
Majlesi Journal of Electrical Engineering                                                               Vol. 14, No. 2, June 2020 

 

25 
 

 

A New hybrid Method for Noise Robust Estimation of Image 

Fractal Dimension  

 
Saviz Ebrahimi1, Farbod Setoudeh2*, Mohammad Bagher Tavakoli1 

1- Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran. 

Email: s-ebrahimi92@iau-arak.ac.ir 

Email: m-tavakoli@iau-arak.ac.ir 

2- Department of Electrical Engineering, Arak University of Technology, Arak, Iran. 

Email: F.setoudeh@arakut.ac.ir (Corresponding author) 

 

Received: September 2019  Revised: November 2019  Accepted: January 2020 

 

 

ABSTRACT: 

This paper presents a modified model to calculate the fractal dimension of digital images. The estimation of fractal 

dimensions is crucial to fractal analysis and is popularly carried out through methods based on box counting. The problem 

with these approaches is that, most of them do not remove the potential effects of noise on fractal dimensions properly. 

Accordingly, this study examines the effects of three different type of noises on fractal dimensions using different images 

taken from Background image database. The examination shows that the fractal dimensions change significantly, after 

noise adding, so we put forward a noise-robust and efficient fractal dimension calculation method which is a combination 

of two methods, the gray-level co-matrix algorithm and improved box counting method. The results of experiments on 

the Background image dataset confirm the robustness and efficiency of the proposed method.  
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1. INTRODUCTION 

A fractal is a mathematical set and an irregular 

geometric object that models a repeating pattern 

displayed at every scale. Mandelbrot was the first to 

introduce fractals in the estimation of surface or texture 

roughness [1]. Fractal geometry provides an appropriate 

mathematical method of studying the irregular and 

complex forms found in nature. It is used to analyze the 

physical structural irregularities that may not be, in 

general, represented by Euclidean geometry [2]. Most 

gray-level images of nature have fractal characteristics 

[3], and the fractal properties of real-world objects are 

commonly examined in digital images. The most 

important parameter of a fractal is its fractal dimension, 

which plays a critical role in texture analysis, image 

segmentation, shape classification, feature extraction, 

computer vision, and medical image analysis. Thus, the 

accurate calculation of fractal dimensions is crucial to 

these applications. By using texture analysis, the 

similarities in the estimation of textures and fractal 

features are distinguished and popularized [4]. 

Many techniques for fractal dimension estimation 

have been proposed. For example, [5] proposes four 

methods to estimate fractal dimensions from surface 

descriptions and the applicability of fractals to measure 

surfaces. The researchers first used generated surfaces to 

analyze the methods and then later employed the 

approaches to measured surfaces. The fractal dimension 

values of all generated descriptions were computed by 

box-counting, power spectral density and roughness-

length. The fractal dimension estimation method 

proposed in [6] for RGB color images is an expansion of 

the DBC algorithm, in which a counting approach that is 

feasible for RGB color images was incorporated. This 

method presents a hyper-surface partition strategy, 

which regards a hyper-surface as a continuous element 

and divides an image into non-overlapping blocks. In 

[7], the researchers put forward a new conceptual fractal 

dimension calculation method that is especially suitable 

for curves. The approach is based on the novel concept 

of induced fractal structure on an image set of any curve. 

Some theoretical properties of this new denotation of 

fractal dimensions and a result that allows the 

construction of space-filling curves were discussed. A 

method of estimating the fractal dimensions and fractal 

curvatures of binary digital images was proposed in [8]. 

The method includes an analysis of several geometric 

characteristics, such as the intrinsic volumes of the 

parallel sets of a fractal. 

The DBC method is unsuitable for low-resolution 

images because the existence of empty boxes influences 

the accuracy with which fractal dimensions are 

estimated. Correspondingly, the study in [9] presented a 

new algorithm called actual DBC, which classifies 

https://en.wikipedia.org/wiki/Set_%28mathematics%29
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empty boxes into real empty boxes and potential empty 

boxes. Associating the spatial domain relationships 

between a fractional Brownian surface model and a pixel 

gray level enables the calculation of the probability that 

empty boxes will become potential ones under high 

resolutions. Even under an insufficiently high image 

resolution, the method still enables an accurate 

estimation of fractal dimensions. 

Among the different methods presented in the 

literature, a commonly used approach is the grid 

dimension method, which is popularly known as the 

box-counting method of estimating fractal dimensions. 

Among different box-counting algorithms, DBC covers 

a wide dynamic range and efficiently computes fractal 

dimensions; it is commonly used to calculate the fractal 

dimensions of 2D gray-level images. The popularity of 

DBC stems from its simplicity and automatic 

computability [10]. The DBC method proposed by 

Sarkar and Chaudhuri [11–13] has been applied in many 

studies that focus on gray-level images. 

Despite the advantages of DBC, however, it is easily 

affected by noise. A few studies have analyzed the 

effects of noise and developed methods of eliminating 

this problem. For instance, an anti-noise method based 

on the DBC algorithm was proposed in [14]. The method 

takes full advantage of each pixel in a box and replaces 

the extremum deviation with standard deviation. A 

comparison of the anti-noise DBC algorithm and the 

conventional DBC algorithm shows that the former 

generates a better fractal dimension value in many cases.  

The above-mentioned methods are useful 

approaches, but they are not robust and stable under 

increasing noise variance or density. In general, images 

are inevitably affected by noises during collection and 

communication, thereby also affecting the quality the 

fractal dimensions of images are changed. One approach 

to ensure the robustness and stability is to first remove 

noise and then conduct image processing. However, this 

strategy is not effective enough and also preprocessing 

is not possible every time. A good strategy would be to 

apply directly to noisy digital images. Implementing this 

strategy strongly requires identifying the effects of noise 

on digital images while estimating their fractal 

dimensions and designing a method that is robust against 

noise. 

In the current work, a robust and efficient method for 

calculating fractal dimensions is proposed. This method 

is a combination of two methods, the Gray-Level Co-

Matrix (GLCM) algorithm and improved box counting 

method. Natural texture images obtained from the 

Background image dataset is used to validate the 

performance of the method proposed in the present 

research. 

 

2. GRAY-LEVEL CO-OCCURRENCE MATRIX 

A GLCM is a matrix that is defined over an image to 

be the distribution of co-occurring pixel values. A 

statistical technique, such as the co-occurrence matrix, 

facilitates the collection of useful information about the 

positions of neighboring pixels in a texture image. To 

generate a GLCM, a set of offsets sweeping through 180 

degrees at the same distance parameter D are used to 

achieve a degree of rotational invariance ( [0 D] for 0°: 

P horizontal, [-D D] for 45°: P right diagonal, [-D 0] for 

90°: P vertical, and [-D -D] for 135°: P left diagonal). 

Fig. 1 illustrates GLCM generation in four directions 

[24]. The number of rows and columns in a GLCM is 

equal to the number of gray levels in an image. The use 

of numerous intensity levels implies the storage of 

considerable temporary data for each combination, thus, 

the number of gray levels is often reduced [17].  

 

 
Fig. 1. GLCM generation. 

 

Haralick [18] introduced 14 statistical features that 

are generated by calculating the features for each co-

occurrence matrix obtained. The features are calculated 

using the directions 0°, 45°, 90°, and 135°, after which 

these four values are averaged. Contrast, homogeneity, 

angular second moment (energy), and correlations are 

the features that these measurements define in Equations 

(1) - (4), respectively, μi and δi are defined by (5) and 

(6). Contrast quantifies variations in image intensity, 

providing a measure of gray-level contrast between 

neighboring pixels over an entire image. Angular 

Second Moment (ASM), which is also known as 

uniformity or energy, is a measure of texture uniformity 

in gray-level spatial distribution. Homogeneity reflects 

the heterogeneity of a texture pattern and decreases with 

contrast [19]. Correlation is a measure of gray-level 

linear dependence between pixels at specified positions 

relative to each other. In Equations (15-20), Ng is the 

total number of gray levels and P(i, j) is the GLCM of 

an image. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ (𝑖 − 𝑗)2𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
× 𝑝(𝑖, 𝑗)                   (1) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

            (2) 

https://en.wikipedia.org/wiki/Matrix_%28mathematics%29
https://en.wikipedia.org/wiki/Digital_image
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𝐴𝑆𝑀 = ∑ ∑ 𝑝(𝑖, 𝑗)2 

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

                                       (3) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗)

𝛿𝑖𝛿𝑗

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
      (4)  

𝜇𝑖 = ∑ ∑ 𝑖 × 𝑝(𝑖, 𝑗)
𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
                               (5) 

𝛿𝑖
2 = ∑ ∑ (𝑖 − 𝜇𝑖)

2 × 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

                       (6) 

 

3. METHODS OF ESTIMATING FRACTAL 

DIMENSION  
Different approaches can be used to estimate fractal 

dimensions, and most of these are based on the original 

DBC. This section reviews some of these methods. 

The basic method of estimating fractal dimensions is 

based on the concept of self-similarity. In order to define 

the fractal dimension D by self-similarity concept, 

consider a bounded set A in Euclidean n-space. The set 

is said to be self-similar when A is the union of N, 

distinct (no overlapping) copies of itself each of which 

is similar to A scaled down by a ratio r. Fractal 

dimension D of A can be defined as (7). 

 

D =
log( Nr)

log(1
r⁄ )

                                                                    (7) 

 

The fractal dimension can be calculated only for 

deterministic fractals, and the fractal dimension of an 

object with deterministic self-similarity is equal to its 

box-counting dimension. This method finds limited 

application because natural scenes or natural fractals are 

of a non-ideal and non-deterministic character [12]. The 

original DBC is described as follows [15]. 

Consider an image of size M×M as a three-

dimensional image having a surface with (x, y) as 

positions; the third coordinate, z indicates a pixel gray 

level. In the DBC method, the image surface is 

partitioned into non-overlapping blocks of size s×s. The 

scale of each block is r = s/M, where 2≤s≤M/2, and s is 

an integer. Nr denotes the total number of boxes that 

cover the image in all scales and is calculated thus: let us 

suppose that a column of boxes of size s×s×s' exists on 

each block, where s' is the height of each box and is 

defined as G/s' = M/s. G represents the total number of 

gray levels. If the minimum and maximum gray-level in 

the (i, j)th block fall inbox number k and l, respectively, 

the number of boxes covering this block is calculated 

using (8). 

 

𝑛𝑟(𝑖, 𝑗) = 𝐿 − 𝐾 + 1                                                    (8) 

 

Where r denotes the scale and Nr is counted by (9). 
 

  𝑁𝑟 = ∑ 𝑛𝑟(𝑖, 𝑗)                                                            (9) 

Then, the fractal dimension can be estimated from 

the least squares linear fit of log (Nr) versus log (1/r) 

[15]. Fig. 2 depicts the determination of the number of 

boxes by the DBC method.  

Jin et al. [16] proposed a relative DBC (RDBC) 

method, in which Nr is computed by (10). 

 

 
Fig. 2. Determination of the number of boxes by the 

DBC method [15]. 
 

𝑁𝑟 = ∑ 𝑐𝑒𝑖𝑙[𝑑𝑟(𝑖 , 𝑗)]/𝑠′                                              (10) 

 

Where, dr (i, j) is defined as Equation (11). In (11), 

Imax and Imin are the maximum and minimum values of 

intensity in the (i,j)th block, respectively; ceil [ ] denotes 

the ceiling function; and s' represents the height of each 

box. The fractal dimension can be estimated from the 

least squares linear fit of log (Nr) versus log (1/r). 

 

𝑑𝑟(𝑖, 𝑗) = 𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛                                                (11) 

 

Li et al. [15] developed an algorithm on the basis of 

the DBC method to calculate the fractal dimensions of 

gray-level images. If the maximum and minimum gray 

levels of the (i, j)th block are l and k, respectively, the 

number of boxes that cover each block, nr is calculated 

by (12). 

 

𝑛𝑟(𝑖, 𝑗) = {
𝐶𝑒𝑖𝑙 (

𝑙−𝑘

𝑟′ )              𝑙 ≠ 𝑘

1                             𝑙 = 𝑘
                            (12)  

 

Where, r' is the box height and is calculated using 

Equation (13), which a is a positive integer and σ 

represents the mean and standard deviation of a digital 

image. While r is defined as r=s/M, s and M are the size 

of each block and the image respectively. The total 

number of boxes that cover an entire image is computed 

using Equation (9). As with the process in the above-

mentioned approaches, the fractal dimension can be 

estimated from the least squares linear fit of log (Nr) 

versus log (1/r). 
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𝑟′ =
𝑟

1+2𝑎𝛿
                                                                   (13) 

 

Juan et al. [14] used the average gray level within the 

(i, j)th block to compute fractal dimensions. Here, nr (i, 

j) is defined by (14). 

 
𝑛𝑟(𝑖, 𝑗)

= {
1 + 𝑤. (𝑔 − 𝑔𝑚𝑖𝑛)(𝑔 − 𝑔𝑚𝑖𝑛) > (𝑔𝑚𝑎𝑥 − 𝑔)

1 + 𝑤. (𝑔𝑚𝑎𝑥 − 𝑔)                                            𝑒𝑙𝑠𝑒
        (14) 

 

Where, w is the weight, presented in Equation (15); 

gmin, gmax and �̅� are the minimum, maximum and average 

gray-level respectively in the (i, j)th block. 

 

𝑤 = {

𝑁
𝑁𝑚𝑖𝑛

⁄ (𝑔 − 𝑔𝑚𝑖𝑛) > (𝑔𝑚𝑎𝑥 − 𝑔)

𝑁
𝑁𝑚𝑎𝑥

⁄                                         𝑒𝑙𝑠𝑒
                             (15) 

 

N is the total number of pixels within a block; Nmin is 

the number of pixels with a value falling between the 

minimum and mean values of the gray level; and Nmax 

represents the number of pixels with a value that falls 

between the mean value and maximum values of the 

gray level. The total number of boxes covering an image 

plane is computed using Equation (9), and the fractal 

dimension can be estimated from the least squares linear 

fit of log (Nr) versus log (1/r). 

 

4. PROPOSED METHOD FOR FRACTAL 

DIMENSION CALCULATION 

Given that the original DBC algorithm calculates the 

difference between the maximum and minimum gray 

levels to determine the number of boxes in each block, 

under negligible noise, such number clearly changes.  

As previously stated, the critical parameter in fractal 

geometry is fractal dimension, whose accurate 

estimation is very important in texture analysis. An 

inevitable challenge encountered in texture analysis and 

gray level images is the effect of different noises. The 

effects of noise on the fractal dimensions of images vary, 

and estimated fractal dimensions’ increase because the 

roughness of an image and the intensity difference 

between pixels also increase. A fractal dimension is 

therefore also a parameter that shows an increase in the 

complexity moment of a fractal object. In other words, 

the fractal dimension of a noisy image is mostly larger 

than that of the original image without noise. The 

original DBC algorithm applies the difference between 

the maximum and minimum gray levels to calculate the 

number of boxes in each block. Thus, the intensity of 

other pixels is minimally affected when the number of 

boxes in a block is counted. When negligible noise is 

added to an image, the gray values of some pixels and 

the maximum and minimum gray levels change. 

Correspondingly, the number of boxes in each block and 

the total number of boxes that cover an entire image also 

change. This is the reason why fractal dimensions vary 

and deviate from exact values. That is, the DBC 

algorithm and its modified versions are not immune to 

noise. 

To solve this problem, if the parameters such as 

mean, variance, or standard deviation are used 

alternatively, the maximum and minimum gray level 

difference in the methods based on the DBC is replaced; 

the noise effect can be eliminated as acceptable. Since in 

this way, the entire gray levels of the image pixels 

interact in the counting of the boxes, not just the 

maximum and minimum values given the definitions 

and statistical features are derived from the GLCM, this 

matrix can be useful for providing a noise robust method 

based on box counting. With regard to the above, we put 

forward a noise-robust DBC and GLCM-based method 

for estimating fractal dimensions. The specific 

improvement presented by the proposed method is 

point-of-view de-noising with no image preprocessing. 

The process of the proposed noise-robust algorithm 

for fractal dimension calculation is explained as follows. 

 

1) Consider an image of size M×M. 

2) Generate the GLCM, with distance equal to 1 

(D=1) and obtain matrices p0, pπ/4, pπ/2, and 

p3π/4,  in four directions 0°, 45°, 90°, and 135° 

respectively, for the desired image. 

3) Calculate the contrast feature of each of the 

matrices using Equations (16) to (19). 

 

   𝐶0 = ∑ ∑ (𝑖 − 𝑗)2𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
× 𝑝0(𝑖, 𝑗)                           (16) 

   𝐶𝜋
4⁄ = ∑ ∑ (𝑖 − 𝑗)2𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
× 𝑝𝜋

4⁄ (𝑖, 𝑗).               (17) 

   𝐶𝜋
2⁄ = ∑ ∑ (𝑖 − 𝑗)2𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
× 𝑝𝜋

2⁄ (𝑖, 𝑗).                 (18) 

  𝐶3𝜋
4⁄ = ∑ ∑ (𝑖 − 𝑗)2𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
× 𝑝3𝜋

4⁄ (𝑖, 𝑗).              (19) 

4) Generate the C matrix.  

 

   𝐶 = [𝑐0 𝑐𝜋 

4
 𝑐𝜋

2
 𝑐3𝜋

4

] .                                                      (20) 

 

5) Calculate the standard deviation of the C matrix 

(δc). 

     The amount of C in the noisy image is slightly 

changed compared to the value of C in the original 

image. Therefore, we can use the standard deviation 

of the matrix C to count the boxes of each block. 

6) Calculate the standard deviation of the desired 

image (𝛿𝐼). 

7) Divide the image into non overlapping blocks 

of size s×s, which is an integer between 2 and 

M/2. 

8) Calculate the number of boxes that cover each 

block, using Equation (21). 
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𝑛𝑟 = 2𝑎 × [
𝛿𝑐

ℎ
] + 1.                                                      (21) 

 

In Equation (21), a is a positive integer whose 

optimum value is equal to 4. This optimum value is 

determined by the trial and error and also the results of 

the examination. Although fractal dimensions for values 

less than or greater than a = 4 are within acceptable 

range, but these values, reduce the accuracy and increase 

the fit error (E), so the optimal value occurs at a = 4. 

Moreover, in Equation (21), the value of 1 is added to 

the relationship to prevent zeroing nr and failing to 

compute the fractal dimension. Since in the special case 

if the original image has only one gray level, the contrast 

of the GLCM is the same in four directions, and 

therefore δc is zero. 

In Equation (21), h is the height of each box in order 

to determine it, according to the contrast values obtained 

from GLCM, the value of δc is small and less than one, 

so the height of each box should be proportional to 

Equation (21). 
Suppose that most pixels fall into the interval of gray 

levels within [μ –bσI, μ +bσI], in which b is a positive 

integer and μ and σ represent the mean and standard 

deviation of the image, respectively. Under this 

condition, a box with a small height is chosen for an 

image surface with high intensity variations. The height 

of boxes in this method is much smaller at different box 

scales of r than the height of boxes in the DBC algorithm 

and is calculated by Equation (22); r is defined in 

Equation (23) as follows: 

 

h =
s

1+2b×δI
  .                                                              (22) 

𝑟 = 𝑠
𝑀⁄    .                                                                  (23) 

 

Where, b is a positive integer whose optimum value 

is equal to 3 according to [15], 

9) Calculate the total number of boxes that cover 

the image, using Equation (24). 

 

  𝑁𝑟 = ∑ 𝑛𝑟(𝑖, 𝑗) .                                                        (24) 

 

10) Estimate the fractal dimension of the image 

from the least squares linear fit of log (Nr) 

versus log (1/r). 

 

5. EXPERIMENTAL RESULTS 

Eight images taken from the Background database 

are shown in Fig. 3. These are randomly selected and 

applied to identify the effects of noise on the fractal 

dimensions of the images. We first calculate the fractal 

dimensions of images without noise by using the original 

DBC and the algorithms in [16], [15] and [14]. We then 

add Gaussian, Salt-and-Pepper and Speckle noises to the 

images and recalculate their fractal dimensions via the 

aforementioned algorithms. We consider the default 

values for these noises, therefore, Gaussian noise with a 

mean of 0 and 0.01 variance, Salt-and-Pepper noise with 

a density of 0.05 and Speckle noise with a mean of 0 and 

0.04 variance are applied. As shown in the Table 1, the 

three kinds of noises exert notable effects on the fractal 

dimensions, which increase under the presence of the 

noises. This result is attributed to the noise-induced 

changes in image roughness. In other words, the fractal 

dimensions of the gray-level images substantially 

change with increasing variance or density of the three 

noises. The estimation results derived by the original 

DBC and the algorithms presented in [16], [15] and [14] 

and the effects of noise are illustrated in Figs. 4-8.  

The findings indicate that these methods are non-

resistant to noise, making modifications to DBC and 

other algorithms with no image preprocessing necessary.  

 

 
           153                         161                        328                       331  

 
           417                        494                         547                          548 

Fig. 3. Images from Background image database.  

 

Table 1 and Fig. 4 also show the experimental results 

of fractal dimension calculation by the proposed method 

before and after the addition of the different kinds of 

noises. The matching of fractal dimension values on a 

plot indicates that the proposed method exhibits 

effective de-noising, desirable performance, and 

robustness against noise.  

     According to Table 1, although the fractal 

dimensions obtained by the proposed method are higher 

than those of the other methods,  the fractal dimensions 

are in the correct interval between 2 and 3, as well as the 

sequence of the complexity of the images is established 

correctly. The reason for the high fractal dimensions in 

method [15] and the proposed method is to define the 

height of each box based on the standard deviation of the 

image. 
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Fig. 4. Effects of noise on fractal dimension calculated by DBC. 

 

Table 1. Results of fractal dimension estimation by DBC and similar algorithms, with and without noise. 

Image Method FD 

Noise less Gaussian Noise Salt &Pepper Noise Speckle Noise 

153 DBC 2.68 2.84 2.90 2.80 

[16] 2.67 2.84 2.92 2.79 

[15] 2.81 2.98 3.06 2.93 

[14] 2.65 2.80 2.94 2.77 

Proposed 2.90 2.90 2.90 2.89 

161 DBC 2.53 2.80 2.90 2.82 

[16] 2.53 2.80 2.81 2.82 

[15] 2.65 2.94 3.04 2.95 

[14] 2.55 2.77 2.94 2.82 

Proposed 2.86 2.85 2.86 2.85 

328 DBC 2.43 2.78 2.89 2.72 

[16] 2.46 2.78 2.84 2.75 

[15] 2.55 2.92 3.03 2.86 

[14] 2.47 2.77 2.96 2.73 

Proposed 2.76 2.70 2.76 2.69 

331 DBC 2.51 2.80 2.90 2.78 

[16] 2.52 2.80 2.82 2.78 

[15] 2.63 2.94 3.04 2.92 

[14] 2.57 2.80 2.96 2.80 

Proposed 2.81 2.79 2.81 2.79 

417 DBC 2.47 2.80 2.89 2.76 

[16] 2.50 2.79 2.83 2.77 

[15] 2.60 2.94 3.03 2.89 

[14] 2.55 2.78 2.95 2.76 

Proposed 2.79 2.77 2.79 2.76 

494 DBC 2.36 2.78 2.89 2.72 

[16] 2.37 2.77 2.81 2.72 

[15] 2.48 2.92 3.02 2.86 

[14] 2.42 2.75 2.92 2.71 

Proposed 2.65 2.56 2.66 2.56 

547 DBC 2.40 2.79 2.89 2.76 

[16] 2.42 2.78 2.84 2.76 

[15] 2.53 2.92 3.03 2.90 

[14] 2.47 2.76 2.94 2.75 

Proposed 2.69 2.64 2.69 2.65 

548 DBC 2.28 2.78 2.88 2.74 

[16] 2.30 2.77 2.85 2.75 

[15] 2.39 2.91 3.02 2.88 

[14] 2.36 2.76 2.94 2.74 

Proposed 2.57 2.48 2.58 2.53 
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Fig. 5. Effects of noise on fractal dimension calculated 

by the method proposed in [16]. 
 

 
 

Fig. 6. Effects of noise on fractal dimension calculated 

by the method proposed in [15]. 
 

Fig. 7. Effects of noise on fractal dimension calculated 

by the method presented in [14]. 
 

 
Fig. 8. Effects of noise on fractal dimension calculated 

by the method proposed in current work. 

 

The variations in fractal dimensions with increasing 

variance or density of the Gaussian, salt-and-pepper, 

and speckle noises are analyzed and plotted in Fig.  9. 

The figure shows that the proposed method maintains 

robustness even under increasing noise variance or 

density. 

 

Fig. 9. Variations of fractal dimensions with 

increasing variance or density of noises, calculated by 

the method proposed in the present study. 

 

Figs. 10-14 illustrate the log-log plots of fractal 

dimension estimation using different methods for "161" 

image. These plots show that the slop of the fitted 

straight-line varies in effect of noise as well. So just for 

that reason, fractal dimension is changed. As illustrated 

in Fig. 14, the slop of the fitted straight-line does not 

vary and so the proposed method is robust to noise. 

 

 
Fig. 10. The Log-Log plots of "161" image by DBC 

Method. 

 

 

Fig. 11. The Log-Log plots of "161" image by the 

Method presented in [16]. 



Majlesi Journal of Electrical Engineering                                                               Vol. 14, No. 2, June 2020 

 

32 
 

 
Fig. 12. The Log-Log plots of "161" image by the 

Method presented in [15]. 
 

 
Fig. 13. The Log-Log plots of "161" image by the 

Method presented in [14]. 
 

 

Fig. 14. The Log-Log plots of "161" image by the 

Method proposed in the current study. 
 

Finally Table 2 shows the average of fractal 

dimension variation in effect of different noises using 

above methods. It is clear that the variation of fractal 

dimension due to different noise that is calculated by 

the proposed method has the lowest value compared to 

other algorithms. 

 

Table 2. The comparison of the average of FD 

variation in effect of noise by using different methods 

for images of Fig. 3. 

Method Average of FD Variation (%) 

Gaussian 

Noise 

Salt & 

Pepper 

Noise 

Speckle 

Noise 

DBC 61.75 95 59.29 

[16] 67.90 78.25 62.86 

[15] 61 78.23 54.96 

[14] 53.22 86.88 50.49 

Proposed 5.6 0.33 5.14 

      

Since the calculated fractal dimension by the 

estimation method is equal to the slope of the fitted 

straight line, the fit error E is used to measure the root 

mean-squared distance of the data pointes from the log 

(Nr) versus log (1/r). The lower fit error could be 

obtained from the better fit. The fit error E of points (x, 

y) from their fitted straight line satisfying y=ax+b is 

defined by Equation (30), where y denotes log (Nr) and 

x denotes log (1/r). 

 

𝐸 =
1

𝑛
√∑

(𝑎𝑥𝑖+𝑏−𝑦𝑖)2

1+𝑎2
𝑛
𝑖=1                                                (25) 

 

The fit errors E computed for the images of Fig. 3 

using the different methods are presented in Table 3 and 

compared in Fig. 15. As shown in Fig. 15, the fit errors 

calculated by the proposed method are less than the 

other methods that expresses the accuracy of the 

proposed method. 

 

Table 3. The computational fit errors of FDs by using 

different methods for images of Fig. 3. 

Fit Error  Imag

e Propose

d 

[14] [15] [16] DBC 

0.0028 0.038

3 

0.029

5 

0.024

5 

0.025

3 
153 

0.0069 0.035

3 

0.031

4 

0.026

8 

0.027

8 
161 

0.0069 0.043

7 

0.031

8 

0.030

1 

0.028

7 
328 

0.0042 0.030

2 

0.028

4 

0.023

2 

0.024

4 
331 

0.0015 0.030

9 

0.025

0 

0.019

8 

0.020

5 
417 

0.0026 0.019

7 

0.022

8 

0.016

2 

0.018

7 
494 

0.002 0.026

6 

0.023

0 

0.014

2 

0.018

0 
547 

0.0037 0.019

1 

0.021

7 

0.013

0 

0.017

2 
548 

 

 

 
Fig. 15. The comparison of estimated FDs fit errors by 

using different methods. 
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At the end of the current study, similar to the 

research presented in [20], for comparison, the 

conventional DBC algorithm and the proposed method 

with median filter and mean filter preprocessing is also 

tested under Gaussian, salt-and-pepper, and speckle 

noises. In the first step, fractal dimensions of images 

Fig. 3, are calculated by conventional DBC algorithm 

and then the different noises are added. In second step, 

the noisy images are de-noised by median filter and 

mean filter, respectively, and then their fractal 

dimension are re-calculated by the conventional DBC 

algorithm. Figs. 16 and 17 show that the fractal 

dimensions of noisy images have improved a little by 

filtering. In order to approve the performance of the 

proposed method, also the average FD variations are 

calculated for noisy images of background databases 

using Conventional DBC method, the proposed method 

and filtered images by median and mean filter. Fig. 18 

represents that the proposed method with minimum 

variations, in which no preprocessing on the captured 

image is conducted, effectively removes the effects of 

the noises. It also exhibits higher efficiency and more 

desirable performance than those achieved using the 

algorithm with filtering processing. 

 

 
Fig. 16. Effects of noise on fractal dimensions 

calculated by DBC after median filtering for 

Background images. 
 

 
Fig. 17. Effects of noise on fractal dimensions 

calculated by DBC after mean filtering for 

Background images. 

 
Fig. 18. Computational average FD variation of 

Background images. 

 

6. CONCLUSION 
The fractal dimension is an important parameter in 

fractal geometry, and the accuracy of its estimation 

guarantees the accuracy of texture image analysis. In 

images contaminated by noise, fractal dimensions are 

positively correlated with noise variance or density. 

Given the negative effects of noise, an image becomes 

rougher, and its fractal dimension becomes larger. The 

fractal dimension of a noisy image is larger than that of 

a non-noisy image. Various methods of estimating the 

fractal dimensions of digital images are available, but 

most of them are based on the original DBC, which is 

non robust against noise. 

This study proposes a noise-robust method based on 

the DBC algorithm and GLCM and has tested the 

approach under Gaussian, salt-and-pepper, and speckle 

noises of different variances and densities. The 

experimental results show the effective de-noising 

performance of the proposed method. 

This method contributes to the field in that it enables 

effective handling of the nature images, which are often 

exposed to noise. Solving the problems presented by 

noise is an important challenge in the processing of 

images. In such instances, noise can be removed before 

the images are processed, but this approach does not 

allow for preprocessing. The sensible strategy in this 

study was to analysis noisy digital images directly and 

without any pre-processing. 
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