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ABSTRACT: 

Nowadays, power systems should be operated in the highest level of utilization and near their stability limits because of 

economic reasons. So stability assessment of the power system to determine the stability limits has been always 

considered. In SCADA/EMS systems a constant value called security margin and steady-state stability limit are used to 

determine transient stability limit instead of time-domain simulation. The security margin that is almost constant for 

power systems is determined experimentally. In this article this constant is computed using a probabilistic neural 

network and this method is implemented on IEEE 39 bus. As a result, the performance of this neural network is suitable 

for this application. 
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1.  INTRODUCTION 

Three different types of solution techniques that have 

been implemented in power system control centers, to 

address the needs for real-time stability assessment, are 

transient stability, voltage stability, and steady-state 

stability. In modern power control centers, three 

different MW utilization limits by using these 

techniques are monitored that are called transient 

stability limit, voltage stability limit, and steady-state 

stability limit. 

Voltage Stability Limit and Steady-State Stability 

Limit (SSSL) can be monitored in real-time but 

calculating the Transient Stability Limit (TSL) in real-

time is impossible because many scenarios should be 

considered. To overcome this problem in SCADA/EMS 

systems (for example in Romania, Bosnia and 

Herzegovina, etc.), a value called security margin is 

used. This value is almost constant for each power 

system and is determined experimentally. For example, 

this value was 20% for the Romanian power system in 

the 1970s [1]. The experiment cannot be a good solution 

to determine this value because it is important for 

suitable network utilization. In this article, the security 

margin is computed using a neural network. After 

computing security margin for once and SSSL in a short 

second, TSL can be monitored in real-time. 

To determine the security margin using ANN, 

transient stability limit should be computed at the first. 

To compute transient stability limit, load and generation 

should be increased step by step and in each step, severe 

contingencies are assessed and stability of power system 

is determined [2]. Power system stability in a specified 

state is determined using ANN. The MW utilization in 

the state before transient instability is transient stability 

limit. After computing the transient stability limit and 

steady-state stability limit for some utilization cases, the 

total security margin is computed by averaging the 

security margins of these cases. This constant can be 

used to control the network and prevent blackouts using 

load shedding. 

 

2.  STABILITY LIMITS 

The stability limit equals to the minimum of transient 

stability limit, steady-state stability limit and voltage 

stability limit [1]. Between these limits, transient 

stability limit is more constraint than others. To compute 

security margin in this section, transient stability limit 

and steady-state stability limit are explained. 

 

2.1.  Steady-State Stability Limit 

The Steady-State Stability Limit of a power system 

is an operating condition for which the power system is 

steady-state stable but an arbitrarily small change in any 

of the operating quantities in an unfavorable direction 

causes the power system to lose stability. This limit can 

be defined as the stability of the system under conditions 

of gradual or relatively slow changes in load [3]. 

Violating system operating constraints called 

‘Security Constraints’ or diverging of load flow is a 

steady state instability condition of an operating state. 

These constraints ensure that the power in the network 

is properly balanced as given by equation (1) [4], bus 
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voltage magnitudes and thermal limit of transmission 

lines are within the acceptable limits given by equation 

(2) [4].  

 

∑ 𝑃𝐺𝑖

𝑁𝑔

𝑖=1

= 𝑃𝐷 + 𝑃𝐿𝑜𝑠𝑠 

(1) 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥  

|𝑉|𝑘
𝑚𝑖𝑛 ≤ |𝑉|𝑘 ≤ |𝑉|𝑘

𝑚𝑎𝑥  , 𝑘 = 1.2 … . 𝑁𝑏 (2)   

𝑆𝑘−𝑚 ≤ 𝑆𝑘−𝑚
𝑚𝑎𝑥                for branches 𝑘 − 𝑚                     

 

Where, 𝑃𝐺𝑖  represents real power generation at bus i, 𝑃𝐷 

is the system demand; 𝑃𝐿𝑜𝑠𝑠 is the total real power loss 

in the transmission network; |𝑉|𝑘 is the voltage 

magnitude at bus; Skm represents complex power flow in 

branch 𝑘 − 𝑚; 𝑁𝑔 and 𝑁𝑏 are the number of generators 

and buses respectively [4]. 

 The steady-state stability limit for an initial state of 

the power system can be calculated by increasing load 

and generation until the security Constraints violate. 

After computing SSSL, the distance between this critical 

state and MW utilization in % Called stability reserve is 

calculated using Equation (3) [1]. 

 

Stability Reserve=
SSSL−Pbase−case

SSSL
× 100 (3)  

The amount of SSSL is calculated in a few seconds 

in SCADA/EMS systems using a practical technique 

called “DIMO Algorithm” [1] and SSSL is monitored in 

a specified period of time to avoid the risk of blackout 

due to instability. The base of Dimo Algorithm is the 

diverging of load flow that is used in this article. 

 

2.2.  Transient Stability Limit 

The contingency analysis technique is a prerequisite 

to predict the effects of various contingencies like the 

failure of transformers, transmission lines, etc. It helps 

to initiate necessary control actions to maintain power 

system security, reliability, and stability [5]. 

To find Transient Stability Limit, if the base case is 

transient stable for all the contingencies, the operation 

condition of the system should be stressed by increasing 

load and generation and in each step, all the transient 

computations should be repeated until a state system 

becomes instable for one or some contingency and also 

MW utilization in one state before this insecure state is 

transient stability limit. If the base case was instable, 

then the system condition should be relaxed by 

decreasing load and generation and in each step, all the 

transient computations should be repeated until a secure 

state is found then the MW utilization in this state is 

transient stability limit [1]. 

The amount of MW utilization in a state equals the 

sum of MW generation and tie-line imports and also this 

amount equals the sum of MW loading and losses and 

tie-line exports [6]. 

After calculating TSL, the security margin in percent 

is computed using Equation (4) [1]. 

 

(4) Security Margin =
𝑆𝑆𝑆𝐿−𝑇𝑆𝐿

𝑆𝑆𝑆𝐿
× 100 

 

States that for them, stability reserve is bigger than 

security margin, are safe states as shown in Fig.1[1] and 

for these states, no contingency, no matter how severe, 

would cause transient instability. 

 

 
Fig. 1. Secure and Insecure operation states. 

  
3.  RELATIONS BETWEEN TRANSIENT 

STABILITY LIMIT AND STEADY STATE 

STABILITY LIMIT 

There are the following relations between TSL and 

SSSL: 

 

1. These two limits depend on system topology, 

voltage levels, and loading [6]. 

2. TSL is always smaller than SSSL and when SSSL 

increases/decreases, so do TSL [6]. 

3. The experiments show that the amount of 

TSL/SSSL is almost constant [1]. 
 

The security margin is almost constant because 

TSL/SSSL is constant [1]. Between these two limits, 

monitoring of TSL is more difficult but with a given 

experimental value of security margin, it is possible to 

monitor TSL. In this article, the amount of security 

margin is obtained more accurate using ANN instead of 

only using experiments. To obtain this value, firstly 

stability of a state should be determined that is done in 

section 4. 
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4.  ANALYZING TRANSIENT STABILITY USING 

NEURAL NETWORK  

To train a neural network that is able to determine 

the stability of a state, first utilization patterns of 

network operational space are produced and each of 

them is evaluated for different contingencies, a pattern 

is transient unstable if it is unstable for at least one 

disturbance. 

 

4.1.  Producing Suitable Utilization Patterns 

To have a good interpolation for ANN, the operation 

space of the power system should be introduced to ANN. 

To generate training patterns, first the maximum and 

minimum active power of each load bus are determined 

and 10 loading levels between 𝑃𝐿
𝑚𝑎𝑥  and  𝑃𝐿

𝑚𝑖𝑛  for each 

load, bus are produced [7]. Then for each loading level, 

the base generation patterns are produced so there will 

be 10 utilization patterns including loading and 

generation patterns. To create more patterns, for each 

base case loading pattern, the MW load of buses are 

increased or decreased randomly between 5% to 15% for 

10 times (for example), also for generation patterns, the 

MW generation of all generators are varied randomly 

between -30% to +30% for 10 times(for example)[7]. 

Finally, there will be 1000 utilization patterns by 

merging the above-produced patterns and these patterns 

are applied to the power system to analyze transient 

stability. 

After power flow calculations, the load and 

generation patterns for which the power flow does not 

meet steady-state operating requirements are known as 

unstable [8] and no evaluations are done for them. 

 

4.2.  Evaluated Contingencies 

Assumed contingencies for transient stability 

analyzing are: 

 

I. Short circuit on transmission lines: the worst 

types of the short circuit are at the start and end 

of lines [4]. This fault is removed after a short 

time by relays. 

II. The outage of transmission lines. 

III. The outage of generators unless slack 

generation unit. 

 

If the number of transmission lines is small (for 

example IEEE 9 bus system) then the evaluations can be 

done on all lines but for a large size network, it is 

impossible. To overcome this problem, a performance 

index is used to select lines that have the most effect on 

instability by occurring short circuits or outage of them. 

This performance index that is used to sort the lines is 

defined in Equation (5) [9]. 

 

(5) 𝑃𝐼1 = max (max (𝜃𝑖) − min (𝜃𝑖)) , 

𝑓𝑜𝑟 𝑖 = 1.2 … . 𝑁𝐺

 

                      𝑎𝑛𝑑 𝑡𝑐𝑙 ≤ 𝑡 ≤ 𝑡𝑐𝑙 + 𝑇 

Where, 𝜃 is generator rotor angles relative to COI, 𝑁𝐺  is 

the total number of generators, 𝑡𝑐𝑙 is fault clearance 

time, and 𝑇 is the length of the short period after fault 

clearing. 

 

4.3.  Instability Criterion 

Since power systems rely on synchronous machines 

for generating electrical power, a necessary condition for 

satisfactory system operation is that all synchronous 

machines remain in synchronicity [10].  So transient 

stability is the ability of the power system to maintain 

synchronism when subjected to a severe transient 

disturbance [10]. The system response to such 

disturbances involves the excursion of rotor angle, 

machine speed, bus voltages, and other system variables 

[10]. If the resulting variation between machines 

remains within certain bounds then the system is stable 

[10]. 

The instability criterion after time-domain 

simulations and computing output (rotor angles of 

generators relative to the slack generator) in a given case 

and for a specified disturbance is whether the relative 

angle of at least one generator exceeds 180 degrees in 

the 1 second after clearing time [4]. In this article, the 

critical angle is assumed 170 degrees due to utilization 

instructions. 

 

4.4.  Data Generation and Feature Selection 

In most references, the load flow results before 

applying contingencies such as magnitude and angle of 

bus voltages, active and reactive power of generators, 

active and reactive power of loads, active power flow of 

lines are selected for neural network input data. In some 

references, the dynamic variables are selected too but, in 

this research, just the load flow results are used due to 

the following results: 

1. No improvement of results was found by 

selecting dynamic variables [11], [12]. 

2. Because of the increasing size of different 

contingencies special for large size networks, it 

is impossible to add dynamic variables. 

3. Just the load flow, obtained from the SCADA 

system, are accessible and no contingencies are 

evaluated in the practical implementing of 

neural networks. 
After the definition of input vectors, the target vector 

should be defined. The target value for a specified case 

is “1”, if the network was stable for all contingencies and 

‘’2’’ if it was unstable for at least one contingency.   

 

4.5.  Neural Network Architecture 

A pattern recognition network is used to determine a 

case as stable or unstable. Many researchers have proven 
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that a single hidden layer of neurons, operating a 

sigmoid activation function, is sufficient to model any 

solution [13], but in real-time applications, other 

networks such as PNN are used for simulation because 

it is faster in training and testing than a MLP network.  

Some solutions have been used in other references 

like recurrent neural network [16] and fuzzy logic [17] 

that have complex structures. This network may improve 

classification accuracy, however it increases the 

computation time which would affects the real-time 

assessment.  

In this article, a PNN is used. The architecture of this 

network is shown in Fig. 2 [14]. When an input is 

presented, the first layer computes distances from the 

input vector to the training input vectors and produces a 

vector whose elements indicate how close the input is to 

a training input [14]. The second layer sums these 

contributions for each class of inputs to produce a vector 

of probabilities, as its net output [14]. Finally, a 

competitive transfer function on the output of the second 

layer picks the maximum of these probabilities and 

produces a 1 for that class and a 0 for the other classes 

[14].  

 

 
Fig.2. PNN Structure. 

 

 

5.  COMPUTING SECURITY MARGIN USING 

ANN 

After training the Neural network, SSSL and TSL 

should be computed for each random base case. To 

compute SSSL first load flow is executed for the base 

case. if the base case was steady-state stable, load and 

generation should be increased stepwise, and, in each 

step, steady-state stability conditions are checked until 

instability occurs. MW utilization in a state before this 

critical state is SSSL. 

To compute TSL, first load flow is executed and the 

results are applied to the neural network, if the base case 

was secure (neural network output was “1”), load and 

generation should be increased stepwise and in each step 

load flow results are saved and transient stability 

computations are repeated using the neural network until 

transient instability occurs (neural network output was 

“2”). MW utilization in a state before this insecure state 

is TSL. Otherwise, if the base case was insecure then 

load and generation should be decreased stepwise, and, 

in each step, transient stability computations are 

repeated using the neural network until the network 

becomes stable (neural network output was “1”). MW 

utilization in this secure state is TSL. After computing, 

TSL and SSSL for each pattern security margin are 

calculated using Equation (4). 

 

6.  SIMULATION RESULTS FOR IEEE 39 BUS 

Single line diagram of IEEE 39 bus (New England), 

the parameters of machines, lines, and transformers, 

thermal limits of lines in MWA are given in reference 

[15]. This network that is shown in Fig.3 [15] has 10 

generators, 34 transmission lines, 19 load buses. In this 

network G1 (on bus 39) is slack. The number of training 

patterns is 1330 such that 507 patterns are transient 

secure and others are insecure. 

The evaluated contingencies are: 

 

1. Short circuit on 0% and 100% lines from t=0 sec 

to t=0.8 sec. 

2. Lines outage at t=0sec. 

3. Generators outage at t=0sec. 

 

So, the total number of scenarios for each pattern 

equals 111(34+34+34+9), and for 1330 pattern equals 

147630 that is time-consuming. To overcome this 

problem, just lines and generators that have the most 

effect on instability are selected using PI index in section 

2.4. To verify the selection sets, 250 operation cases 

were produced and time-domain simulations were done 

first for all lines and generators and then for selection 

sets and there was just 1 misclassification, but 

simulation time for selection sets was less, so this 

misclassification can be ignored. 

 

 
Fig. 3. IEEE 39 bus single line diagram. 

 

Now PNN neural network is trained for transient 

stability assessment by using sections 3.4 and 4.4 and the 
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security margin is computed. For analyzing the 

performance of the neural network, 10 random patterns 

are created and TSL/SSSL is computed for them using 

time-domain simulation and neural network. The results 

are given in Table 1. The total MW generation and total 

MW loading for each pattern in each step is increased by 

5.058 MW and 5.487 MW respectively. In this power 

system tie line import is 0 MW, so MW utilization is 

equaled the sum of MW power of generators. 

The average percent of TSL/SSSL is 86.90% using 

time-domain simulations and 86.58% using PNN that 

shows PNN works properly to estimate TSL/SSSL. In  

 

 

the next step, 15 random patterns are selected and PNN 

is used to transient stability assessment, and no transient 

analysis is done using time-domain simulations. 

Stability reserve and security margin are computed for 

each pattern and finally, the security margin for IEEE 39 

bus system is computed by averaging these 15 security 

margin amounts.  

These results are given in Table 2 and as shown in 

this Table, TSL/SSSL is equal to 87.74% and the 

security margin is 12.25% that is near to real amounts.  

 

 

 

 

Table 1. Computing TSL using time-domain simulation and PNN. 

Pattern 

no. 

Real 

MW 

SSSL 

(MW) 

TSL using 

time-domain 

simulations 

(MW) 

TSL 

using 

PNN 

(MW) 

TSL/SSSL 

using time-

domain 

simulations 

TSL/SSSL 

using PNN 

1 3939 4701 4621 5384 87.31 85.82 

2 4104 4746 4746 5429 87.41 87.41 

3 3989 4390 4591 5113 85.86 89.79 

4 4084 5006 4885 5850 85.57 83.51 

5 4126 4768 4607 5411 88.12 85.15 

6 3984 4546 4666 5389 84.35 86.58 

7 3386 4829 4628 5673 85.11 81.58 

8 3629 4751 4791 5394 88.08 88.83 

9 4070 4912 4832 5515 89.07 87.61 

10 4451 4772 4852 5415 88.13 89.61 

Average TSL/SSSL using time-domain simulation                           86.90 

Average TSL/SSSL using PNN                                                                                      86.58 

 

Table 2. Real-time stability monitoring using PNN. 

Pattern 

no. 

Real MW  SSSL TSL 

using 

PNN 

TSL/SSSL  Stability 

Reserve% 

Security margin% 

1 5237 5237 4756 90.80 0.00 9.20 

2 3479 5243 4641 88.51 33.65 11.49 

3 4079 5444 4680 85.98 25.07 14.02 

4 4069 5554 4791 86.25 26.74 13.75 

5 5551 5551 4748 85.52 0.00 14.48 

6 4423 5266 4624 87.80 16.01 12.20 

7 3282 5487 4844 88.28 40.19 11.72 

8 3637 5282 4639 87.83 31.14 12.17 

9 3715 5240 4637 88.50 29.09 11.50 

10 4765 5327 4644 87.18 10.56 12.82 

11 4377 5461 4778 87.49 19.85 12.51 

12 3705 5190 4627 89.16 28.60 10.84 

13 3723 5248 4605 87.75 29.05 12.25 

14 4023 5267 4624 87.79 23.63 12.21 

15 4936 5418 4735 87.39 8.90 12.61 

Average TSL/SSSL using PNN                                87.74 

                                                                                              12.25   Average security margin 
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Between these patterns, patterns number 1, 5, 10, 15 

are insecure and others are secure and patterns number 

1, 5 are called critical stable so the probability of 

blackout in these 2 patterns is so high. 

To evaluate the performance of the neural network, 

the following criteria are defined and computed: 

a) The percent of stable states that are classified as 

unstable: 
Insecure Misclassification (ISMC%) =  

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 1′𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 2

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝑆𝑡𝑎𝑏𝑙𝑒 𝑆𝑡𝑎𝑡𝑒𝑠
× 100 

b) The percent of instable states that are classified 

as stable: 

Secure Misclassification (SMC%) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 2′𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 1

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐼𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑆𝑡𝑎𝑡𝑒𝑠
× 100 

c) The percent of states that are classified 

correctly: 
 

Classification Accuracy (CA%) =  

                  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡
× 100 

 

d) Training and testing time of neural 

networks. 
 

The above criteria are computed for 10 patterns in 

Table 1 and the results are given in Table 3. As shown 

in Table 3, the percent of correct classification is high 

and the percent of incorrect classification is low that 

shows good performance of the neural network. The 

average of Classification accuracy is 94.4% with the 

method in this article while this factor is 99% in [16] and 

for fuzzy logic used in [17] is 99% in the best case and 

84% for the worst case. This matter is due to using a 

neural network with memory cells and complex 

structures of methods used in [16] and [17]. As 

mentioned above, this accuracy is good and adequate in 

comparison with complex methods. The training and 

testing time for PNN was equal to 2.23 seconds that is 

proper for real-time applications. This time is 37.43 sec 

for the same system in reference [16] and so the neural 

network used in this article is better for real-time 

stability assessment. 

 

Table 3. Performance criterions for PNN. 

 

7.  CONCLUSION 

Three solution types for real-time stability 

assessment are the steady-state stability limit, transient 

stability limit, and voltage stability limit. To transient 

stability assessment, severe contingencies should be 

evaluated for each pattern that is impossible in real-time. 

To overcome this problem, a constant value called 

security margin should be computed and according to 

that, TSL is computed in real-time. This constant was 

determined experimentally in the past but in this article 

neural network was used to compute this value. In this 

paper, PNN was used to simulate IEEE 39 bus power 

system. According to simulation results, the TSL/SSSL 

ratio and security margin for IEEE 39 bus when N 

elements are in the service is equal to 87% and 12%, 

respectively. 
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