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ABSTRACT: 

This paper is concerned with a controller design method for Networked Control Systems (NCSs) with time-varying 

random delays. The proposed controller is an event-based controller and is able to effectively save the network 

bandwidth and energy resources of the system in comparison with common control schemes while guaranteeing the 

stability of the system. The proposed controller switches between two main triggering schemes: event-triggered control 

scheme and self-triggered control scheme. The stability issue in this combinatorial method is also considered. The 

validity of the proposed algorithm is confirmed via simulation results and the results are well compared with results 

from exerting event-triggered and self-triggered control individually. 
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1. INTRODUCTION 

Combining control theory and communication 

theory has led to introduction of networked control 

systems, in which a communication network is used for 

data transmission between sensors, controllers and 

plants. Transmitting data via communication network 

has many benefits such as reduction of wiring costs, 

high flexibility in order to add or remove new elements 

and ease of fault detection. Growing interest in NCSs 

in recent years, have been the outgrowth of these 

benefits [1-8]. 

Using communication network has also brought 

new challenges such as packet dropout, network-

induced delay and limitation of network bandwidth. 

Packet dropout which can cause the degradation of the 

performance and even instability of the system, has 

been studied in many researches [9-13]. The effect of 

network-induced delay, methods of modelling and 

compensating different forms of delay has been the 

subject of many papers [14]-[18]. The stability issue 

and investigating the existence of a stabilizing 

controller or designing a stabilizing controller have 

been other considerable parts of NCS-related papers 

[19-22]. 

Since the negative effect of delay and packet 

dropout can affect the network during transmission of 

every packet of data; confining transferred data only to 

those data which are necessary for stabilizing the 

system is an absolute solution for reducing the 

instability situations. This solution also leads to 

reduction of network bandwidth usage and saving the 

energy resources of the system.  

In the triggering point of view, there are three main 

different categories: time-triggered control scheme, 

event-triggered control scheme and self-triggered 

control scheme. 

Time triggered control scheme is the first triggering 

method used in networked control systems. In this 

method, system states are sampled and sent to the 

controller through network periodically. Therefore the 

network bandwidth is always occupied with periodic 

data transmission. For solving this problem aperiodic 

control schemes were proposed, in which data is sent 

only if a predetermined event happens; not in constant 

intervals. These event-based control schemes reduce 

the challenges of the presence of the network but also 

brings new theoretical and practical issues [23-30]. 

In these two event-based control schemes, a 

triggering mechanism determines when the last 

sampled data must be transferred to the controller 

through network. In event-triggered control scheme, the 

data is sampled periodically and if the triggering 

condition is violated, the last sampled data is sent to the 

controller in order to generate new control signal for 
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stabilizing the system, otherwise the last sampled data 

is ignored. In self-triggered control scheme; based on 

our knowledge about plant dynamics; a cost function is 

defined, which determines the next sampling instant 

priory. 

In [31] a model-free control method is proposed for 

NCSs with time-delay. A new structure for model-free 

control is given using Smith predictor for delay part of 

the problem. In [32], an event-triggered control scheme 

is presented based on systems output. Reference [33] is 

concerned with the problem of adaptive neural network 

tracking control for a class of uncertain switched 

nonlinear systems with time delays. 

In [34], event-triggered method based on state-

feedback is developed so that in presence of noise and 

when the state variable is not measureable, the method 

can be used. 

Reference [35] is concerned with the 

synchronization of control problem for a class of 

discrete time-delay complex dynamical networks under 

a dynamic event-triggered mechanism. 

In [36] a new method for modelling and analyzing 

interaction between control loops and access to 

communication network in first-order systems is 

presented. In [37], sensor is not informed of maximum 

delay, so creating time tags on sent packets helps the 

controller to know the delay for each data packet. 

The benefits and drawbacks of all three control 

schemes are summarized in Table 1. The drawbacks of 

one strategy can be covered with benefits of the other 

strategy. Therefore in this paper a hybrid controller is 

proposed which switches between two event-based 

control schemes: event-triggered control and self-

triggered control. Since this switching strategy is for the 

purpose of less monitoring and transmitting data in 

unnecessary instants, the result is less occurrence of 

network-induced phenomena. 

Network-induced delay is also a big challenge in 

NCSs. In different papers, different models are 

assumed for different forms of delay. The most 

complex situations happen when there is random delay 

in the system. 

In fact, main contribution of this paper is 

introducing a hybrid method which results into 

reducing network bandwidth usage and waste of 

system’s energy resources. The main problem in 

switching approaches is stability, which is considered 

and resolved in this paper in particular. 

Therefore, this paper is organized as follows: in 

section 2 the system model and preliminaries are 

introduced. In section 3 the function of the proposed 

hybrid controller is explained. Simulation results are 

reported and discussed in section 4, and finally 

conclusion is represented in section 5. 

 

Table 1. Benefits and drawbacks of each control 

scheme. 

Control 

scheme 

Weak points 

 

 

Time-

triggered 

- Periodic data sampling 

- Continuous effort for data 

transmission via network 

without taking network traffic 

into account 

- Wasting network resources 

for unnecessary data sampling 

and transmission 

 

Event-

triggered 

- Periodic data sampling 

- Waste of network resources 

 

Self-

triggered 

-No reaction against external 

disturbances between two 

consecutive sampling instant 

 

 

2. SYSTEM MODEL AND PRELIMINARIES 

Consider a linear time-invariant (LTI) system as: 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                         (1a) 

𝑥(0) = 𝑥0                          (1b) 

In which 𝑥 ∶  ℜ →  ℜ𝑛 is the system state with 

initial value 𝑥0, 𝑢 ∶  ℜ →  ℜ𝑚   is the control input and 

𝐴 ∈  ℜ𝑛×𝑛 and 𝐵 ∈  ℜ𝑛×𝑚 are real matrices of 

appropriate dimensions. 

An asymptotical stabilizing controller is necessary 

for our hybrid strategy so a symmetric positive definite 

matrix P is assumed such that  

 

�̇�(𝑡) = (𝐴 − 𝐵𝐵𝑇𝑃)𝑥(𝑡)                                         (2) 

Will have an asymptotical stable equilibrium point. 

The matrix P is also considered to satisfy the 

𝐻∞ algebraic Riccati equation (ARE), 

 

0 = 𝑃𝐴 +  𝐴𝑇𝑃 − 𝑄 + 𝑅                           (3) 

     Where,  

𝑄 = 𝑃𝐵𝐵𝑇𝑃                               (4) 

𝑅 = 𝐼 +
1

𝛾2 𝑃𝑃                            (5) 

For real constant 𝛾 > 0. The state feedback gain 

matrix is considered as 𝐾 = −𝐵𝑇𝑃 and the closed loop 

system matrix is denoted as 𝐴𝑐𝑙 = 𝐴 − 𝐵𝐵𝑇𝑃. 

Therefore, we can rewrite equation 1 as: 
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�̇�(𝑡) = (𝐴 − 𝐵𝐵𝑇𝑃)𝑥(𝑡)                                 (6) 

A standard L2 storage function 𝑥 ∶  ℜ →  ℜ𝑛 is 

assumed as 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 for all 𝑥 ∈  ℜ𝑛. So it can be 

proved that the derivative of the storage function, for all 

t satisfies  

 

�̇�(𝑥(𝑡)) < −∥ 𝑥(𝑡) ∥2
2                           (7) 

In the system (1), we assume that the output data is 

sampled in specific instants and the control signal is 

updated and implemented based on two time 

sequences; the release time sequence {𝑟𝑘}𝑘=0
∞  and the 

finishing time sequence {𝑓𝑘}𝑘=0
∞ . At time instant 𝑟𝑘, the 

kth data transmission should be done in order to update 

the control signal for the kth time. So at this instant the 

new data is sampled and transmitted through network. 

The time 𝑓𝑘 is the instant when the kth new control 

signal has executed and the kth job is finished. These 

two sequences are called admissible if for all 𝑘 =
0, … , ∞ ,we have 𝑟𝑘 ≤ 𝑓𝑘 < 𝑟𝑘+1. 

The existence of these admissible time sequences 

are further discussed in theorem 3 and the sufficient 

condition is derived.  

Between two consecutive updates of the control 

signal, the applied control signal to the plant is held 

constant by a zero order hold (ZOH), and during this 

interval, the system (1) can be described as 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)            (8a) 

𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑟𝑘)            (8b) 

For all 𝑘 = 0, … , ∞. As the result of continuity of 

the system states, it is concluded that 𝑥(𝑓𝑘) =
lim

𝑡→𝑓𝑘

𝑥(𝑡). Two other variables are 𝑇𝑘 and 𝐷𝑘. 𝑇𝑘 is the 

time-varying sampling period which is defined as 𝑇𝑘 =
𝑟𝑘+1 − 𝑟𝑘; and 𝐷𝑘 is the delay of the kth job which is 

defined as 𝐷𝑘 = 𝑓𝑘 − 𝑟𝑘. The error function for the kth 

job is also defined as 𝑒𝑘: [𝑟𝑘 , 𝑓𝑘+1) → ℜ𝑛, 𝑒𝑘(𝑡) =
𝑥(𝑡) − 𝑥(𝑟𝑘). 

As we know that every equation in this paper is 

applied to all jobs, the job index k is dropped and the 

instants 𝑟𝑘−1, 𝑟𝑘 , 𝑟𝑘+1, 𝑓𝑘 and 𝑓𝑘+1 are denoted as 

𝑟−, 𝑟, 𝑟+, 𝑓 and 𝑓+ respectively, so the system state and 

the error signal are also as 𝑥𝑡 and 𝑒𝑡 = 𝑥𝑡 − 𝑥𝑟 in time 

intervals 𝑡 ∈ [𝑟𝑘 , 𝑓𝑘+1) and 𝑡 ∈ [𝑟, 𝑓+) respectively.  

For final introduction of the hybrid controller, we 

need some stability_concerned theorems. The 

following theorems are derived from [38] and for the 

sake of brevity the proofs are omitted. 

In the following theorem, a constraint for L2 

stability of the system is presented. 

Theorem1: consider the sampled-data system in 

equation 8. Release time and finishing time sequences 

are considered to be admissible. β is a real constant in 

the interval (0,1). The sampled-data system is finite 

gain L2 stable with a gain less than 𝛾/𝛽 if : 

 

𝑒𝑘
𝑇(𝑡)𝑄𝑒𝑘(𝑡) < (1 − 𝛽2) ∥ 𝑥(𝑡) ∥2

2+ 𝑥𝑟
𝑇𝑄𝑥𝑟                (9) 

 For all 𝑡 ∈ [𝑓𝑘, 𝑓𝑘+1) and any 𝑘 = 0, … , ∞. 

A weaker sufficient condition for L2 stability of the 

system is presented in the following corollary. 

Corollary 1: Consider the sampled-data system in 

equation 8 with admissible release time and finishing 

time sequences. β is a real constant in the interval (0,1) 

and the matrix 𝑄 is defined as in equation 3 such that 

the matrix 

  

𝑀 = (1 − 𝛽2)𝐼 + 𝑄            (10) 

     Has full rank and the inequality 

𝑒𝑘(𝑡)𝑇𝑀𝑒𝑘(𝑡) ≤ 𝑥𝑟
𝑇𝑀𝑥𝑟            (11) 

Is satisfied for 𝑡 ∈ [𝑓𝑘, 𝑓𝑘+1) for all 𝑘 = 0, … , ∞ 

then the sampled data system is L2 stable with a gain 

less than 𝛾/𝛽.  

In event-triggered control scheme and self-triggered 

control scheme, we need an inequality in order to check 

if the event has happened. The inequalities 9 or 11 can 

be used for event-triggered strategy and by replacing 𝑥𝑡 

with 𝑒𝑡, those inequalities can be used for self-triggered 

strategy. 

The function 𝑧𝑘: [𝑟𝑘 , 𝑓𝑘+1) → ℜ𝑛 is defined as 

 

𝑧𝑘(𝑡) = √(1 − 𝛽2)𝐼 + 𝑄𝑒𝑘(𝑡) = √𝑀𝑒𝑘(𝑡)           (12) 

And the function 𝜌: ℜ𝑛 → ℜ is given by 

𝜌(𝑥) = √𝑥𝑇𝑀𝑥             (13) 

Where, 𝑥 ∈ ℜ𝑛. If we can prove for any 𝛿 ∈ (0,1] 
that 

∥ 𝑧𝑘(𝑡) ∥2≤ 𝛿𝜌(𝑥𝑟)            (14) 

For all 𝑡 ∈ [𝑓𝑘 , 𝑓𝑘+1) for any 𝑘 = 0, … , ∞, then the 

hypotheses in corollary 1 result into finite-gain L2 

stability of the sampled-data with a gain less than 𝛾/𝛽. 

Theorem2: It is assumed that for some 𝛿 ∈ (0,1], 
the sequence of release times {𝑟𝑘}𝑘=0

∞  satisfies 

 

∥ 𝑧𝑘(𝑡) ∥2= 𝛿𝜌(𝑥𝑟)                                          (15) 

Where, 𝑓𝑘 = 𝑟𝑘 for all 𝑘 = 0, … , ∞ and the 

sampled-data system in equation 8 is considered. 

If the release and finishing time sequences are 

admissible and the sampled-data system is L2-stable 

with a gain less than 
𝛾

𝛽
 , then each task sampling period 

will satisfy 
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𝑇𝑘 ≥
1

𝛼
ln (1 + 𝛿𝛼

𝜌(𝑥𝑟)

𝜇0(𝑥𝑟)
)            (16) 

In which 𝛼 is a real constant and 𝜇0: ℜ𝑛 → ℜ is a 

real-valued function as: 

 

𝛼 =∥ √𝑀𝐴√𝑀
−1

∥            (17) 

𝜇0(𝑥𝑟) =∥ √𝑀𝐴𝑐𝑙𝑥𝑟 ∥2                                        (18) 

It is concluded from theorem 2 that if we set 

𝑟𝑘+1 = 𝑟𝑘 +
1

𝛼
ln (1 + 𝛿𝛼

𝜌(𝑥𝑟)

𝜇0(𝑥𝑟)
)       (19) 

Then we are assured that the system’s induced L2 

gain is less than  
𝛾

𝛽
. 

Corollary 2. Consider the sampled-data system. It is 

assumed that for some k, 𝑟𝑘−1 ≤ 𝑓𝑘−1 ≤ 𝑟𝑘. If for some 

𝜖 ∈ (0,1), the inequality 

 

0 ≤ 𝐷𝑘 = 𝑓𝑘 − 𝑟𝑘 ≤ 𝐿1(𝑥𝑟 , 𝑥𝑟−; 𝜖)                (20) 

For all 𝑡 ∈ [𝑟, 𝑓) is satisfied, then the kth trigger 

signal 𝑧𝑘 satisfies 

 

‖𝑧𝑘(𝑡)‖2 ≤ 𝜙(𝑥𝑟 , 𝑥𝑟− , 𝑡 − 𝑟) ≤ 𝜖𝜌(𝑥𝑟)            (21) 

For all 𝑡 ∈ [𝑟, 𝑓). 

 𝐿1: ℜ𝑛 × ℜ𝑛 × (0,1) → ℜ is given by 

𝐿1(𝑥𝑟 , 𝑥𝑟−; 𝜖) =
1

𝛼
ln (1 + 𝜖𝛼

𝜌(𝑥𝑟)

𝜇1(𝑥𝑟,𝑥𝑟−)
)            (22) 

In which 𝜙: ℜ𝑛 × ℜ𝑛 × ℜ → ℜ is a real-valued 

function given by 

 

𝜙(𝑥𝑟 , 𝑥𝑟−, 𝑡 − 𝑟) =
𝜇1(𝑥𝑟 ,𝑥𝑟−)

𝛼
(𝑒𝛼(𝑡−𝑟) − 1)           (23) 

     And 𝜇1: ℜ𝑛 × ℜ𝑛 → ℜ is a real-valued function 

given by 

𝜇1(𝑥𝑟 , 𝑥𝑟−) = √𝑀(𝐴𝑥𝑟 − 𝐵𝐵𝑇𝑃𝑥𝑟−) ∥2               (24) 

Theorem 3. Consider the sampled-data system in 

equation 8. For given 𝜖 ∈ (0,1) and 𝛿 ∈ (𝜖, 1), we 

assume that the initial release and finishing times 

satisfy 

𝑟−1 = 𝑟0 = 𝑓
0

= 0                                            (25) 

For any non-negative integer 𝑘, the release times are 

generated by the following recursion, 

 

𝑟𝑘+1 = 𝑓𝑘 + 𝐿2(𝑥(𝑟𝑘), 𝑥(𝑟𝑘−1), 𝛿)                             (26) 

And the finishing times satisfy 

𝑟𝑘+1 ≤ 𝑓𝑘+1 ≤ 𝑟𝑘+1 + 𝜉(𝑥(𝑟𝑘), 𝜖, 𝛿)                 (27) 

      Where 𝐿2: ℜ𝑛 × ℜ𝑛 × (0,1] → ℜ is defined as 

𝐿2(𝑥𝑟 , 𝑥𝑟− , 𝜂) =
1

𝛼
ln (1 + 𝛼

𝜂𝜌(𝑥𝑟)−𝜙(𝑥𝑟,𝑥𝑟−)

𝜇0(𝑥𝑟)+𝛼𝜙(𝑥𝑟 ,𝑥𝑟−)
) 

(28) 

      And 𝜉: ℜ𝑛 × ℜ × (0,1] → ℜ is defined as 

𝜉(𝑥𝑟−, 𝜖, 𝛿) =
1

𝛼
ln (1 + 𝜖𝛼

(1−𝛿)𝜌(𝑥𝑟−)

𝛼𝛿𝜌(𝑥𝑟−)+𝜇0(𝑥𝑟−)
             (29) 

Then it is concluded that the sequences of release 

times, {𝑟𝑘}𝑘=0
∞ , and finishing times, {𝑓𝑘}𝑘=0

∞ , will be 

admissible and the sampled-data system is finite gain 

L2 stable with an induced gain less than 
𝛾

𝛽
. 

 
3. PROPOSED CONTROLLER 

The time diagram of the system response has two 

basic parts, transient part and steady state part. Since in 

transient time, the system states’ changes are fast, 

control signal must be modified continuously in order 

to direct variable states of the system towards stability. 

In contrast, during steady state interval, a proper control 

signal is required just in order to keep the system states 

near stability mode. The main idea in the proposed 

control strategy is using a switching approach for the 

applied control strategy based on the system mode. If 

the system is in transient mode, the event-triggered 

control strategy is used and when the system is in steady 

state mode, the self-triggered control strategy is used.  

The switching action is done based on the inequality  

 

∥ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 ∥2 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                         (30) 

Where, “relative error ” is (𝑥𝑟 − 𝑥𝑟−)/𝑥𝑟 and the 

threshold is the factor determining the border between 

transient mode and steady state mode. 

At the time the switching action happens, the initial 

state of the new strategy is set to the last state of the 

previous strategy. So because of the guaranteed L2 

stability of the system in both of two types of strategies 

from any initial condition, the L2 stability of the system 

after switching is also guaranteed. Thereby the stability 

problem is resolved in this way. 

 

4. SIMULATION RESULTS 
In this section, the proposed control strategy is 

applied to an inverted pendulum and the results are 

compared to applying only one type of control 

strategies. 

The plant’s linearized state equation is  
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�̇�(𝑡) = [

0 1 0   0
0 0 −𝑚𝑔/𝑀 0

0
0

0
0

0
𝑔/𝑙

1
0

] 𝑥(𝑡) +

[

0
1/𝑀

0
−1/(𝑀𝑙)

] 𝑢(𝑡)                                                        (31) 

In which M is the cart mass, m is the mass of the 

pendulum bob and l is the length of the pendulum arm 

and g is the gravitational acceleration. System state 

vector; which is measured in each sampling instant; is 

as 𝑥 = [𝑦 �̇� 𝜃 �̇�]
𝑇
 where y is the cart’s position and 𝜃 is 

the pendulum bob’s angle with respect to the vertical. 

In this part, three different algorithms are used and 

the results are compared together: event-triggered 

control, self-triggered control and hybrid control. Since 

reducing the energy usage is our greatest concern in this 

paper, the parameter Ψ is defined as Ψ = 𝑠𝑒𝑛𝑡 ∗
𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ∗ 𝑒𝑟𝑟𝑜𝑟_𝑛𝑜𝑟𝑚. The less Ψ is , the less energy 

is used and the better result is obtained. 

The system’s initial state is set to 𝑥0 =
[0.98  0  0.2  0]𝑇. Solving the Riccati equation in 

equation 3, and using the equation 6, yields 

 

𝐾 = −𝐵𝑇𝑃 = [2  12  378  210] 

Fig. 1 plots the state trajectory of the closed-loop 

system using the above controller gain.  

Fig. 2 shows the state trajectory of the closed-loop 

system using each of three discussed control schemes 

(event-triggered control, self-triggered control and 

hybrid control) compared to the time-triggered control 

scheme. For more visibility, the 5 seconds running 

results are included. 

Fig. 3 illustrates the control signal applied to the 

plant in each of three control schemes. It can be seen 

that all the signals converge to the level of time-

triggered control signal which shows the proper 

behavior of the system with each type of controller. 

The error signal for this system is defined as 𝑒(𝑡) =
‖𝑥(𝑡) − 𝑥𝑐(𝑡)‖2 where 𝑥(𝑡) is the event-based 

system’s response and 𝑥𝑐(𝑡) is the system’ response 

without applying any event-based control strategy. The 

error signals’ plots are included in Fig. 4.  

In order to show the performance of the proposed 

controller in long time running of the system; Fig. 5 

illustrates the system condition in which the system 

mode changes between transient and steady states. As 

can be seen clearly, the state trajectories are so alike to 

continuous-time system. The error-norm is of small 

amplitude in comparison with system states’ amplitude. 

The control signal is also plotted in Fig. 5 (c). 

 

Fig. 1. State trajectories of continuous-time closed-

loop system. 

 

(a) 

 

(b) 
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(c) 

Fig. 2. System states using (a) event-triggered 

controller, (b) self-triggered controller, (c) hybrid 

controller. 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. Control signal using three different types of 

control schemes. 

 

(a) 

 

(b) 
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(c) 

Fig. 4. Error norm using (a) event-triggered control, 

(b) self-triggered control, (c) hybrid control. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Long time running of system using hybrid 

controller: (a) system states, (b) control signal, (c) 

error norm. 

Table 2 shows the dependency of the Ψ factor to 

different values of 𝜖 and 𝛽 ,for each of three algorithms. 

Presented results in Table 3, declare the efficiency of 

the proposed algorithm. Since the system is initially in 

transient state, the number of sent packets and the Ψ 

factor for STC is far more than ETC and the Hyb.C 

which shows that using STC in transient interval is an 

inappropriate choice. The number of sent packets in 

proposed algorithm is considerably less than the other 

two algorithms. As the length of interval increases, the 

relative greatness of number of sent packets in ETC to 

Hyb.C increases. 𝜏 parameter is the ratio of the whole 

running interval to number of sent packets. This 

parameter is interpreted as the average number of 

intervals between two consecutive release times. In 

simulation results, each interval is considered as h=1e-

5. 

The values of the Ψ factor for different running 

intervals of the algorithms, shows that this factor for the 

ETC is about 3 to 4 times greater than Hyb.C. With 

increase in running interval, the steady state interval is 

also included and the STC is more involved in Hyb.C. 

So the better performance of STC than ETC in steady 

state interval can be observed in this case which 

confirms the good structure of the proposed algorithm 

for relating the ETC to transient state interval and the 

STC to steady state interval. 

 

 

Table 2. Dependency of the Ψ factor to 𝜖 and 𝛽 

parameters in different control schemes. 

                         

Control 

Scheme 

𝝐 𝜷 𝚿 

Event-

triggered 

control 

0.1 

 

 

0.7 

0.5 

0.8 

 

0.5 

0.8 

8.1545e9 

8.7891e9 

 

4.5675e9 

4.4307e9 

Self-

triggered 

control 

0.1 

 

 

0.7 

0.5 

0.8 

 

0.5 

0.8 

1.5253e12 

9.4322e12 

 

1.6178e12 

9.5010e12 

Proposed 

hybrid 

control 

0.1 

 

 

0.7 

0.5 

0.8 

 

0.5 

0.8 

4.1665e9 

4.5363e9 

 

4.1665e9 

4.5363e9 
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Table 3. Comparison between different control 

schemes in different running intervals of the schemes 

between: number of sent packets, average number of 

intervals between two consecutive release instants, 

and the Ψ factor. 

T Control 

scheme 

sent 𝝉 𝚿 

5 ETC 

STC 

Hyb.C 

53 

96187 

49 

9.4339e3 

5.1982 

1.0204e4 

1.5401e10 

1.7490e12 

4.5793e9 

10 ETC 

STC 

Hyb.C 

142 

193865 

121 

7.0422e3 

5.1582 

8.2644e3 

1.8227e11 

2.5677e13 

3.3201e10 

15 ETC 

STC 

Hyb.C 

178 

287042 

153 

8.4269e3 

5.2257 

9.8033e3 

3.5322e11 

7.9563e15 

7.8395e10 

20 ETC 

STC 

Hyb.C 

231 

430241 

182 

8.6580e3 

4.6485 

1.0989e4 

5.3521e11 

7.1231e18 

1.8022e11 

50 ETC 

STC 

Hyb.C 

325 

503905 

247 

15.3846e3 

9.9225 

2.0243e3 

2.5666e12 

6.9854e20 

4.9447e11 
 

 

5. CONCLUSION 

In this paper a hybrid controller for networked 

control systems with time-varying delay is provided. 

The suitability of ETC for transient mode and STC for 

steady mode is shown via simulation results. Results 

also show that the weak performance of ETC in steady 

mode and STC in transient mode can be covered using 

switching approach. The results can also be obtained 

using any other two stabilizing ETC and STC 

strategies. Less energy consumption due to using 

proper strategy in different interval is also another 

noticeable result of this paper. 
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