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ABSTRACT: 

We propose a new impedance control algorithm for delayed linear bilateral teleoperation systems. In the presented 

control strategy, with regard to a preferred impedance model for the master and slave robots, a special dynamic feature 

at the human and the master robot along with the slave robot and environment interface is proposed. In addition, 

external forces signals including operator and remote environmental forces are used in the controller to attain desired 

impedance model. A force estimation scheme is presented to remove measurement of external forces. Then, the 

desired impedance model is located into an appropriate sliding-mode control scheme to compensate the parameters 

uncertainties emerged by external force estimation errors. Then, the absolute stability criterion is used to investigate 

the stability of the closed-loop teleoperation system along with transparency. Consequently, the control strategy is 

implemented on 1-DOF robotic system as the master and slave robots. Simulation results verify the effectiveness of 

the presented impedance controller by using estimated external forces. 
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1.  INTRODUCTION 

In teleoperation applications, slave robot usually 

interacts with remote environment which is far from the 

operator in the master side. Therefore, an external force 

is exerted on the slave which is inevitable. These 

external exerted forces can dampen teleoperation 

system. In many cases, to reduce damping, the 

excessive forces occurred between the slave robot and 

remote environment should be prevented. It is obvious 

that avoiding any excessive forces makes proper 

tracking during free motion. 

 

2.  LITERATURE REVIEW 

As mentioned in many previous researches, one of 

the main alternatives to decrease damping is using 

impedance control for teleoperation systems [1-3]. 

Impedance control strategy often controls the relation 

between applied external forces and velocity, therefore, 

it can be successfully utilized for teleoperation systems 

which are dealt with different environments [4-6]. 

Therefore, many previous researchers have employed 

impedance controller for teleoperation tasks due to this 

advantage. In [4], variable damping and stiffness have 

been used to reduce impact forces and boost tracking 

performance. In [5], in order to improve system 

stability, a controller has been presented to adaptively 

vary preferred impedance. In addition, in [6], the 

master robot workspace was initially constrained by 

employing an impedance model, and then to avoid 

operators fatigue operation, an adaptation was done on 

damping ratio of the master side. In addition, with 

regard to distance between the remote environment and 

the slave robot, the stiffness of the slave impedance has 

been modulated. Since the human and environment 

energetically work together with the master robot and 

slave robots respectively, therefore they affect the 

closed-loop system stability. However, operator and 

environment model have not been considered during 

stability analysis. Moreover, another significant point 

in teleoperation system is time delay which marks 

impact on the closed-loop system stability, but this 

issue has not been considered as well. It has been 

proved that a small time delay can cause unstable 

teleoperation systems, therefore this issue must be 

taken into account correctly [7]. 

Moreover, as presented in the above researches, the 

measurement of external forces is a key point to 

identify remote environment behavior. Then, according 
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to this identification, desired impedance parameters are 

proposed. Since external force measurement is really 

tough in different applications particularly medical 

ones, therefore several force estimations have been 

proposed to overcome this issue [8-12]. The proposed 

force estimation strategies could estimate forces 

properly; however, it was needed to identify system 

dynamic parameters correctly. Therefore, it is obvious 

that the presented force estimation algorithms are not 

robust against adverse uncertainties. 

In this work, we propose a robust impedance 

control for a linear teleoperation system under presence 

of time delay between communication channels along 

with uncertainties in dynamic model. According to the 

desired impedance, the controller is proposed. To 

verify robustness of the linear teleoperation system 

against uncertainties, a sliding mode controller is 

presented as well. Moreover, a force estimation 

strategy is designed to get rid of external force 

measurement directly. Consequently, a stability 

condition for the closed-loop system including 

master/slave robots along with operator in the master 

side and remote environment in the slave robot side is 

presented. The absolute stability criterion is employed 

to study the stability of teleoperation system. 

 

3.  MATERIAL AND METHOD 

In this section, initially the system dynamic model 

and some other items are defined. Then, an impedance 

control scheme for macro-micro teleoperation systems 

is proposed. A force estimation approach is designed to 

cope with direct measuring of external forces. 

Consequently, an absolute stability criterion is used to 

analyze closed-loop macro-micro teloperation system.     

 

3.1.  Model Definition 

In this section, we present some definitions 

employed in the control strategy.  The master and slave 

robots are chosen one degree of freedom to make 

simpler the control process and the stability study. It 

should be noted that, the presented algorithm will be 

also related for system with  n-degrees of freedom. 

Moreover, force and position scales factors are 

employed in the analysis and designing process, in 

order to use the obtained results in many various kinds 

of the teleoperation and related applications. The time 

delay has been taken into account constant. 

 

3.2.  Dynamic Model for the Master and Slave 

Robots 

We choose dynamic model for teleoperation system 

including the master and slave robots as a mass- 

damper system: 

𝑚𝑚�̈�𝑚(𝑡) + 𝑐𝑚�̇�𝑚(𝑡) = 𝜏𝑚(𝑡) + 𝑓ℎ(𝑡) 

(1) 

𝑚𝑠�̈�𝑠(𝑡) + 𝑐𝑠�̇�𝑠(𝑡) = 𝜏𝑠(𝑡) − 𝑓𝑒(𝑡) (2) 

 

Where, in the above equations ẍm, ẋm, ẍs, ẋs are 

acceleration signals, velocities of the master and slave 

robots; in addition, fh, fe are the human force and the 

force exerted on the environment by the slave robot 

respectively, and τm, τs represent the controllers for the 

master and slave robots; moreover, mm, ms are defined 

as the master and slave robots mass, respectively. cm, cs 

show the master and slave viscous, respectively. 

 

3.3.  Delayed Signal and Scale Factors 

We present a block diagram for the proposed 

teleoperation system in Fig. 1. As shown this figure, 

force and position of the master are sent to the slave 

robot and the environmental force exerted on the slave 

robot transmitted to the master robot through the 

communication channels. The delayed signals 

transmitted through the communication channels have 

been represented as follows: 

 

xT
m (t) ≔ xm(t − T1),         ẋ

T
m(t) ≔ ẋm(t − T1) 

xT
s (t) ≔ xs(t − T2),             ẋ

T
s (t) ≔ ẋs(t − T2) 

f̂T
h (t) ≔  f̂h(t − T1)            f̂T

e (t) ≔  f̂e(t − T2) 

 

Where, xT
m(t), ẋT

m(t), and f̂T
h(t) are defined as 

velocity and position of the master as well as the 

estimated operator external force. xT
s(t), ẋT

s(t) and 

f̂T
e(t) are defined as the position and velocity of slave 

robot as well as the estimated force applied on slave by 

the remote environment transmitted to the master robot. 

Consequently, T1 and T2 are defined as time delays 

between communication channels. 

 

 

Fig. 1. A block diagram of teleoeration system. 

 

The delayed signals after crossing of the 

communication channels are then scaled up/down by 

defined proper factors depend on special applications. 

Employing the mentioned scale factors, the position 

and velocity signals to the slave and the external force 

signal to the master side are used as follows: 

xs  = kpxm
T ,         fh = kffe

T 

 

Where, kf and kp are force and position scale 
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factors, respectively. 

 

3.4.  Control Design 

We initially propose a force estimation strategy for 

the operator and environmental forces. The proposed 

force estimation approach is based on the disturbance 

observer [9].  

 

3.5.  Force Estimation Strategy for the Master and 

Slave Robots 

Based on the equation (1), we propose a new 

definition for the operator force as follows:  

 

fh(t) = mmẍm(t) + cmẋm(t) − τm(t) (3) 

 

Thus, a force estimation approach as follows is 

proposed [9]: 

 

ḟ̂h(t) = −Lh f̂h + Lh(m̂mẍm(t) + ĉmẋm(t)
− τm(t)) 

(4) 

 

Where, . ̂ denotes the nominate value of the mass 

and damping coefficient. In addition, f̂h and Lh are 

defined as the estimated operator force and force 

estimation gain, respectively. 

The significant drawback of the mentioned strategy 

is to measure acceleration signal directly. Due to the 

presence of noise, deriving acceleration from velocity 

by getting differentiation is not usually possible as 

well. Therefore, we define a proper auxiliary variable 

to disregard measurement of acceleration signal 

directly: 

 

zh(t) = f̂h(t) − Ph(ẋm) (5) 

dPh(ẋm)

dt
= Lhm̂mẍm(t) 

(6) 

 

By taking derivation of the equation (5) and 

employing the equation (6), the new force estimation is 

reached:  

 

żh(t) = −Lhz + Lh(ĉmẋm(t) − τm(t)
− Ph(ẋm)) 

(7) 

 

Now, we consider the force estimation stability. 

Initially, the observer error is specified: 

 

eh = fh − f̂h (8) 

 

According to (5), (7), (8), the dynamic error of 

observer is given by: 

ėh = ḟh − ḟ̂h = ḟh − żh(t) −
dPh(ẋm)

dt
− Lh(m̃mẍm(t)
+ c̃mẋm(t))

= ḟh − Lheh

− Lh(m̃mẍm(t)
+ c̃mẋm(t)) 

(9) 

 

Where, m̃m = mm − m̂m and c̃m = cm − ĉm. We 

present a Lyapunov function as follows to take into 

account the force estimation stability: 

 

Vh =
1

2
eh

2 
(10) 

 

By taking derivative of the presented candidate 

lyapunov function and based on the equation (9), V̇h 

would be as: 

 

V̇h = −Lheh
2 + ḟheh

− eh Lh(m̃mẍm(t)
+ c̃mẋm(t)) 

(11) 

 

The variation rate of fh and presented (m̃mẍm(t) +
c̃mẋm(t)) are bounded: 

 

∃γm > 0      |ḟh| + |m̃mẍm(t) + c̃mẋm(t)| < γm 

    ∀t > 0 

 

     Resulting: 

 

V̇h ≤ −Lheh
2 + γm|eh|

= −Lh(1 − θ)eh
2

− Lhθeh
2 + γm|eh| 

(12) 

 

      Where, θ ∈ (0,1). Thus: 

 

V̇h ≤ −Lh(1 − θ)eh
2,     ∀|eh| ≥

γm

Lhθ
 

(13) 

 

Regarding to [12], it is resulted that: 

 

|eh|

≤ α1
−1 (α2 (

γm

Lhθ
))     for  ∀eh(0) and ∀t

≥ T, 

(14) 

 

Note that, we use the presented force estimation 

strategy for the slave side as well:  

 

fe(t) = −msẍs(t) − csẋs(t) + τs(t) (15) 

ḟ̂e(t) = −Lef̂e + Le(−m̂sẍs(t) − ĉsẋs(t)

+ τs(t)) 

(16) 
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3.6.  Sliding-mode Impedance Controller for the 

Master 

Dynamic actions between master and operator can 

be specified employing impedance control strategy. In 

the master side, impedance control strategy is specified 

by the model-based computed torque method. Now, it 

is supposed that the preferred impedance controller for 

the master robot is considered as follows: 

 

m̅mẍm(t) + c̅mẋm(t) + k̅mxm(t)

= fh(t) − kffe
T(t) 

(17) 

 

 m̅m, c̅m and k̅m are defined as desired inertia, 

damping coefficient and stiffness, respectively and kf is 

also force scale factor. This control scheme does a 

force control in the master side to return the 

environmental force at the slave side to the operator in 

the master side. 

As mentioned before, there are parameters 

uncertainties in the dynamic model which should be 

considered in the proposed control strategy. Initially, it 

is assumed that the dynamic model is perfect, therefore, 

the following control scheme is proposed: 

 

τm1 = (ĉm −
m̂m

m̅m

c̅m) ẋm + (
m̂m

m̅m

− 1) f̂h

−
m̂m

m̅m

{kff̂e
T + k̅mx} 

(18) 

 

m̂m and ĉm are the estimation of mm and cm, 

respectively. Now, we design a sliding mode control 

scheme in order to this fact that the desired impedance 

control scheme is the same as the sliding surface. 

Therefore, it could be stated that we have obtained a 

robust control scheme. With regard to the defined 

desired impedance model, the sliding surface is as: 

 

sm(t) =
1

m̅m

∫ Im(t) dt
t

0

 
(19) 

 

Where Is(t) is defined as: 

 

Im(t) = m̅mẍm(t) + c̅mẋm(t) + k̅mxm(t)
− fh(t) + kffe

T(t) 

(20) 

      

     The system trajectories in the master side will desire 

to the sliding surface, if the sliding condition of 

ṡmsm ≤ −μm|sm| is satisfied, where 𝜇𝑚 is positive 

constant. We add a discontinuous term to the control 

input in order to satisfy the desired sliding surface in 

the presence of uncertainties in the system. The control 

input with discontinuous term is as: 

τm2 = τm1 − Kgm. sat (
sm(t)

φm

)

= (ĉm −
m̂m

m̅m

c̅m) ẋm

+ (
m̂m

m̅m

− 1) f̂h

−
m̂m

m̅m

{kff̂e
T − k̅mx}

− Kgm. sat (
sm(t)

φm

) 

(21) 

 

Where, Kgm and 𝜑𝑚 are defined as the nonlinear 

gain as well as boundary layer thickness. 

 

3.7.  Sliding-mode based Impedance Control 

Strategy for the Master and Slave Robot 

    The proposed controller in the slave side is similar to 

the master side to a great extent. In the slave robot side, 

position tracking in the free motion as well as slave 

contact stability is affected by a preferred impedance 

model. Consequently, a desired impedance model for 

the slave robot would be: 

 

m̅sẍ̃(t) + c̅sẋ̃(t) + k̅sx̃(t) = −fe(t) (22) 

 

Where, m̅s, c̅s and k̅s are defined as the desired 

inertia, damping coefficient and stiffness, in addition 

x̃ = xs − kpxm
d . 

We design the control scheme for the slave like the 

master side. Initially, we assume that the plant models 

are perfect, therefore: 

 

τs1 = (ĉs −
m̂s

m̅s

c̅m) ẋs −
m̂s

m̅s

k̅mxs

+ m̂skp (
c̅s

m̅s

−
c̅m

m̅m

) ẋm
T

+ m̂skp (
k̅s

m̅s

−
k̅m

m̅m

) xm
T

+
m̂s

m̅m

kpfh
T +

m̅m − m̂s

m̅m

fe

−
m̂s

m̅m

kpkffe
TT 

(23) 

 

Where, fe
TT = fe

T(t − T1) = fe(t − T1 − T2); m̂s and 

ĉs are the estimation of ms and cs, respectively. 

We design a sliding-mode control scheme which by 

using it, the desired impedance control is the same as 

the sliding surface, therefore, it can be stated that we 

have reached a robust impedance control scheme. By 

employing the preferred impedance of the slave robot, 

the sliding surface is as follows: 
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ss(t) =
1

m̅s

∫ Is(t) dt
t

0

 
(24) 

 

Where Is(t) is: 

 

Is(t) = m̅sẍ̃(t) + c̅sẋ̃(t) + k̅sx̃(t)
− (−fe(t)) 

(25) 

 

Note that ṡ(t) has not have any adverse term since 

the defined sliding surface is the integration of Is(t). 

Note that while the dynamic model is completely 

known and the system is kept in the sliding mode, the 

system state remains completely on the sliding surface, 

and the slave robot demonstrates the desired behavior. 

When the wanted system is in the sliding mode 

condition, the sliding surface will be satisfied ṡ(t) = 0 

[11]. To solve ṡ(t) = 0 for the input control, the 

equivalent control would be as: 

 

τeq = −
m̂s

m̅s

{c̅sẋ̃(t) + k̅sx̃(t) + f̂e(t)}

+ ĉsẋs(t) + f̂e(t)
+ kpm̂sẍm

T (t) 

(26) 

 

Equation (26) is similar to the equation (23), the 

acceleration signal is omitted employing the dynamics 

of the master robot. The system trajectories will desire 

to the sliding surface, if the presented sliding condition 

of ṡsss ≤ −μs|ss| is occurred, where 𝜇𝑠 is positive 

constant. A discontinuous term is added to the 

controller in order to satisfy the desired sliding surface 

under presence of uncertainties in the system. The 

controller with discontinuous term is as: 

 

τs2 = τeq − Kgs. sat (
ss(t)

φs

)

= (ĉs −
m̂s

m̅s

c̅m) ẋs

−
m̂s

m̅s

k̅mxs

+ m̂skp (
c̅s

m̅s

−
c̅m

m̅m

) ẋm
T

+ m̂skp (
k̅s

m̅s

−
k̅m

m̅m

) xm
T

+
m̂s

m̅m

kpf̂h
T +

m̅m − m̂s

m̅m

f̂e

−
m̂s

m̅m

kpkff̂e
TT

− Kgs. sat (
ss(t)

φs

) 

(27) 

 

Where, Kgs and 𝜑𝑠 are defined as the nonlinear gain 

as well as boundary layer thickness. 

 

3.8.  Stability Analysis  

 We utilize absolute stability criterion to analyze 

closed-loop system embracing operator in the master 

side, remote environment and communication channels. 

This concept is extensively employed to consider 

stability of the two-port teleoperation system which 

includes passive human and remote environment. 

  

3.9.  Stability Analysis of the Linear Teleoperation 

system   

By substituting the proposed control input for the 

master robot (equation (21)) into the master robot 

dynamics and presenting these terms of 𝑠𝑚(t): 

 

mmṡm(t) + αm(t) + Kgm . sat (
sm(t)

φm

) = 0 
(28) 

 

Where: 

 

αm(t) = ∆cmẋm(t)

+
∆mm

m̅m

[−ẋm(t) + fh(t)

− ∆fh
− {kf(fe − ∆fe) + k̅mxm}

− ∆fh] − ∆fh +
mm

m̅m

∆fh 

(29) 

∆mm = mm − m̂m;  ∆cm = cm − ĉm  

 

With regard to the mentioned uncertainties in 

equation (25), the boundary of the presented nonlinear 

gain, Kgmwhich satisfies the sliding condition, would 

be obtained as: 

 

Kgm ≥ mm(μm + |αm(t)|) (30) 

 

Based on the nonlinear gain Kgm which satisfies 

equation (26), therefore the master state could be kept 

in the presented sliding surface. Thus, the master robot 

represents the desired impedance characteristic (Im =
m̅mṡ ≅ 0) [14]. 

For the slave side, by substituting the proposed 

control input for the slave robot (equation (27)) into the 

slave robot dynamics and presenting these terms of 

𝑠𝑠(t), as follow: 

 

msṡs(t) + αs(t) + Kgs. sat (
ss(t)

φs

) = 0 
(31) 

 

Where, 
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αs(t) = ∆csẋm(t)

+
∆ms

m̅s

[kpẍm
T (t)m̅s

− c̅sẋ̃(t) − k̅sx̃(t)

− fe{(−∆fe)}] −
1

kf

∆fh

+
mm

kfm̅m

∆fh 

(32) 

∆ms = ms − m̂s;  ∆cs = cs − ĉs  

 

Therefore: 

Kgs ≥ ms(μs + |αs(t)|) (33) 

 

Now, we must represent the closed-loop 

teleoperation system in the two ports to use absolute 

stability concept. This intended two-port network 

includes two inputs as well as outputs. The defined 

inputs are defined as (ẋm, ẋs) and the outputs are 

defined as (fh, fe). There is matrix which represents the 

relationship between inputs and outputs of the two-port. 

The attained desired matrix so-called hybrid matrix is 

shown as follows: 

 

[
𝐹ℎ

−𝑉𝑠
] = [

ℎ11 ℎ12

ℎ21 ℎ22
] [

𝑉𝑚
𝐹𝑒

]                                                                                                         
(34) 

 

It cannot utilize absolute stability concept directly 

because of this fact that the estimated forces are used in 

the controller. Consequently, according to the presented 

force estimation strategy, a relationship between f̂. and 

f. in the case of Laplace transform is derived as follows: 

 

F̂h =
LhFh

s + Lh

 
(35) 

F̂e =
LeFe

s + Le

 
 

 

By substituting equation (35) into closed-loop 

dynamics, it can be derived, as a hybrid matrix, as 

follows: 

 

[
ℎ11 ℎ12

ℎ21 ℎ22
]

=

[
 
 
 �̅�𝑚𝑠 + 𝑐�̅� +

�̅�𝑚

𝑠
𝐿𝑒𝑘𝑓𝑒

−𝑇2𝑠

−𝐿ℎ𝑘𝑝𝑒
−𝑇1𝑠

𝑠

�̅�𝑠𝑠
2 + 𝑐�̅�𝑠 + �̅�𝑠]

 
 
 

 

(36) 

 

The sufficient and necessary conditions to analyze 

stability based on absolute stability concept are as 

follows [13]: 

 h11 and h22 should not include poles in the 

right half plane.  

 Any poles of the h11 and h22 should be simple 

with real and positive residues on the 

imaginary axis. 

 For every real values of ω: 

𝑅𝑒[ℎ11] ≥ 0, 𝑅𝑒[ℎ22] ≥ 0 

𝑓(𝜔) = −cos(∠ℎ12ℎ21) + 2
𝑅𝑒[ℎ11]𝑅𝑒[ℎ22]

|ℎ12ℎ21|
≥ 1 

 

These mentioned conditions are called Liewellyn's 

stability conditions as well. Therefore, if the presented 

h-parameters related to hybrid matrix can satisfy 

Liewellyn's stability criterion, the closed-loop linear 

bilateral teleoperation will be absolute stable. 

Regarding to equation (36), the desired impedances and 

force estimation gains should be chosen to satisfy 

Liewellyn's stability conditions. 

 

4.  EXPERIMENTAL RESULTS 

We have done several simulations in the 

MATLAB/Simulink in order to evaluate the presented 

control scheme. We implement the control strategy on 

one DoF robots as the master and slave robots. Note 

that, the performance of the force estimation algorithm 

and the impedance control scheme is evaluated under 

presence of parameters uncertainties in the master and 

slave robots’ dynamics model. The block diagram of 

the designed control strategy has been presented in the 

Fig. 2. 

 

 

Fig. 2. A block diagram of the control scheme.  

 

We have determined impedance parameters and 

force estimation gains before simulation process.  

As mentioned in the last section, we must choose 

these parameters to satisfy absolute stability conditions. 

Therefore, the impedance parameters and force 

estimation gains are used as illustrated in Table 1: 

 

Table 1. Impedance parameters and force 

estimation gains for master and slave robots. 

Master robot Slave robot 

k̅m = 0.2 k̅s = 20 

c̅m = 0.5 c̅s = 0.7 

m̅m = 0.1 m̅s = 0.0125 

Lh = 10 Le = 10 

 

We initially generate a desired path at the master 

robot side for comparison of two controllers (nominal 

impedance controller and sliding-mode one in the 

presence of estimated external forces) (Fig. (3)).  
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Fig. 3. Master and slave position. 
 

As illustrated in Fig. 3, free motion occurs between 

10 to 18 sec, then slave robot contacts with the hard 

environment between 18 to 38 sec, consequently free 

motion occurs again between 38 to 50 sec. it means that 

a hard environment has been put in 1.5 rad. It is 

observed that during free motion, the slave robot 

follows the master one properly. 

To evaluate sliding-mode impedance controller, 

different parameter uncertainties has been considered in 

the mentioned mass and even the viscous coefficient of 

the slave robot. Simulations are performed for 

overestimated and underestimated cases along with 

nominal one as: 

 

Table. 2. The coefficients of the mass and viscous for 

the slave. 

 Mass viscous 

Overestimated  �̂�𝑠 = 3𝑚𝑠 �̂�𝑠 = 3𝑐𝑠 

Underestimated �̂�𝑠 = 0.5𝑚𝑠 �̂�𝑠 = 0.5𝑐𝑠 

Nominal �̂�𝑠 = 𝑚𝑠 �̂�𝑠 = 𝑐𝑠 

 

It can be observed that the closed-loop linear 

teleoperation in the absence of sliding-mode based 

control strategy is illustrated in following figures. 

 

 

Fig. 4. Slave position in the presence of nominal 

impedance control. 

 

Fig. 5. Slave position with the sliding mode based 

impedance control. 

 

In the Figs. 4 and 5, the associated results with 

impedance control and the sliding-mode based 

impedance control strategy have been presented, 

respectively. Slave outputs of every case have been 

superposed on another one at the same Fig in order to 

clearly compare them. 

As shown in Fig. 4, tracking performance is not 

achieved properly in free motion when there are 

uncertainties in the slave dynamic model. Note that by 

increasing the difference between nominal defined 

parameter and determined parameter in the controller, 

the tracking error between other cases and nominal 

slave trajectory is grown to a great extent. In addition, 

there is an unstable contact in the dynamic model in the 

presence of parameter uncertainties. On the other hand, 

the slave robot has reliable outputs for all cases by using 

the sliding-mode impedance control scheme. Thus, as 

shown in Fig. 5, it is obvious that the presented control 

scheme will be completely robust against the parameter 

uncertainties. Finally, the operation on the remote 

environment in the slave side is performed properly 

when the human in the master robot side is sent 

command to the slave robot. 

The performance of force estimation strategy is 

presented in the Fig. 6. 

 

 

Fig. 6. Force estimation results 

𝒏𝒐𝒎𝒊𝒏𝒂𝒍 
�̂�𝒔 = 𝟎. 𝟓 × 𝒄𝒔 

�̂�𝒔 = 𝟑 × 𝒄𝒔 

�̂�𝒔 = 𝟎. 𝟓 × 𝒎𝒔 

�̂�𝒔 = 𝟑 × 𝒎𝒔 

𝒏𝒐𝒎𝒊𝒏𝒂𝒍 
�̂�𝒔 = 𝟎. 𝟓 × 𝒄𝒔 

�̂�𝒔 = 𝟑 × 𝒄𝒔 

�̂�𝒔 = 𝟎. 𝟓 × 𝒎𝒔 

�̂�𝒔 = 𝟑 × 𝒎𝒔 
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 It is shown that force estimation strategy 

performance is proper and it could estimate external 

force reliably. 

5.  CONCLUSION 

In this research, a new robust control scheme based 

on the sliding- mode has been presented for the bilateral 

linear teleoperation system in the presence of time delay 

between communication channels. In the master side, a 

sliding-mode based impedance control scheme which 

can tune the master maneuverability with its desired 

impedance model has been designed. In the slave side, a 

sliding-mode based impedance control scheme has been 

proposed to cope with the uncertainties on the dynamic 

model. In addition, a force estimation strategy has been 

presented in order to eliminate measuring external 

forces directly. Consequently, employing absolute 

stability concept, stability analysis of the bilateral linear 

teleoperation including operator in the master side and 

remote environment has been derived. Finally, through 

several simulations, it has been observed the sliding-

mode controller is completely robust against adverse 

parameter uncertainties and has reliable performance. In 

addition, force estimation algorithm estimates external 

forces properly as well. 
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