG-2005.swf". It is supposed that the tasks are 

independently executed. The number of data center is 

one. It is hypothesized that the existing VHRs in the 

environment have been distributed in the form of 3 sites 

based on GA. Each site has tree structure; the maximum 

depth for each site is three. The existing VHRs in the 

environment are different because of their processing 

power. We consider the processing power for each 

VHR: 2, 1 and 0.5 seconds respectively. The evaluation 

parameters in this simulation are: makespan, tardiness, 

degree of load imbalance, speed up, and cost. Through 

careful attention to the mentioned quantities, makespan 

is computed as follow [4]: 
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𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐶𝑇𝑖𝑗 |𝑖 𝜖 𝑇 , 
 𝑖 = 1,2, … , 𝑛  𝑎𝑛𝑑  𝑗 𝜖 𝑉𝑀  ,   𝑗 = 1,2, … , 𝑚 }                                                            
(28) 

 

     Eq. (28) shows makespan where,  CTij is the indicator 

of taski completion time in VHRj. Considering Fig. 2, 

axis x is the indicator of number of tasks and y axis 

shows makespan. The comparison between our 

proposed method and some of the other famous existing 

ones such as FCFS, RR, MET, Max- Min, Min-Min 

shows that our method has the lowest makespan. The 

maximum makespan in our method is 47720 s and 

minimum is 10850 s. This figure shows that FCFS has 

the most makespan (84330 s). 

 
 

Fig. 2. Makespan comparison between methods. 

 

Fig. 3 shows a comparison of the maximum 

completion time between the above methods as well. 

The effective reduction of the amount of makespan in 

the proposed method is due to the fact that, firstly, inputs 

are standardized in the simulation environment. 

Secondly, the proposed method addresses the effective 

distribution of tasks, which leads to a reduction in the 

execution time. 

 

 

Fig. 3. Maximum makespan comparison between 

methods. 

 

Afterwards, we calculate the tardiness. Tardiness is 

calculated according to the following equations. 

  

𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 = 𝑓𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑑𝑙𝑖𝑛𝑒                    (29) 

 

 𝐷𝑒𝑑𝑙𝑖𝑛𝑒 𝑚𝑎𝑥𝑡𝑖𝑚𝑒 + 𝑘 × (𝑚𝑎𝑥𝑡𝑖𝑚𝑒–  𝑚𝑖𝑛𝑡𝑖𝑚𝑒)  

0 = 𝑘 < 1                                                           (30) 

In the mentioned equations, finish_time is the end 

time and deadline is calculated based on Eq. (30). In this 

equation, max_time and  min_time are highest and 

lowest execution times, respectively, and k is also 

between zero and one. After calculating the amount of 

tardiness and makespan for 150 tasks,  Fig. 4 is obtained. 

This figure shows the relationship between makespan 

and tardiness. In this figure, axis x is the indicator of 

makespan and y axis shows tardiness. This figure shows 

that with the increase in the number of tasks and also the 

makespan, the amount of tardiness will also increase. 

This is due to the fact that with the increase in the 

number of tasks assigned to the system, the number of 

waiting tasks in the queue can be increased and finding 

VHRs appropriate to this number of tasks will require 

time. This could lead to delay. According to Fig. 4, the 

maximum tardiness is 55000s and the minimum is 

25000s.  

 

 
Fig. 4. Relationship between the Makespan and 

tardiness in our method 

The next parameter to be calculated is DI (Degree of 

Imbalance). This parameter is calculated based on Eq. 

(31). Where Tmax and Tmin are the maximum and 

minimum Ti among all VHRs, Tavg is the average Ti of 

VHRs [4]. Our load balancing system reduces the degree 

of imbalance drastically. The calculation result of this 

parameter is shown in Fig. 5. In this figure, axis x is the 

indicator of number of tasks and y axis shows the DI. 

This figure shows that our proposed method reduces the 

DI. In this figure the maximum DI in proposed method 

is 14.3 and its minimum is 4.01. 

 

𝐷𝐼 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
                                                        (31) 
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Fig. 5. DI comparison between methods. 

 

The last parameter is the cost. The cost value is 

calculated according to Eq. (32). In this equation Cost-

Per-Sec is the cost of execution a task on the resource. 

Based on this equation, Fig. 6 is obtained. In this figure, 

the x axis presents the number of tasks and the y axis 

shows cost. According to the obtained figure, the 

maximum cost is when the number of tasks is 150.  

 

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑆𝑒𝑐
× execution_time                       (32) 

 

 
Fig. 6. Cost of proposed method 

 

Fig. 7 also shows the cost comparison between the 

methods. In this figure, our proposed method has a 

maximum cost (1026.64 $), while the FCFS method has 

the lowest cost. The reason for the high cost in our 

proposed method is to check the quality of service before 

assignment. In that way, when the user requests the 

service, the system provides him with the appropriate 

resource for that request. This will prevent the failure of 

the implementation of work and assignment again. This 

means spending time and time. 

 

 
 

Fig. 7. Maximum cost comparison between methods. 

 

5.  CONCLUSION 

In this paper, we have presented a new method for 

the dynamic load balancing in expert cloud. Our 

proposed method provides the load balancing and 

effective allocation by controlling the arrival rate and 

service time in each VHR. In this method, the GA has 

been used for making sites and distinction among the 

resource capabilities. The resource specifications have 

been expressed in the form of specification matrix. The 

tasks also have been categorized according to their 

types. The tasks allocation to the resources have been 

done according to Poisson model and probability theory. 

In our proposed method, the confidence interval has 

been used to estimate the service rate and based on this 

fact, the arrival rate has been calculated. In this way, it 

has presented the mapping model based on proportional 

arrival rate and service time. The proposed algorithm has 

provided the load balancing by controlling the arrival 

rate and also based on a mathematical prediction model. 

The proposed algorithm decreases the execution time 

and tardiness by effective allocation and making load 

balancing. We have compared the result of our proposed 

method with the traditional existing ones. The results 

show that our proposed method improves the execution 

time and cost in comparison with other existing ones.  

For the future works, we intend to extend the load 

balancing for resources with more specifications such as 

fault tolerance and security. This method includes single 

point of failure problem which should be solved in future 

works. The use of other estimation methods such as 

variance estimation, likelihood and also the use of 

prediction methods such as linear regression could be 

used in the future researchers; it is proposed to develop 

the Cloudsim classes, as well.   
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