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ABSTRACT: 

In this paper, we present a novel rough neural network control system based on the variable structure control 

developed for a class of SISO canonical nonlinear systems with taking the presence of bounded disturbance into 

account. We assume that the nonlinear functions of the system are completely unknown. The rough neural network 

presented here is used to approximate the unknown nonlinear functions to a desired appropriate approximation. A 

fuzzy soft switching structure is developed to decide the amount of efforts taken by neural network and variable 

structure control systems based upon the real-time error characteristics.  A proper Lyapunov function is defined and 

used to deduce adaptive laws for tunable parameters of neural network and to achieve the closed loop stability of 

overall system. The rough family of neural networks have a reputation of better functionality at the presence of noise 

and disturbance, which comes from their interval characteristic of their parameters. In this study we utilize this 

property to achieve better performance. To demonstrate the effect of proposed control structure, it is applied upon 

three systems (one exemplary system, a dynamical, and a chaotic) and the simulated results have shown the efficiency 

of this hybrid variable structure control scheme. 
 
KEYWORDS: Hybrid Control, Rough, Neural Network, Non-Linear System Stability, Variable Structure Controller. 

  

1.  INTRODUCTION 

The importance of flexibility and durability in the 

modern architecture of nonlinear control is known to 

every researcher. In the past few decades, researchers 

exhibited interest in crafting control architectures more 

flexible, robust and efficient and it is no wonder that 

their visions are in favor of closing the gap between the 

machine and the human brain. Therefore, the concept 

of adaptive control [1, 2] with co-operation of different 

approaches for simulating various parts of brain’s 

activities resulted in emerge of Fuzzy Inference 

Systems (FIS), Artificial Neural Networks (ANN) [3] 

and etc. The main problem in classical nonlinear 

control methods like pure Feedback Linearization, 

Sliding Mode or Back Stepping, arises from the fact 

that almost in all of these methods, a complete and 

comprehensive knowledge upon the nonlinear 

functions of system is strictly demanded, which is in 

contrast with actual and realistic conditions usually 

faced by designer. Therefore, through decades of 

research and with function approximation ability of FIS 

and ANNs coming into light, researchers started to 

improve and utilize these abilities in co-operation with 

classical nonlinear control methods.  

A unique collaboration of classic sliding mode 

control and neural network was introduced by Sanner 

and Slotine [4] in which a sliding mode component and 

a radial basis neural network work together to keep the 

state of systems in a pre-specified set in the plant’s 

state space. Later the use of variable structure schemes 

was raised with more researchers looking for more 

reliable control structures. Hogans, Homaifar and 

Sayyarrodsari combined variable structure control idea 

with fuzzy inference to obtain a control method 

invariant to perturbations of system and external 

disturbances [5]. Through different researches, it has 

been proven that utilizing variable control structures 

can help to overcome some of most difficult problems 

in nonlinear control [6-9]. Outside of the variable 

structure theory, artificial neural networks have been 

used in co-operation with other nonlinear control 

theories and are applied to subjects as vehicle stability 
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[10], benchmark problems as like inverted pendulum 

[11], robotics [12, 13], and etc. Among different 

subjects in soft computing, rough set theory is a new 

and reliable theory which has been recently introduced 

and is utilized alongside fuzzy and neural network 

theories [14-16]. Although only a few researches 

around application of rough set theory for control of 

nonlinear systems has been conducted [17-20]. 

In this study, a new Variable Structure Rough 

Neural Network Control (VSRNNC) method with 

utilizing a specific type of ANNs is presented. Rough 

family of artificial neural networks is new member of 

soft computing family which uses the rough set theory 

in neural network structure and provides the interested 

designer with its own flexibility in structure design. 

The main idea behind the rough ANN is, that based on 

the view of designer, different parameters inside the 

ANN can be taken as interval parameters. This property 

shapes the robust characteristic of rough ANN which 

comparing to other ordinary ANNs, is unique. In this 

hybrid structure scheme, a sliding mode controller 

work alongside the neural network to represent the 

human behavior of controlling. A fuzzy switching 

system is putted in the role of inference system, 

deciding how much effort should be taken by Rough 

Neural Network (RNN) and sliding mode. An adaptive 

disturbance compensator is introduced to the final 

control law to guarantee the proper performance in the 

presence of disturbances.   Lyapunov-based stability 

theorem is used to achieve the global boundedness of 

overall system and to achieve the demanded adaptive 

laws. The proposed control system is used and 

simulated on two different systems, an inverted 

pendulum as an example of a mechanical system and 

Duffing Oscillator for a chaotic one, which performs 

well in both cases. 

To fully recognize the novelty of proposed 

VSRNNC system in this study comparing to former 

neural – adaptive control papers mentioned earlier, the 

author likes to express the major discrepancies and 

innovations of this work by mentioning that rough 

neural network is combined with variable structure 

control for the first time, in this paper. Also, the 

adaptive laws are used for tuning the adjustable 

parameters of rough neural network. In addition to that, 

adaptive laws for neural network are made robust using 

the Projection Modification. 

In the following sections of this paper, Section 2 

provides the problem formulation, In Section 3 we 

present the formulation of rough neural network and 

their ability for function approximation. In Section 4, 

the VSRNNC system is proposed for controlling SISO 

nonlinear systems and the asymptotically stability of 

controlled systems are proven. Results for simulations 

are provided in Section 5, and the paper is discussed 

and concluded in Section 6. 

2.  PROBLEM FORMULATION 

      Study in this paper is focused on designing an 

adaptive control scheme for a class of dynamic Single 

Input-Single Output (SISO) nonlinear systems which 

could be represented with the canonical formulation: 

 

 ( ) ( ) ( ), ( ), , ( 1)( )

( ( ), ( ), , ( 1)) ( ) ( )

n

ex

x t f x t x t x n t

b x t x t x n u t d t

  

 
 

( ) ( )y t x t                                                              (1) 

 

Where, ( )f X  is the unknown function, ( )u t  is the 

control input, ( )b X  is the control gain and ( )exd t  is 

bounded external disturbance presumed as
0( )exd t D

. The desirable scenario here is to force the states of the 

system, 
( 1)

[ , , , ]
n T

X x x x


 to follow a desired 

trajectory, 
( 1)

[ , , , ]
n T

d d d d
X x x x


 . We define the

d
X X x , the tracking error vector and the desired 

result to achieve here is to design a suitable control 

law, ( )u t  to ensure that 0x  ast  . 

In this study, a rough neural network is utilized to 

provide the proper approximation of the unknown 

nonlinear function in the presence of disturbances and 

noise. While a lot of former researches concluded by 

proving the function approximation ability of ANNs, 

only a few has come to try to achieve the proper system 

performance under the mentioned conditions. In the 

next section, rough neural network is introduced and its 

unique characteristics is going to be discussed. 

 

3.  ROUGH NEURAL NETWORK 

The term “rough neural networks” is used for a 

group of artificial neural networks which are designed 

based upon using rough set theory. The primary 

characteristic of RNNs is robustness against 

uncertainties in the data in hand. This robustness is a 

result of structural design which by the choice of 

designer, different parameters defining the network 

could be taken as interval parameters except of being 

crisps ones. This principle could be applied to different 

types of neural networks such as multilayer perceptron 

or radial basis networks.  

Fig. 1 shows the structure of the proposed RNN in 

this study. It has a single hidden layer with Gaussian 

activation functions and the output weights, connecting 

the hidden layer to the output layer, has taken as 

interval parameters. The overall formulation [21] for 

the network indicated in Fig. 1 is as follows: 
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Fig. 1. Rough neural network Structure. 

                                                                                    

In which, c is the center of Gaussian neurons,   is 

the standard deviation of Gaussian neurons, 
1( )x t and 

2 ( )x t  are the inputs for the network, l  and  m  are 

numbers of neurons in hidden layer and the output 

layer respectively, io  is the output of i -th neuron of 

the hidden layer, ,ij uw  and ,1ijw  are the upper band 

and lower band weights of output layer, and NNu  is the 

rough neural network. The network output is average of 

upper band output, uo  and the lower band output lo . 

The output weights of the network, both from upper 

band and the lower band is taken as the adjustable 

parameters of the network. With choosing Gaussian 

activation functions, overall property of function 

approximation of proposed network is as efficient as a 

simple RBF network while by taking the output 

weights in interval forms, we can reduce the effect of 

uncertainties in the process of approximation. 

 

4.  ADAPTIVE VARIABLE STRUCTURE 

ROUGH NEURAL NETWORK CONTROL 

In this section we describe the proposed VSRNNC 

structure for controlling SISO nonlinear systems. First 

we present the structure of VSRNNC, second, using 

Lyapunov stability theorem, we prove VSRNNC’s use 

in control of nonlinear systems described in (1) for both 

( ) 1b X  and ( ) 1b X   .  

 

4.1.  Structure of VSRNN Control System 

Fig. 2 shows the block diagram of the proposed 

VSRNN control system. In this structure, the control 

signal is the result of three different part working 

together: linear feedback, sliding mode and rough 

neural network. It worth to mention that using a rough 

neural network makes this system unique and different 

from structures like in [4] with utilizing simple radial 

basis network. The modulator block uses a fuzzy soft 

switching component to determine the amount of effort 

taken by variable structure or rough neural network in 

the overall control of the system.  

 

 
Fig. 2. VSRNN control scheme. 

 

We define a tracking error metric to use further in 

sliding mode control and switching subsystem as: 

 

1( ) ( ) ( )    0nd
s t t with

dt
   x                      (4) 

 

With this definition, ( ) 0s t   represents a time-

varying hyperplane in 
nR , which by choosing   

properly , the tracking error vector decays to zero 

exponentially and the perfect tracking can be 

asymptotically achieved by maintaining this condition 

[4]. Hence, our goal would be designing a control that 

forces ( ) 0s t  . 

For utilizing this error metric for sliding mode 

component, a dead zone with the width of     and 

hence defining a continuous function s  is introduced 

as: 

 

( ) ( ) ( ( ) / )s t s t sat s t                                  (5) 

 

This helps overcoming common sliding mode 

designing problems, which has a better performance 

from sliding mode component and the overall control 

structure. 

     By taking the time derivative of this error metric (4) 

we would have: 
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( ) ( ) ( ( )) ( ) ( ) ( )r A As t a t f x t u t d t D t           (6) 

 

       Where, ( )( ) ( ) ( )T n

r v da t t x t x  in which 

1 2[0, , ( 1) ,..., ( 1) ]T n n

v n n       and ( ) ( )n

dx t  is the 

n th derivative of the desired trajectory. ( )Ad t  is the 

approximation error defined as ( ) ( ) ( )A Ad t f X f X 

and ( )D t  is the external disturbance. Based on the 

above considerations, the suggested control law would 

be: 

 

( ) ( ) ( ) (1 ( ))

( ) ( ) ( )

D fl ad

sl r

u t k s t u t m t u

m t u t u t

    

 
            (7) 

 

In which the following terms are defined as: 

 
( )( ) ( )T n

fl v du t x t x                                           (8) 

ˆ( )adu f X                                                             (9) 

( ( ) / )sl slu k sat s t                                          (10) 

( )ru sign s                                                     (11) 

 

Where, the final term in the control signal (7), ru , 

is the term for compensating effect of external 

disturbances, ( )m t  is the output of fuzzy switching 

system, and ˆ( )f X  is the approximation of unknown 

nonlinear function ( )f X , provided by rough neural 

network’s output which can be rewritten as : 

 

, ,

1 2

l ij u ij l

nn ii

w w
u o




                                    (12) 

 

And the (.)sat  is defined as: 

1 1

( ) 1 1

1 1

if y

sat y y if y

if y

  


   
 

                       (13) 

 

4.2.  Asymptotically Stability of Nonlinear Systems 

with Considering b(X) = 1  

With substituting (7) in (6), ( )s t  can be written as: 

 

( ) ( ) (1 ( ))( ( ) ( ))D A As t k s t m t f t d t      

   ( )( ( ) ( ( ))) ( ) ( )sl rm t u t f x t u t D t       (14) 

 

Consider the Lyapunov function candidate as: 

 

 

2 2

1

2 * 2

2

1 1
( ) ( ( )

2

1 1
( ) )

U

a

L

a

V t s t w
k

w
k

 



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 





                             (15) 

 

It is necessary to indicate the last term in the 

proposed Lyapunov function is the candidate for 

designing ru in order to compensate the external 

disturbance. By taking the derivative of (15) we have: 

 

1

*

2

1
ˆ( ) ( )

1 1
ˆ ( )

U U

a

L L

a

V t s s t w w
k

w w
k

  



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 





                              (16) 

 

Knowing ( ) ( ( ) / ) ( )s t sat s t s t    and 

applying (14) to (16) leads to: 

 
2

1 2

*

( ) ( ) (1 )( )

1 1
ˆ ˆ    ( ( ))

1
   ( ) ( )

D D A

sl U U L L

a a

r

V t k s s k s m f d

m s u f x w w w w
k k

s u s D t   


  



 

      

   

   

 

                                                                                   (17) 
 

By defining the adaptive laws for neural network 

weights and for disturbance compensator design 

parameter, we have: 

 

1

1
ˆ ( ) (1 ( ))

2
U a iw t k s m t o                  (18) 

2

1
ˆ ( ) (1 ( ))

2
L a iw t k s m t o                  (19) 

s                                                                   (20) 

 

Assuming that the upper bound for the magnitude 

of nonlinear function f is known as 0M  and the 

uncertainty ( )A fd t  when f  is the approximation 

error between nonlinear function f and it’s neural 

network approximation, Af , so that ˆ
ff f   , and by 

applying (10), (18) and (19) in (17) and some 

mathematical simplification results in: 
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2

*

( ) (1 ) ( )

    ( )

1
   ( ) ( )

D D

sl D r

V t k s m s d k

m s f k k s u

s D t   


 

 



     

    
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(21) 

 

In which, for 1m   we have 
A fd   and for

0 ( ) 1m t   , the dead zone   would be chosen in a 

way that 
D fk   , so that the second term on the 

right will be non-positive. Choosing the sliding 

controller gain as 
0( )sl fk t M   ensures that the third 

term on the right is also non-positive which results in: 

 

2 *1
( ) ( ) ( )D rV t k s s u s D t   


         (22)   

 

Applying (11) in (22) gives: 
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2 *
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1
 ( ) ( ) ( )

1
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D

k s s s s D t
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   

  
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       
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                                                                                  (23) 

 

With 
*  being a design parameter, considering it 

as 
*

D   gives: 

 
2( ) DV t k s                                                        (24) 

 

Therefore, for the system presented in (1) all signals 

are bounded. Since ( )s t  is bounded, it can be proven 

that, if (0)x is bounded, then ( )tx will be also bounded 

for all t . With ( )
d

X t being bounded by design, it 

results in ( )X t being bounded as well. 

In order to prove the asymptotic convergence of the 

tracking error, it is necessary to prove that 0s   as 

t  . For this, we apply Barbalat’s Lemma to the 

continuous, non-negative function as follow: 

 

2 2

1 1

0

( ) ( ) ( ( ) ( )) ( )

t

D D
V t V t V t k s t dt V k s t

 
             

(25) 

 

It can be seen that every term on the right side (14) 

is bounded, hence ( )s t


 is bounded, which means that 

1
( )V t is a uniformly continuous function of the time. 

Since 
1
( )V t is bounded below by zero, and 

1
( ) 0V t  for 

all t , applying the lemma results in 
1
( ) 0V t  as 

t  . This means that ( )s t   is asymptotically 

satisfied. Also the asymptotic tracking errors are 

asymptotically bounded by: 

 
( ) 1( ) 2 ,    1, , 1i i i ne t i n                   (26) 

 

4.3.  Asymptotically Stability of Nonlinear Systems 

with considering b(X) = 1  

In the following section we extend the results from 

last section to non-linear systems with non-unity 

control gains. It is assumed that the control gain ( )b X

is finite and non-zero and is bounded as 1

1( )b X M  . 

We define the function ( ) ( ) / ( )h X f X b X to be also 

bounded as 
0( )h X M . It is further assumed that 

there is a known positive function 
2 ( )M X such that 

1

2( / ) ( ) ( )d dt b X M X X  . 

We define the Ah  and 
1

Ab 
 as neural network 

approximations to the functions h  and 
1b 

 so that : 

 

( ) ( )A hh X h X                                             (27) 

1 1( ) ( )A bb X b X                                          (28) 

 

Where, h  and 
b
  are as small as desired. We 

utilize a single network with two outputs as shown in 

Fig. 3. 

By taking the above definitions in mind, the time 

derivative of the error metric (6) would give us: 

 
1 1( ) ( ) ( ) ( )

( ( )) ( ) ( ) ( )

r

A A

b X s t b X a t

h x t u t d t D t

  

  
                        

(29) 

 

Where, by using the neural network approximations 

of functions, the disturbance ( )Ad t is given by: 
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1 1
( ) ( ) ( ) ( )

( ) ( )

A A r

A

d t b X b X a t

h X h X

 
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 

  
                        

(30) 

And satisfies ( ) ( )A h b rd t a t   . 

 
Fig. 3. Rough neural network Structure for non-unity 

control gain case. 

 

Based on (29), we suggest a control law as: 

2

1

1
( ) ( ) ( ) ( ) ( ) ( )

2

ˆ ˆ           (1 ( )) ( ) ( ) ( ) ( )

D sl

A r A r

u t k s t M X X s t m t u t

m t b X a t h X u t





   
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 

 

                                                                                  (31) 

Where, ( )slu t  is same as (10) with slk  as: 

 

0 1( ) ( ( ) ) ( ( ) ) ( )sl h b rk t M X M X a t          

(32) 

 

And ( )ru t  is given in (11), and we define ˆ ( )Ah X

and 1ˆ ( )Ab X as the two outputs of rough Gaussian 

network, respectively: 

 

, 1 , 1

1
( )

2

l ij u ij l

A ii

w w
h X o




                           (33) 

, 2 , 21

1
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2

l ij u ij l

A ii

w w
b X o




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By using the control law (31) in (29) we have:  

 

1 1

2

1
(1 )( )

2
D A A r Ab s k s M X s m h b a d 

      

1 ( )sl r exm u b a h d                                   (35) 

 

In which, ˆ( ) ( ) ( )A A Ah X h X h X   and similarly for  

1 1 1ˆ( ) ( ) ( )A A Ab X b X b X    . We choose the adaptive laws 

for output weights of network as follows: 
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                                                                                  (36) 

 

Next, we propose a non-negative function to prove 

stability and convergence: 
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                                                                                  (37) 

Where, 2 2 2

1 1 1
ˆ

U U Uw w w   and 2 2 2

1 1 1
ˆ

L L Lw w w  ,  

and for second group of output weights 
2 2 2

2 2 2
ˆ

U U Uw w w   and 2 2 2

2 2 2
ˆ

L L Lw w w  .  

By taking the derivative of proposed function and 

using (35) we would have: 

 

1 2
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1

1

1 1 1 1

1 2

2 2 2 2

3 4

*

1
( 2 )
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      ( ( ) )
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1 1
ˆ ˆ       +
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ˆ ˆ       +
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      ( ) ( )
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D r sl
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U U L L

a a

U U L L

a a

r

V b M X k s

s k m s b a h s k

m s h b a d

w w w w
k k

w w w w
k k

s u s D t   








  





 

  

    

   





   

 

 

 

                                                                                 (38) 
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In which, 
1b 

 is the derivative of 
1b 

. By using 

the assumed bound on derivative of 
1b 

 and adaptive 

laws (36) in (38) we will have: 

 
2

1

*

(1 ) ( )

      ( )

1
      ( ) ( )

D A D

r D sl

r

V k s m s d k

m s b a h k k

s u s D t   


 





 

     

    

   

         (39) 

We define ( )

max
(2 )n

r h b A dr x      with Ar  

being the smallest n -ball completely containing the 

set of plant state space where both neural component 

and sliding component work together, and 
( )

max

n

dx is 

an upper bound on the magnitude of the n th derivative 

of the reference trajectory. Then for 1m  , we have 
( )

max
(2 ) n

r A da r x   and the bounds (27) and (28) 

hold in this region. In addition, we have 
A rd   

holding in 1m  . By taking 
r Dk  , when 

0 1m  , the second term on the right is less than or 

equal to zero. By choosing proper sliding mode 

controller gains, we can ensure that the third term on 

the right side is also non-positive. For the remaining 

terms of ru and external disturbance, it follows the 

same as in (22) for unity control gain case. Hence using 

the proposed control and adaption laws we produce 
2( ) DV t k s   for all 0t  , so if the initial values 

for the states of plant and for parameter estimates are 

bounded , they should remain bounded  for all positive 

time. Finally, by having the constrains assumed on 
1b 

, same as the case for unity gain control in (24) to 

(26) can be used to prove that  0s   as t  . 

 

4.4.  Fuzzy Switching System 

In this study a fuzzy switching system is used as a 

modulator component, which determines the amount of 

participation of hybrid control and the neural network 

in overall control signal. Fig. 3 shows the structure of 

this fuzzy system. The input to this fuzzy system is the 

error metric, it is a single input zero-order Takagi-

Sugeno fuzzy system with two Gaussian membership 

functions. An example of membership functions used 

in this system is shown in Fig. 4, which together with 

(7) it can be seen that with error metric being more 

distanced from ( ) 0s t  , the more effort is taken by 

sliding mode component rather than neural network. 

 

 
Fig. 4. Diagram of Fuzzy Switching System. 

 

 
Fig. 5. Example of membership functions for Fuzzy 

Switching System. 

 

4.5.  Projection Modification Method 

In most of adaptive neural network control studies, 

in order to simplify the control problem, it is usually 

assumed that the only uncertainty in the dynamical 

system is due to unknown nonlinear elements, while in 

practice, the function approximation of neural networks 

may not be able to match the modeling uncertainty 

exactly, due to other modeling errors caused by such as 

un-modeled dynamics, measurement noise or external 

disturbances. This may cause adaptive components of 

control to exhibit parameter drift, which is the result of 

attempting to adjust the tunable parameters to match a 

function which its exact match does not exist. In this 

study, in order to prevent the tunable parameters from 

drifting, projection modification method is utilized to 

ensure that parameter estimates are restrained inside a 

predefined and convex region. It is important to note 

that the projection modification method is one of robust 

adaptive learning techniques which does not affect the 

stability properties obtained using the standard adaptive 

laws. 

Considering for a generic adaptive law as: 

 

ˆ( ) ( ) ( )t t t                                                   (40) 

 

Where,   is the learning rate, ( )t to be the 

regressor vector and ( )t to be training error, with 

defining   and   as respectively the upper and lower 
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limits for the changing parameters, a form of 

mentioned method is implemented as below: 

 

ˆ 

ˆ        0ˆ( )
ˆ        0

0

if

or if and
t

or if and

otherwise

   

  


  

  


 
 

 



     (41) 

 

The initial conditions also need to be chosen in a 

way that ˆ(0)    . 

 

5.  SIMULATION AND RESULTS 

In this section, three examples of using the 

proposed control method will be presented: First we 

utilize our control scheme on an exemplary system with 

unity control gain to prove the efficiency of VSRNN as 

described in 4.2. As for non-unity control gain, the 

second system is a mechanical system, an inverted 

pendulum and the third one is chaotic one, the famous 

Duffing oscillator, in both cases in the control gain; 

( ) 1b X   . The results from proposed method is being 

compared to a more simpler hybrid control structure 

with a simple RBF as the adaptive component of 

control as proposed in [4] (HSRBF). The initial 

conditions for the plant will be as same for both 

methods. 

      Example 1.  For the ( ) 1b X   case example, as it 

has been introduced in [4] we use an arbitrary system 

with 2n   and unity control gain and nonlinear 

system function as: 

 
2

sin(4 ) sin( )
( ) 4

x x
f X

x x

 

 

  
    

  
             (42) 

 

Two different input signals, step signal and 

sinusoidal signal is used in different simulation runs. 

For step signal test [0.1,0] and for sinusoidal test, 

[0.7,0]  is chosen for system states initial values. 

The results for simulation are shown in Fig. 6 and 

Fig.7. Table 1 shows the numerical values used for 

different parameters used in this example simulation. 

Table 2 shows the mean squared error calculated from 

simulation results for example 1. As it can be seen in 

figures and the Table 2, the proposed VSRNN control 

scheme exhibits a better performance in high output 

noise while it has compensated the effect of external 

disturbance injected into system very well. 

 

 

Table 1. Numerical values of parameters in VSRNN 

control design. 

Parameters Numerical values 

d
k  10 

  3 

sl
k  10 

  0.05 

 

Fig. 6. Time response of the adaptive system; proposed 

method yVSRNN (‘_’) and method in [4] yHSRBF (‘..’); 

Tracking of the step signal. 

Fig. 7. Time response of the adaptive system; proposed 

method yVSRNN (‘_’) and method in [4] yHSRBF (‘..’); 

Tracking of the sinusoidal signal. 

 
Table 2. Mean Squared Error for results of VSRNN 

against HSRBF 

Signal / Method VSRNN HSRBF 

Step 0.0202 0.0245 

Sinusoidal 0.0122 0.0231 

 

     Example 2. Fig. 4. shows the inverted pendulum 

system, which is a typical nonlinear system used to 

evaluate the efficiency of control algorithms. In this 

system, the input signal u  forces the pendulum to keep 

an angular position  , which is the output of this 

system. The nonlinear equations of this system will be 

as follow: 
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1 2
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1 2 1 1
2 2

1

1

2

1

sin cos sin / ( )

(4 / 3 cos / ( ))

cos / ( )

(4 / 3 cos / ( ))

c

c

c

c

x x

g x Mlx x x m M
x

l M x m M

x m M
u

l M x m M



 


 




 

 

                                                                                  (42) 

 

Where, 1x  and 2x  will be, respectively, swing 

angle    and swing rate, 
2

9.8 /g m s ,   

and 0.1 M kg is the vehicle mass and  1 
c

m kg  

is mass for pendulum. 0.5 l m  is the half of the 

pendulum length and the u  is the control input. 

The parameters values for control of this plant is 

depicted in Table 1. The numerical values used for the 

controllers are achieved with trial and error. 

Simulation results for this example is shown in Fig. 

8 and Fig. 9. To verify the proper performance of 

proposed control, two different desired signals are used 

in separate simulation runs, step and sinusoidal signals. 

Random initial values are chosen for tunable 

parameters. For step signal test [0.1,0] and for 

sinusoidal test [0.7,0]  is chosen for system states 

initial values. 

For this example, Table 3 shows the design 

parameters values used in simulations and Table 4 

shows the results of mean squared error calculated.  

 

Table 3. Numerical values of parameters in VSRNN 

control design. 

Parameters Numerical values 

d
k  10 

  3 

sl
k  10 

  0.05 

 

Fig. 8. Time response of the adaptive system; proposed 

method yVSRNN (‘_’) and method in [4] yHSRBF (‘..’); 

Tracking of the step signal. 

Fig. 9. Time response of the adaptive system; proposed 

method yVSRNN (‘_’) and method in [4] yHSRBF (‘..’); 

Tracking of the sinusoidal signal. 
 

Table 4. Mean Squared Error for results of VSRNN 

against HSRBF. 

Signal / Method VSRNN HSRBF 

Step 0.0193 0.0345 

Sinusoidal 0.0149 0.0421 

 

     Again, with results showing in Fig. 8 and Fig. 9 and 

from Table 4, it can be seen that the proposed VSRNN 

for a dynamical benchmark system as an inverted 

pendulum is showing a far better performance 

especially under effect of output noise and external 

disturbance introduced to system. 

     Example 3.  The second system used for 

simulations here is the Duffing oscillator which is a 

nonlinear second-order differential equation used for 

modeling certain damped and driven oscillators. The 

describing equations for this system in state space is as 

follows:  

 

1 2

3

2 1 1 2 1
cos( ) (3 cos( )) ( )

x x

x x x x wt x u t   



     
  

                                                                                 (43) 

In which, ( )u t  is the control input to the system, 

cos( )wt  is the bounded external disturbance. Other 

parameters in the equation (43) is defined as follows: 

 

1,  -1,  -0.15,  0.15,  1w                 (44) 

 

The proposed control method is implemented for 

the Duffing oscillator. Again, two different desired 

signals, sinusoidal and pulse signal is used in different 

simulation runs and output noise is introduced to the 

system dynamics. The initial values for plants states are 

chosen same as the previous example. The results of 

controlling the system with proposed hybrid structure 

method is compared with a simple RBF neural network 

control and are shown in Fig. 10 and Fig. 11.  
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Like previous examples, Table 5 and Table 6 are 

showing information around design parameters and 

results respectively. It can be seen that for a chaotic 

system in hand, the VSRNN is proving to be a better 

and faster controller. 

 

Table 5. Numerical values of parameters in VSRNN 

control design. 

Parameters Numerical values 

d
k  10 

  3 

sl
k  10 

  0.05 

 

Fig. 10. Time response of the adaptive system; 

proposed method yVSRNN (‘_’) and method in [4] yHSRBF 

(‘..’); Tracking of the step signal. 

Fig. 11. Time response of the adaptive system; 

proposed method yVSRNN (‘_’) and method in [4] yHSRBF 

(‘..’); Tracking of the sinusoidal signal. 
 

Table 6. Mean Squared Error for results of VSRNN 

against HSRBF. 

Signal / 

Method 

VSRNN HSRBF 

Step 0.0226   0.0443 

Sinusoidal 0.0069 0.0293 

 

6. CONCLUSION  

In this paper, we discussed the output tracking 

control for a class of high-order SISO nonlinear 

systems with canonical structure and we proposed a 

novel hybrid structure control method, utilizing 

nonlinear control skills, fuzzy and neural network 

properties to efficiently control two different exemplary 

benchmark systems. The nonlinear functions in the 

systems are considered to be completely unknown. A 

radial basis function rough neural network with 

excellent functionality in presence of output noise and 

external disturbances is used to achieve a proper 

tracking result. Additional terms are added to control 

signal to compensate the effect of external 

disturbances. Projection method is used for keeping the 

control parameters bounded. Overall closed loop 

stability of the system is guaranteed using Lyapunov 

theorem. 

The proposed control is applied to two different 

benchmark system, a mechanical inverted pendulum 

and Duffing oscillator as a chaotic system. Results of 

simulations demonstrate that the proposed control 

method is capable of controlling the nonlinear systems 

with completely unknown functions in the presence of 

output noise and external disturbances. Against 

previous control methods, the comparing results show 

better precision and more robustness against real-life 

scenario. 
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