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ABSTRACT: 

In this paper, a trajectory planning problem based on high-order polynomials is formulated for a point-to-point motion. 

The problem aims to find suitable polynomial trajectories that connect an initial to a final configuration while satisfying 

other specified constraints. The constraints are considered as zero velocity at the endpoint as well as a limitation on 

acceleration for the whole motion time. However, this problem is very difficult to trace more particularly when the 

number of coefficients (decision-making variables) is large. As a new approach, a high-order polynomial equation 

containing only two-term is proposed to generate suitable trajectories between two configurations. The advantage of the 

proposed polynomial is that it can be traced analytically in order to get solutions for the two independent coefficients in 

a closed-form. The motion simulations show that the resulting high-degree trajectories with two-term polynomial satisfy 

the mentioned constraints as well as they are continuous and smooth. Additionally, comparing outputs of Genetic 

Algorithm with the closed-form solutions for the problem show that closed-form expressions generate coefficients that 

are near optimal. 
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1.  INTRODUCTION 

When mobile robots need to traverse along a given 

path segment, there are usually infinite number of 

trajectories for a mobile robot to move from one point to 

another point. However, only a limited number of these 

trajectories are appropriate to be tracked while satisfying 

specified velocity and/or acceleration constraints. The 

appropriate trajectories are continuous, smooth, and 

possibly optimal with respect to some constraints.  

Trajectory planning is an active research area for 

manipulator and mobile robotic applications and 

automation [1-5]. In [1], manipulator trajectory planning 

with two-term objective function, which contains one-

term proportional to the integral of squared jerk as well 

as another term proportional to the total execution time, 

was studied. Although, the method in [1] is smooth 

enough, the trajectory is limited with fifth-degree B-

splines. [2] and [3] studied trajectory planning problems 

for mobile manipulator. [2] has presented a search-based 

algorithm for generating time-optimal trajectories for a 

mobile manipulator. [3] solved the problem through an 

iterative method and generated a smooth trajectory 

under the torque and jerk constraints. [4] considered 

trajectories which were composed of linear (straight) 

and circular path segments for a spherical robot. The 

trajectories were formulated based on the differential 

equations of motion. [5] planned trajectories in the form 

of S-curve considering the robot velocity as a high-

degree polynomial. The coefficients of the polynomial 

are determined by a curve interpolation method under 

the constraints of minimum time and limited jerk-

acceleration. 

Although, analytical approaches are preferable for 

analyzing trajectory planning problems when closed-

form solution becomes complicated or impossible to 

discover, numerical methods can be used to get 

solutions. Environment-Gene evolutionary Immune 

Clonal Algorithm [6], Particle Swarm Optimization [7], 

Random Particles Optimization Algorithm [8] are some 

of the methods which are used to search numerical 

solution in such trajectory planning problems. 

Differential Evolution algorithm was also used for line 

and curve segment trajectories under velocity and 

acceleration constraints [9]. Genetic algorithm was used 

to calculate the coefficients for cubic polynomial 

trajectory fragments [10]. Another study trained a neural 

network with robot dynamics to obtain the approximate 

minimum time trajectories [11]. Analytical approaches 

for closed-form solutions were also focused, such as 

piecewise-constant polynomial trajectories were 

mailto:vasif,%20ulduz@ktu.edu.tr


Majlesi Journal of Electrical Engineering                                                     Vol. 14, No. 1, March 2020 

 

2 

 

obtained analytically in [12]. A more comprehensive 

review of the trajectory planning approaches and the 

techniques are presented in a survey [13]. 

This paper focuses on trajectory planning based on 

high-order polynomials. In general, using high-degree 

polynomial requires additional coefficients [14]. To 

reduce the calculation, this paper proposes a high-degree 

polynomial containing only two-term with any degree. 

In this condition, the problem will be tractable and the 

coefficients could be determined analytically in the 

closed-form expressions. The proposed approach aims 

to simplify the high-order polynomial by setting most of 

the coefficients as zero and to leave only two 

coefficients as decision variables. This simplification 

surely will reduce the computation, moreover will make 

the problem traced analytically. Closed-form solutions 

are studied in [15], [16]. Furthermore, even if this two-

term simplification will limit the performance, it still 

provides the motivation of this paper because high-order 

polynomials are highly desirable due to their smoothed 

behavior. Additionally, the closed-form solutions by this 

approach give an important advantage because the 

motion controller of the vehicle can update trajectory 

commands in real time. 

This study assumes that geometrical path-pieces are 

given either straight line or circular-arc. Therefore, 

trajectory problems for each straight and circular-arc 

path segments are formulated with the proposed two-

term polynomial. The polynomial must satisfy initial and 

final velocity conditions as well as an acceleration 

constraint. Tracing the problem analytically and getting 

the polynomial coefficients in closed-form expressions 

have shown that this polynomial generates continuous 

and smooth trajectories. 

The rest of this paper is arranged as follows. Section 

2 describes how the trajectory planning problems based 

on the two-term polynomial are formulated and then, the 

analytical solution approaches are presented. The 

simulation results and the discussions are given in 

Section 3. Section 4 concludes the outcome of this 

research. 

 

2.  FORMULATION OF TRAJECTORY 

PLANNING PROBLEMS 

Trajectory planning problems here are presented 

with the following assumptions. Firstly, a point mass 

model is considered for the mobile robot, therefore 

actual dynamic of the robot is neglected. Secondly, it is 

assumed that the mobile robot starts to move from origin 

of an Earth-fixed coordinate frame along a straight or a 

circular-arc path segment. Thirdly, the robot stops gently 

at the end of time or path. This condition is stated as zero 

velocity constraint at the endpoint/end time. Finally, 

acceleration/deceleration of the robot during motion is 

limited to safe navigation. 

Accurate control of the robot along the path 

segments is highly dependent on the used motion model 

to design the robot controller. A common approach is to 

use the point mass model with acceleration-level control 

inputs. The motion controller designed based on this 

approach can be embedded in inner control loops at 

actuator-level that neglects the robot dynamics. In 

addition, the geometry of the path segment determines 

the acceleration constraint. 

In accordance with the assumptions mentioned 

above, the trajectory planning problems using high-

order polynomials for either straight line or circular-arc 

path segments can be formulated as follows. Consider a 

trajectory polynomial in form of  
 

  2
1 ... tttq j

n                                                     (1) 

 

      With respect to the endpoint velocity condition at 

final time tf > 0, 

 

  0ftq                                                                      (2) 

 

     As well as the acceleration constraint for 0 ≤ t ≤ tf , 

 

  tq                                                                      

(3) 
 

Where, n ≥ 3, λ1tn is the leading term, λ1 ≠ 0 is the 

leading coefficient and Φ is a positive constant. q(t) 

shows the covered distance along the path segment at 

time t. The problem is to find independent coefficients 

λ1,… λj for (1) satisfying both (2) and (3). 

The independent coefficients of (1) satisfying (2) and 

(3) cannot be often obtained (i.e. often the problem is not 

tractable) when n and the number of terms are large. 

Therefore, to make the problem tractable and get the 

polynomial coefficients for any n ≥ 3, this paper 

introduces the two-term trajectory polynomial in form of 

  mn tttq 21                                                          (4) 

Where, n - 1 ≥  m  ≥  2. 

In the next subsections, trajectory planning problems 

for straight and circular-arc path segments are 

rearranged according to (4) subject to (2) and (3), 

respectively. Then, the goal is to determine the two-term 

polynomial independent coefficients (λ1 and λ2) in order 

to obtain suitable trajectories for each path segment. 

Notice that the larger degrees of the terms in this 

polynomial cause to slower, but smoother trajectories 

while lower degrees of the terms give rise to faster but 

less smooth trajectories. The degrees can be chosen at 

the trade-off point of smoothness and motion speed 

according to the system requirements. 
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2.1.  Straight Path Trajectories 

Two trajectory planning problems are introduced 

here to find the polynomial coefficients λ1 and λ2.  

Problem 1: consider two-term polynomial in (4) for 

motion along a straight path segment by assuming that 

the final time of the motion tf is known. Velocity 

endpoint condition in (2) for this problem can be 

rewritten as (5). 

 

 01
2

1
1   m

f
n
f tmtn                                                (5) 

 

      Moreover, acceleration constraint in (4) can be 

rearranged as, 

 

      2
2

2
1 11 mn tmmtnn  .                     (6) 

 

     The analytical approach is given below to find the 

closed-form solutions for λ1 and λ2.  

Firstly, λ1 is left alone on the left side in the velocity 

boundary (5) as the following. 

 

nm
ft

n

m  21                                                          (7) 

 

      Substituting it in the acceleration constraint (6), the 

inequation can be rearranged in terms of λ2 as, 

 

    




































mn

f

m

t

t
nmtm 112

2 .                 (8) 

 

The left side of (8) is the acceleration function for 

time interval [0, tf ]. Here, it is necessary to find the 

critical points of the acceleration function in (8). Well-

known Fermat's theorem states that “if f(t) has a local 

extremum at a point t = t* and f is differentiable at t*, then 

derivative of f at t* is zero.” Using this theorem and 

because the acceleration function (left side of (8)) 

reaches to maximum or minimum at its critical points, 

the critical point of (8) could be obtained as follows. 

 

  
  

mn
fcp

nn

mm
tt

















1

21

21
                                      (9) 

 

If (8) is satisfied at the time points 0, tcp and tf, it is 

also satisfied during whole time interval [0, tf ]. Thus the 

variable t in (8) is substituted with 0, tcp and tf , so that 

the nonlinearity of the inequation is eliminated. To 

satisfy (8), the inequation is rewritten for tcp and tf as (10) 

and (11), respectively. 

     
  
















 



 mn

m

m
f

nn

mm
t

n

mmmn

2

2
2

21

21

2

1
 , (10) 

   2
2

m
ftmnm                                                 (11) 

 

(10) and (11) have only one variable which is λ2. 

When λ2 is left alone on the left side, (12) and (13) are 

obtained here in below. 

  

 

  

  
  

mn

m

m
f

mm

nn

mtmmn

n 



 

















2

22
21

21

1

2
 ,     (12) 

  22 




m
fmtnm

                                                   (13) 

 

     Here, choosing the minimum boundary value for λ2 

ensures satisfying (8) as follows. 

 

 
  

  
   







































 nmmm

nn

mmn

n

mt

mn

m

m
f

1
,

21

21

1

2
min

2

22  

                                                                                  (14) 

 

(14) is the closed-form solution for λ2. As λ1 is in 

hand from (7) in terms of λ2, the trajectory polynomial 

(4) can be rearranged for λ2 as 

 

  mnnm
f ttt

n

m
tq 22   

                                     (15) 

 

     Where, λ2 can be substitute from (14). Equation (15) 

generates suitable two-term polynomial trajectories for 

problem 1.  

Problem 2: Consider a situation that a given distance 

of Q has to be covered by (4) at a minimum time of tf min, 

with a given Q, (4) could be rearranged as 

 
n
f

n
f ttQ min2min1                                                (16) 

 

      In addition, velocity endpoint condition (3) can be 

rewritten as, 

 

 01
min2

1
min1   m

f
n
f tmtn  .                                      (17) 

 

      For this problem, the analytical approach is given 

below to find the closed-form solutions for λ1 and λ2.  

Firstly, getting λ1 from velocity boundary (17) and 

substituting into (16), tf min can be obtained as 
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 
m

f
mn

nQ
t

1

2
min 













.                                            (18) 

 

      In addition, tcp could be obtained by using the same 

way in (9), as following 

  
  

mn
fcp

nn

mm
tt

















1

min
21

21
.                                (19) 

 

     When (18) is substituted into (19), tcp will be as, 

 

 
  
  

mnm

cp
nn

mm

mn

nQ
t



























11

2 21

21


.               (20) 

 

After the same equations from (10) to (13) of 

Problem 1 are obtained here, the closed-form solutions 

of λ2 and λ1 with substitution tf min in (18) could be 

achieved as 

   
  

  
  

22

2
1

,
21

21

1

2
min

m

mn

m

nmmm

nn

mmn

n

Qnm

mn

mn

nQ


























































    

                                                                                  (21) 

  m

n

Qn

mn

mn

mQ







 


 21                                            (22) 

 

Therefore, suitable two-term polynomial trajectories 

for this problem for the time interval [0, tf ] is given by 

 

 
  mnm

n

tt
Qn

mn

mn

mQ
tq 22  







 


 .                    (23) 

 

2.2.  Circular-Arc Path Trajectories 

In a circular path-piece, the total acceleration of the 

vehicle is composed of two vectors which are centripetal 

( ca


) and tangential ( ta


). Therefore, the acceleration 

constraint in (3) must be written as in form of 

 

 tc aa


                                                              (24) 

 

Where |.| shows magnitude of a vector. (24) can be 

rearranged as (25) in terms of vehicle velocity v and 

radius c of the circle that the arc path belongs to it.  

 























 22
2

dt

dv

c

v
                                             (25) 

Now similar to previous section, two trajectory 

planning problems can be defined to find suitable 

polynomials for circular-arc path. 

Problem 3: consider the following 

  

   mn ttctr 21                                                    (26) 

 

Two-term polynomial for motion along a circular-arc 

path segment in a given tf. The velocity condition is same 

as (5) while the acceleration constraint is  

 

 
   tr

c

tr 2

2

4




.                                                 (27) 

 

      (27) can be explained as following, 

 

 

    
2

222
2

2
1

41
2

1
1

11
c

tmmtnn

tmtn

mn

mn














.               (28) 

 

Similar to Problem 1, λ1 is obtained from velocity 

endpoint condition (5) and substituted into (28) as 

follows, 

 

   
2

2

2

2
2

4

1
2

11

1

ct

t
nmtm

t

t
tm

mn

f

m

mn

f

m
















































































































        (29) 

 

Thus, the acceleration constraint becomes dependent 

on λ2 and t only. Afterwards, based on Fermat's theorem, 

the critical points tcp must be found from the acceleration 

function (that is left side of (29)). As it could be seen in 

the acceleration equation; since the degrees are even, it 

consists of two positive components. Therefore, 

acceleration is stated as increasing function and absolute 

extremum point does not exist. To satisfy the 

acceleration constraint, local extremum points need to be 

formed in the acceleration function. Otherwise, the 

problem cannot be traced analytically. Thus, the local 

extremum points are obtained by equating both 

components separately to zero to search the problem 3 

solution. This point for the first component was found as 

tcp = tf , while it is found as term in (30) for second 

component. 
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mn
fcp

n

m
tt
















1

1

1
                                                 (30) 

To satisfy (29), the inequation is rewritten for tcp and 

tf as (31) and (32), respectively. 

 

2

2

4

2
1

1

11

1

c
mt

n

mn

n

m m
f

mn

m


































 



 ,                   (31) 

  
2

22

2
2

c
tnmm m

f


                                               (32) 

 

Subsequently, by leaving λ2 alone on the left side of 

(31) and (32), it can be obtained, 

 

mn

n

m

n

mt

c mn

m

m
f

























1

1

1
1

1

2

1

2

1

2 ,                            

(33) 

  2

1

2 








m
fmtnm

c
 .                                                 (34) 

 

Here, choosing the minimum boundary value for λ2 

ensures satisfying (29) as follows 

 

 


















































2

1
1

1

2

1

2

1

2 ,
1

1

1
min

m
f

mn

m

m
f mtnm

c

mn

n

m

n

mt

c
     (35) 

 

As the closed-form solutions of λ2 and λ1 are obtained 

from (35) and (7) respectively, then suitable trajectories 

for this problem are generated by 

 

  







  mnnm

f ttt
n

m
ctr 22  .                              (36) 

 

Problem 4: consider a situation that a given arc 

length of R has to be covered at minimum time of tf min . 

With a given R, (26) could be rearranged as 

  

 n
f

n
f ttcR min2min1   .                                       (37) 

 

Substituting λ1 from velocity condition (5) into the 

arc length formula (37), tf min can be obtained as 

 

 
m

f
mnc

nR
t

1

2
min 













                                           (38) 

 

Moreover, tcp is obtained same in (30). When 

substituted (38) into tcp formula (in (30)), it can be 

obtained, 

 
mnm

cp
n

m

mnc

nR
t


























11

2 1

1


.                           (39) 

 

The same equations from (31) to (34) of the Problem 

3 are obtained here, the closed-form solutions of λ2 and 

λ1 with substitution tf min in (38) are  

 































 
























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 
  m

n

nR

cmn

mnc

mR







 


 21  .                                    (41) 

 

Therefore, suitable trajectories for this problem for 

[0, tf ] can be generated by using (40) and (41). 

 

3.  SIMULATION RESULTS AND DISCUSSIONS 

While running on the obtained polynomial 

trajectories from previous section, it is necessary to 

investigate whether the generated trajectories satisfy the 

velocity conditions as well as the acceleration constraint 

during the whole time interval [0, tf ]. Consequently, 

several experiments are prepared to observer the 

behavior of the obtained two-term polynomials. In the 

experiment motion simulations, parameters of problems 

are defined as tf = 5 seconds, Φ = 1 m/s2, c = 1 meter and 

Q = R = 5 meters. The profiles of traveled distance, 

velocity and acceleration in the 3rd, 4thand 5th degree of 

the two-term polynomials are shown in Fig. 1 to 4. For 

Problems 1 and 3, plots of the trajectories related with 

the degrees n: 3, 4, 5 are shown in Fig. 1 and 2, 

respectively. The travelled distance decreases as the 

degrees of the polynomials increase in Fig. 1a and 2a. 

The velocity boundary conditions are satisfied in the 

beginning and at the end of motion as seen in Fig. 1b and 

2b. The acceleration constraint is satisfied during the 

whole time interval [0, tf] as shown in Fig. 1c and 2c. For 

Problems 2 and 4, plots of the trajectories with the 

degrees n: 3, 4, 5 are shown in Fig. 3 and 4, respectively. 

The travelling time increases as the degrees of the 

polynomials increase in Fig. 3a and 4a. The velocity 

boundary conditions and the acceleration constraint are 

also satisfied as seen in Fig. 3b, 4b and Fig. 3c, 4c, 

respectively. 

Furthermore, all four problems are also solved 

through Genetic Algorithm Toolbox of MATLAB 

platform. When both results are compared in Tables 1 to 

4, it is explicit that the closed-form solutions are near to 

GA results. As seen in Tables 1 and 2, GA becomes 
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unable to reach a solution in the Problems 2 and 4 in the 

case of the difficult non-linear acceleration constraints.  

Tables 3 and 4, show that the travelled distance 

decreases as the degrees of the polynomials increase in 

the Problems 1 and 3. Tables 2 and 4, show that the 

travelling time increases as the degrees of the 

polynomials increase in the Problems 2 and 4. 

 

   

a b c 

Fig. 1. Plots for the trajectories obtained in Problem 1, a. travelled distances, b. velocities, c. accelerations.  

   

a b c 

Fig. 2. Plots for the trajectories obtained in Problem 3, a. travelled distances, b. velocities, c. accelerations. 

 

   

a b c 

Fig. 3. Plots for the trajectories obtained in Problem 2, a. travelled distances, b. velocities, c. accelerations. 
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a b c 

Fig. 4. Plots for the trajectories obtained in Problem 4, a. travelled distances, b. velocities, c. accelerations. 

 

Table 1. Closed-form and GA results for Problem 2. 

n m Closed-form Solutions GA Solutions 

λ2 λ1  tf min λ2 λ1  tf min 

3 2 0.500000 -

0.060858 

5.477225 0.468100 -0.055100 5.661000 

4 3 0.043033 -

0.004166 

7.745966 0.043200 -0.004200 7.735200 

5 4 0.002500 -

0.000200 

10.00000 No feasible solution found 

 

Table 2. Closed-form and GA results for Problem 4. 

n m Closed-form Solutions GA Solutions 

λ2 λ1  tf min λ2 λ1  tf min 

3 2 0.500000 -

0.060858 

5.477225 0.500000 -0.060900 5.477200 

4 3 0.043033 -

0.004166 

7.745975 0.043000 -0.004200 7.746000 

5 4 0.002500 -

0.000200 

10.00000 0.025000 -0.000200 10.00000 

 

Table 3. Closed-form and GA results for Problem 1. 

n m Closed-form Solutions GA Solutions 

λ2 λ1  q(tf) λ2 λ1  q(tf) 

3 2 0.500000 -

0.066666 

4.166666 0.500500 -0.066700 4.179200 

4 3 0.066666 -

0.010000 

2.083333 0.067700 -0.010100 2.147900 

5 4 0.010000 -

0.001600 

1.250000 0.010000 -0.001600 1.376000 

 

Table 4. Closed-form and GA results for Problem 3. 

n m Closed-form Solutions GA Solutions 

λ2 λ1  r(tf) λ2 λ1  r(tf) 

3 2 0.400000 -

0.053333 

3.333333 0.379300 -0.050500 3.169100 

4 3 0.066666 -

0.010000 

2.083333 0.086600 -0.012900 2.738600 

5 4 0.010000 -

0.001600 

1.250000 0.009200 -0.001400 1.276100 
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4.  CONCLUSIONS 

In this paper a common polynomial trajectory 

planning problem considered subject to velocity and 

acceleration constraints. The common problem is 

simplified with taking a two-term polynomial instead. 

Then, the common problem is replaced with four sub 

problems, two for straight path segments and two for 

circular-arc path type. An analytical approach offering a 

closed-form solution is presented to find the coefficients 

of the two-term polynomial for all sub problems while 

taken into consideration velocity conditions as well as 

the acceleration constraint. By simulating the resulted 

two-term polynomial trajectories through the closed-

form solutions, the accuracy of the analytical approach 

used is also ensured. 
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