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ABSTRACT: 

Recently, robotic manipulators are the key industry requirement. These have find the importance to enhance the 

productivity as well as accuracy. Furthermore, industries are also moving towards the use of Flexible Link Manipulator 

(FLM) owing to their unique characteristics i.e. light weight, high speed operations, and the larger workspace. The FLM 

system has flexibility of link that causes vibrations and oscillations which affect adversary to the performance of robotic 

arm. The performance of FLM system is measured w.r.t. minimum error and oscillations in trajectory tracking. In this 

research paper, an attempt has been made to overcome the complications of FLM system. A full state feedback Linear 

Quadratic Regulator (LQR), is designed for FLM. It is observed that the designed controller can enhance the accuracy 

of the robotic arm, while reducing oscillations and vibrations. In addition, to enhance the performance of controller and 

to reduce the hassle in terms of selecting the parameter of Q matrix in LQR, modified particle swarm optimization (m-

PSO) is used. The effectiveness of designed controller is simulated in MATLAB. Further, the validation of designed 

controller is tested on hardware FLM device. The results obtained from the simulation and hardware are compared.      

. 
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1.  INTRODUCTION 

Robotics field involves the application of diverse 

disciplines such as physical, static and dynamic 

properties of materials, control theory, electronics, 

vision and signal processing, computer science. A 

robotic manipulator is basically a mechanical arm 

designed to work the similar task as of human arm. 

These are used for various industrial applications to 

perform repeated task precisely. These are consist of 

number of links and joints, rigid as well as flexible [1]. 

The Flexible Link Manipulator (FLM), received great 

attention in the past few decade among the researchers. 

For industrial application, it has shown various 

advantages over rigid manipulator in terms of light 

weight, high speed, low inertia, lower energy 

consumption and large work space [2]. The FLM has 

complex dynamic structure compared to rigid link and 

hence it becomes a difficult task for control engineers to 

design a control law. In case of industrial applications, 

preciseness about the given tasks, are always desirable. 

Therefore, control of position and oscillation becomes 

an important performance aspect, whereas in case of 

FLM, flexibility and the vibration presented in the link 

itself, leads to oscillations in the output. Hence, a control 

law is necessary to design with the objective to track the 

desired position with minimum or zero oscillations. 

Various authors have proposed different control 

strategies to follow the desired position or trajectories 

precisely. In [3], LMI and SMC based control law is 

design for FLM. PI and Fuzzy logic based controller for 

flexible joint are designed in [4]. Various other control 

strategies given in literature are variable structure 

control [5], optimal control [6], adaptive control [7], 

robust control [8], and intelligent based neural control 

[9], [10] etc. Among them, optimal control method is 

chosen in this work. In this, a full state feedback system 

is designed to find the gain of state feedback control. 

Simulation based LQR method has been designed for 

FLM in [11]. Furthermore, in LQR, Q matrix parameter 

selection is always a hectic task. In literature, it has been 

chosen based on research experience available and fined 

tuned. Therefore, for better tracking and stability, 

optimization algorithms may be employed such as 

Genetic algorithm (GA) [12], [13], Particle Swarm 

Optimization (PSO)  [14], Ant Colony Optimization 

(ACO) [15] etc. In these, PSO has proved its capability 

over wide range of applications, in case of simulation as 

well as experimental work [16], [17]. Further, this PSO 

tuned LQR optimal control law is rarely used for flexible 

link manipulator simulation which can help largely to 

find the suitable parameter of Q matrix in LQR. It can 

enhance the tracking ability along with stability of FLM. 
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This paper presents the modelling and optimal 

control law (LQR) for Flexible Link Manipulator. 

Moreover, the regress process of selection of parameters 

of Q matrix is obliterated using optimization algorithm 

(PSO). Also, results have verified using experimental 

lab setup.  

 

2.  FLEXIBLE LINK MANIPULATOR 

The single link Flexible Link (FLM) is major 

attraction of research in the field of robotics nowadays, 

due to its various advantages. The Lagrange Method has 

been used to develop the dynamics modelling FLM. It 

basically consist of flexible link module part and base 

part. The strain gauge, optimal encoder and 

potentiometer are fixed on clamped end of FLM module 

to measure tip deflection, shaft position and vibrations. 

The base part consists of DC motor and pinion gear 

system [18]. The schematic diagram is shown in Fig. 1.  

 

m, l

 
Fig. 1. Systemic Flexible Link [18]. 

 

The physical parameters considered while 

developing the mathematical dynamics of FLM are 

given in Table 1. 

There are some nonlinearity presents in the system 

which make it complex, so some assumptions have been 

taken while developing the model as below:   

 The link is long and slim hence rotary inertial and 

shear forces are nullified. 

 The link progresses only in the horizontal plane. 

So, there is no effect of gravity on the link. 

 The hub is rigidly attached by link. 

The system model describing the motion is sufficient 

for tip point control of the link. 

    Let the total output angle:  

  

𝑦(𝑡) = 𝜃(𝑡) + 𝛼(𝑡)               (1) 

 

Where, 𝜃(𝑡) and 𝛼(𝑡) are position load angle and tip 

deflection  

The potential energy (PE) of the FLM is because of 

its arm and can be calculated as: 

 

𝑉 =
1

2
𝐾𝑠𝛼

2(𝑡)               (2) 

 

Where, 𝐾𝑠 represent the spring stiffness. 

      The combined kinetic energy (KE) is because of the 

rotational base and the link of flexible link manipulator. 

It is expressed as the following equation: 

 

𝑇 =
1

2
𝐽𝑒𝑞 (

𝑑𝜃

𝑑𝑡
)
2

+
1

2
𝐽𝑙𝑖𝑛𝑘 (

𝑑𝜃

𝑑𝑡
+

𝑑𝛼

𝑑𝑡
)
2

             (3) 

 

Where, 𝐽𝑙𝑖𝑛𝑘 is a moment of inertia of the flexible 

link. 

The damping forces are the corresponding   𝜏𝐿 non-

conservative forces: 

 

𝑄𝜃 = 𝜏𝐿 − 𝐵𝑒𝑞
𝑑𝜃

𝑑𝑡
               (4) 

𝑄𝛼 = 𝐵𝑙𝑖𝑛𝑘
𝑑𝛼

𝑑𝑡
                (5) 

 

Where, 𝐵𝑙𝑖𝑛𝑘  is the viscous  force of flexible link 

and can be neglected, which means 𝐵𝑙𝑖𝑛𝑘 = 0, and 𝜏𝐿 is 

derived in equation (4). 

Euler-Lagrange’s equation can be expressed as: 

 
𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑞 𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖               (6) 

  

Where, 𝐿 = 𝑇 − 𝑉 and 𝑞𝑖 = [𝜃  𝛼]𝑇are the 

generalized coordinates; and 𝑄𝑖  = non-conservative 

force with 𝑖 = 1 , 2; 

Model obtained by substituting equation (2) to (5) in 

Euler-Lagrange’s equation (6) is linearized using 

Jacobian method further and the following linearized 

model obtained can be represented as the following 

linear state space form of equation (7) and (8).  

  

𝑥 = 𝐴𝑥 + 𝐵𝑢                (7) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                              (8) 

 

Where,  chosen state vector is  𝑥 = [𝜃  𝛼  𝜃  𝛼 ]𝑇 and  

 

𝐴

=

[
 
 
 
 
 
 
0 0 1 0
0 0 0 1

0
𝐾𝑠

𝐽𝑒𝑞
−
ƞ𝑔𝐾𝑔 

2ƞ𝑚𝐾𝑡𝐾𝑚+𝐵𝑒𝑞𝑅𝑚

𝑅𝑚𝐽𝑒𝑞
0

0 −
𝐾𝑠(𝐽𝑒𝑞 + 𝐽𝑙𝑖𝑛𝑘)

𝐽𝑒𝑞𝐽𝑙𝑖𝑛𝑘

ƞ𝑔𝐾𝑔 
2ƞ𝑚𝐾𝑡𝐾𝑚+𝐵𝑒𝑞𝑅𝑚

𝑅𝑚𝐽𝑒𝑞
0
]
 
 
 
 
 
 

 

 

𝐵 =

[
 
 
 
 
 

0
0

ƞ𝑔𝐾𝑔ƞ𝑚𝐾𝑡

𝑅𝑚𝐽𝑒𝑞

−
ƞ𝑔𝐾𝑔ƞ𝑚𝐾𝑡

𝑅𝑚𝐽𝑒𝑞 ]
 
 
 
 
 

 ;𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 
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Table 2. System parameter nominal value. 

Symbol Description Value 

Beq Viscous damping 

coefficient of high-

gear 

0.004 

N.m/(rad/s) 

Jeq Equivalent 

moment of inertia 

of high-gear 

 0.00208 kg.m2 

ƞm Motor efficiency 0.69 

Km Back
− emf constant 

0.00768 

V/(rad/s) 

ƞg Gearbox efficiency 0.90 

Kg High gear total gearbox ration 70 

Rm Motor armature resistance 2.6 Ω 

Kt Stiffness constant 1.4 

Jlink Moment of inertia of Flexible link 0.004 kg.m2 

 

By substituting, the system parameters and 

numerical values from Table 2 in equation (7) & (8) and 

assuming all initial conditions zero, we get the state-

space model as equation (9): 

 

[

𝑥 1
𝑥 2
𝑥 3
𝑥 4

] = [

0 0 1 0
0 0 0 1
0 673.07 −35.1667 0
0 −1023.07 35.1667 0

] [

𝑥1
𝑥2
𝑥3
𝑥4

]

+ [

0
0

61.7325
−61.7325

] [𝑢] 

 

[

𝑦1
𝑦2
𝑦3
𝑦4

] = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

𝑥1
𝑥2
𝑥3
𝑥4

]               (9) 

 

 

 

3.  CONTROL LAW DESIGN 

3.1.  Stability Testing of FLM Model 

The obtained linearized model is analysed for 

stability both in the time domain and frequency domain. 

To stabilize the system, the condition of controllability 

must be met which can be determined using Kalman 

controllability test. The controllability matrix for the 

flexible link model is given by: 

 

[𝐵  𝐴𝐵  𝐴2𝐵  𝐴3𝐵] =

[

0 61.73 −2171 34794
0 −61.73 2171 −13190

61.73 −2171 34794 237590
−61.73 2171 −13190 −997420

]  

               (10) 

 

The obtained controllability matrix is of full rank 

which ensures the system is controllable, hence the 

controller for stabilization and control of the FLM 

system at the desired point can be designed. 

 

 
Fig. 2. Bode plot of the FLM system. 

Table 1. Description of various parameters. 

l ∶    link length (m)  Lm ∶  Motor armature inductance (H) 
m ∶  Mass of link (Kg) Rm ∶  Motor armature resistance (Ohm) 
fc ∶  Natural frequency (Hz) Beq ∶  Viscous damping coefficient 
Jl ∶  Moment of inertia of link (Kg m2) Kt ∶  Motor torque constant (Nm/A) 
Kg ∶  Total gear ratio Ks ∶  Total stiffness of model (Nm/deg) 
θ ∶  Position of load angle (deg) Eemf ∶  Equivalent back emf (V) 
η𝑚 ∶  Motor efficiency Jeq ∶  Equivalent moment of inertia of the hub (Kg m2) 
η𝑔 ∶  Gearbox efficiency θm ∶  Motor shaft position (deg) 

Tl ∶  Load Torque (Nm) Km ∶  Motor back emf constant (V s/deg) 
Tm ∶  Motor Torque (Nm) Vm ∶  DC input voltage (V) 
Jm ∶  Motor Inertia (kg m2) Im ∶  Input current (A) 
α ∶  Tip deflection (deg)  



Majlesi Journal of Electrical Engineering                                                                Vol. 14, No. 2, June 2020 

 

84 

 

The Bode plot of the FLM is shown in Fig. 2. This 

plot displays the frequency response of FLM as 

magnitude (in dB) and phase (in degrees) plot. The Gain 

Margin of the system is obtained as 0.497 dB at its 

corresponding Phase cross over frequency of 31.6 

rad/sec. The phase Margins is obtained as 3.16 degrees 

at its Gain cross over frequency of 31 rad/sec. Bode 

diagram shows that closed loop system is stable. 

 

3.2.  Linear Quadratic Regulator (LQR) 

It is optimal control strategy, which provides a stable 

and robust state feedback controller. The basic 

requirement of LQR control is that the system must be 

controllable and observable. The working of LQR is 

based on selection of controller gains (Q and R) so as to 

minimize the performance index or cost function [11]: 

For the state space model in equation (11) 

 

𝑥 = 𝐴𝑥 + 𝐵𝑢              (11) 

 

We require optimal control which is given by control 

law   

𝑢 = −𝐾𝑥              (12) 

 

Where, 𝐾 is Kalman gain. 

Here, it has been assumed that all the states of FLM 

are measurable and attempt to achieve state variable 

feedback control. The block diagram of LQR is shown 

in Fig. 3. 

 

 
Fig. 3. Linear quadratic regulator structure. 

 

This gives desirable closed-loop properties. The 

quadratic performance index (PI) is defined as (13) 

 

𝐽 =
1

2
∫ (𝑥𝑇𝑄𝑋 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0
            (13) 

 

Where, 𝑄 is diagonal weighing matrix and 𝑅 is the 

input matrix. The requirement of Q and R matrices are 

positive semi-definite and positive definite.  Substituting 

the state variable feedback control (12) in (13), we get 

  

𝐽 =
1

2
∫ 𝑥𝑇(𝑄 + 𝐾𝑇𝑅𝐾)𝑥𝑑𝑡
∞

0
             (14) 

To find the optimal feedback 𝐾 we proceed as 

follows. Suppose there exists a constant square matrix 𝑃 

such that: 

 
𝑑

𝑑𝑡
(𝑥𝑇𝑃𝑥) = −𝑥𝑇(𝑄 + 𝐾𝑇𝑅𝐾)𝑥           (15) 

 

Substituting in (14) yields: 

 

𝐽 = −
1

2
∫

𝑑

𝑑𝑡

∞

0
(𝑥𝑇𝑃𝑥)𝑑𝑡 =

1

2
𝑥𝑇(0)𝑃𝑥(0)           (16) 

 

The performance index (J) can be 

minimized when gain  𝐾 is chosen as (17)  

 

𝐾 = 𝑅−1𝐵𝑇𝑃              (17) 

 

The matrix P is determined from the solution of 

Algebraic Riccati Equation (18), given as: 

 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 (18) 

 

The LQR problem to find the state variable feedback 

gain such that quadratic performance index is minimized 

and states go towards origin with minimum control 

efforts is called linear quadratic regulator problem. The 

design process to obtain the 𝐾 is as follows: 

 Firstly, the selection of matrices 𝑄 𝑎𝑛𝑑 𝑅 by trial 

and error methods, so that our design 

requirements are met. 

 Then obtain the solution of the 𝑃 matrix by 

algebraic Ricatti equation.  

  Then find the state feedback control 𝐾. 

1) LQR design for FLM 

The objective of control scheme design 

specifications of the FLM is that it should provide 

stability and also ensure desired trajectory tracking and 

link vibration must be minimum.  

Following Q and R weighing matrices are chosen 

initially by trial and error procedure as following with Q 

and R chosen as equation (19) 

 

𝑄 = [

112 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]    and  R=1            (19) 

 

Using the LQR method, performance index (J) is 

minimized and state feedback gain K is calculated as 

equation (20): 

 

𝐾 = [10.5830  − 10.9735    1.1003   − 0.0139] 
               (20) 

 

3.3.  Particle Swarm Optimization (PSO) 

1) Basic Concept of PSO 

The concept of PSO was introduced by J. Kennedy 
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et. al. in [19]. It is inspired by social behaviour of birds 

in a specific spectrum during their flying in the sky. 

Their way of flying together in a spectrum shows there 

is some communication between them by which they can 

interact with each other and follow the position of a 

member who is very close to destination [20], [21]. 

This algorithm is a population based search algorithm 

in which the particle tends to converge towards best 

optimal solution in a defined search space. Each particle 

moves with a velocity which dynamically changes 

according to particle’s previous best experience and 

along with its neighborhood best position in the 

previously visited search space [22], [23]. Velocity and 

position of each particle is updated according to the 

current position and velocity locally in pbest and 

globally in gbest. Movement of particles in two 

dimensional problem hyperspace and update in velocity 

and position is shown in Fig. 4.  
 

Momentum part

Fig. 4. Velocity and position update in two dimensional 

problem space. 

 

Velocity and position update formulas are given as 

(21) and (22) respectively [24]. 

 

𝑣𝑖,𝑗
(𝑘+1) = 𝑤 ∗ 𝑣𝑖,𝑗

(𝑘) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(1) ∗ (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 −

𝑥𝑖,𝑗
(𝑘)) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑(2) ∗ (𝑔𝑏𝑒𝑠𝑡𝑗 −  𝑥𝑖,𝑗

(𝑘))           (21) 

𝑥𝑖,𝑗
(𝑘+1) = 𝑥𝑖,𝑗

(𝑘)
+ 𝑣𝑖,𝑗

(𝑘+1)
             (22) 

 

 

Where, i=1, 2, …….., n;  j=1, 2, ………., m and   

k : 1, 2, ……………., t 

n : Number of particles in swarm 

m : Dimension of the search space 

 t : Maximum iterations               

𝑣𝑖,𝑗
(𝑘)

 : The jth component of the velocity 

of particle i at kth iteration k 

if        vi,j
(k)

 > 𝑣𝑚𝑎𝑥  then vi,j
(k)

= 𝑣𝑚𝑎𝑥 

else if   𝑣𝑖,𝑗
(𝑘)

 < −𝑣𝑚𝑎𝑥  then   𝑣𝑖,𝑗
(𝑘)

= −𝑣𝑚𝑎𝑥 

𝑥𝑖,𝑗
(𝑘) 

 jth component of the position of particle i at 

iteration k 

w : Inertia weight factor 

𝑐1, 𝑐2 : Acceleration factors 

rand(1) : Random number in between 0 to 1 

rand(2) : Random number in between 0 to 1 

pbesti,j : Best position of ith particle at 

iteration k 

gbestj : Best position of the swarm until 

iteration k 

 

2) Modifications in Particle Swarm Optimization 

The significance of the various component of 

velocity update equation given in equation (21) is as 

following: 

 The first component of this equation is known 

as “inertia”, which is scaled by weighting factor 

‘w’. The tendency of a particle to move in the 

same direction is moving. 

 Second component of this equation is a linear 

attraction towards the best position of the ith 

particle which is scaled by acceleration 

constant 𝑐1. This component is known as 

“memory”. 

 Third component is linear attraction towards 

the best position found by any particle in the 

swarm which is scaled by 𝑐2 and is referred as 

“cooperation” or “group knowledge”. 

Based on the above it can be influenced that the 

selection of the parameters ‘w’, 𝑐1 and 𝑐2 greatly affects 

the performance of the PSO. Hence to improve the 

performance of PSO optimizer, researchers have 

proposed various modification over the time. These 

modification have shown significant effect on 

optimizing performance. These modifications are 

mainly based on various components in velocity update 

equation explained as below [22], [24]. 

Modification-I: PSO with Time Varying 

Acceleration Constant (PSO-TVAC) 

In the PSO, the search toward the optimum solution 

is guided by the two stochastic acceleration components 

(the cognitive component 𝑐1 and the social 

component𝑐2). Therefore, proper selection of these two 

components is very important to find the optimum 

solution accurately and efficiently. Improvement in the 

PSO is proposed in which cognitive component is 

reduced with time and the social component is increased 

with time, by changing the acceleration coefficients. 

With a large cognitive component and small social 

component at the beginning, particles are allowed to 

move around the search space, instead of moving toward 

the population best. On the other hand, a small cognitive 

component and a large social component allow the 

particles to converge to the global optima in the latter 
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part of the optimization. This method is known as PSO-

TVAC method and its mathematical formulation is 

given in (23) for selection of 𝑐1 and 𝑐2 [25] 

 

𝑐1 = (𝑐1𝑓 − 𝑐1𝑖)
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑐1𝑖             (23) 

𝑐2 = (𝑐2𝑓 − 𝑐2𝑖)
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑐2𝑖            (24) 

 

Where, 𝑐1𝑖, 𝑐1𝑓 , 𝑐2𝑖  𝑎𝑛𝑑 𝑐2𝑓  are constants, 𝑖𝑡𝑒𝑟 is 

the current iteration number and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the 

maximum number of allowable iterations. An improved 

optimum solution for most of the benchmarks was 

observed when changing 𝑐1 from 2.5 to 0.5 and changing 

𝑐2 from 0.5 to 2.5, over the full range of the search [25], 

[26]. 

Modification II: Defining the Range of Velocity 

In addition to above, [27] has proposed the range of 

velocity 𝑣𝑚𝑎𝑥  and 𝑣𝑚𝑖𝑛 , as given in equation (25) and 

(26) 

 

𝑣𝑚𝑎𝑥 = 0.1 ∗ (𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛)             (25) 

𝑣𝑚𝑖𝑛 = −0.1 ∗ (𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛)            (26) 

 

Where, 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are lower and the upper limits 

respectively for the parameter to be optimized. Selection 

of initial values for these parameters are considered as 

given in (27) and (28). 

 

𝑣𝑖𝑛𝑖𝑡𝑎𝑙 = 𝑣𝑚𝑖𝑛 + (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) ∗ 𝜖           (27) 

𝑝𝑖𝑛𝑖𝑡𝑎𝑙 = 𝑣𝑚𝑖𝑛 + (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) ∗ϵ                         (28) 

 

Where, 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙  are initial velocity and the 

position, 𝜖 is random number matrix. 

 

Modification III: Inertia weight coefficient 

The selection of weight ‘w’ would help in quick 

finding of optimal result among the population. In [24], 

[28] Shi and Eberhart, came up with concept of variable 

weight ‘w’ and in [27] and  [28] applied for various 

applications successfully. This modification also 

reduces the local search time and total time of 

convergence. Here 𝑤 is introduced as inertia weight 

nonlinearity decreasing with the iteration defined as 

(29). 

𝑤 = (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) − (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) ∗ 𝑤𝑚𝑖𝑛           (29) 

Where,  

𝑤      : The inertia weight nonlinearly 

decreasing with the iterations 

𝑤𝑚𝑎𝑥: The upper limit of inertia weight 

selected as 0.9 

𝑤𝑚𝑖𝑛: The lower limit of inertia weight 

selected as 0.4 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥: The current iteration and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the 

maximum number of iteration  

 

3) Optimal parameter of LQR design  

To minimize the error signal e(t), possible 

formulation of fitness are tabulated in the Table 3 [14], 

[29]. 

 

Table 3. Performance Estimation of PID Controller 

[29]. 

Name of Criterion Formula 

Integral of the Absolute 

Error (IAE) 𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0

 

Integral of the square 

Error (ISE) 𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0

 

Integral of the Time-

weighted Square of Error 

(ITSE) 

𝐼𝑇𝑆𝐸

= ∫ 𝑡 ∗ 𝑒2(𝑡)𝑑𝑡
∞

0

 

Integral of the Time-

weighted Absolute Error 

(ITAE) 

𝐼𝑇𝐴𝐸

= ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
∞

0

 

 

The ITAE performance index has advantages of 

producing smaller overshoots and oscillation than the 

IAE index or the ISE Overall, ITAE is the most sensitive 

among the three criteria. ITSE is also sensitive but it is 

not best suitable for computation [30], [31]. So ITAE is 

chosen as fitness function in this work.  

The PSO is employed for the optimal selection of Q 

and R design parameters of LQR, to enhance its 

performance for the control of flexible link manipulator 

arm.  

Lower bound for Q= [100 0 0 1] Upper bound for Q= 

[150 5 1 8]. 

The following steps for selecting the optimal 

parameters: 

Step I: Firstly, population size, position and velocity 

of particles, number of iteration and size of search space 

is to be initialized. 

Step II: Each particle’s best position p is denoted as 

local best pbest. The best value among all the local best 

pbest is termed as global best gbest. 

Step III: Then fitness fp of each particle is evaluated. 

Step IV: This evaluated fitness is to be compared 

with its pbest value. If this pbest>fp then set pbest = fp. 

The current position coordinates of particle xp is to be 

updated to particles best coordinates for best fitness and 

bestxp is the coordinates corresponding to particle p’s 

best fitness so far. 

Step V: Value of objective function is evaluated for 

each particle position. The pbest is to update with better 

position which is encountered during the iteration. 

Further, as defined in step I, best value among pbest is 

termed as gbest. If during the iteration, a better value is 

encountered then replace the previous gbest value to 

newly encountered value. 

If gbest >fp, then set gbest = fp, where gbest denotes 

the best fitness value among all particles in swarm. 
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Step VI: Next, update the inertia weight, location 

and velocity of the particles according to equations (14) 

and (15), respectively [22], [23]. 

Step VII: Step II to VI be repeated until stopping 

criterion is met. 

Step VIII: Use the obtained value in simulation 

model of FLM and check whether the desired responses 

are achieved.  

Step IX: Step II to XI until desired output is 

archived. 

Employing the said algorithm, obtained Q matrix is, 

 

𝑄 = [

145 0 0 0
0 4.1 0 0
0 0 1.05 0
0 0 0 7.1

]  and R=1     (30) 

 

And using this with performance index (J) along with 

Q and R matrices, and using equation 19, state feedback 

gain K could be calculated as: 

 

𝐾 = [12.0416  − 37.3209    1.6291   − 0.9073]   (31) 

 

4.  EXPERIMENTAL SET-UP 

4.1.  FLM Complete System Set-up 

The FLM system consists of a computer system, 

rotatory link system, data acquisition and voltage 

amplifier interconnections. The Simulation model, has 

been prepared in computer system with following 

configuration as: Dell i7processor, 8GB RAM. 

MATLAB version 2017a and QUARC software, has 

been used for designing the model and control law. First, 

the designed control law, is tested using simulation 

model in QUARC ® and MATLAB, followed by 

experimental verification using the hardware. The 

hardware FLM module is connected with the system via 

Data Acquisition and Voltage amplifier, to drive the 

device smoothly as shown in Fig. 5. 

 

 
Fig. 5. The complete Hardware system of FLM. 

4.2.  Flexible Link Module 

The flexible link module is made-up of base, DC 

motor, pinion gear system. It has on-board mounted 

optical encoder and potentiometer to measure the shaft 

position, a tachometer to measure the speed of the motor. 

QUANSER’s Rotary Servo Base Unit (SRV02) and 

stainless steel link has been used for present experiment 

shown in Fig. 6. 
 

 
Fig. 6. The FLM module including base and linkage. 

 

4.3.  Data Acquisition & Voltage Amplifier 

In this experiment, a QUANSER Q8-USB device has 

been used for easy and smooth data acquisition. It has 

low I/O conversion time compared to other devices and 

can achieve up to 2kHz close loop control rate.  For 

regulated and amplified power supply, QUANSER 

VoltPAQ X1 amplifier has been used. It regulates ±12V, 

1A DC supply as shown in Fig. 7. 
 

 
Fig. 7. Data acquisition and voltage amplifier device. 
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5.  SIMULATION RESULT AND 

EXPERIMENTAL VALIDATION 

5.1.  Simulation Result of Control of FLM 

The LQR is applied for the portion and tip deflection 

control of FLM where state space model is given in (9). 

The state feedback gain is calculated in (17) using the 

solution of Algebraic Riccati Equation (ARE) of (18) 

and control input (u) is obtained from (12). Reference 

input is chosen as square wave signal.  

Following cases has been investigated to study the 

performance of the controller.  

 Manual tuning of LQR 

 PSO tuned LQR 

 

5.1.1 Simulation result for manual tuning of 

LQR 

The LQR has been applied for position and tip 

deflection control of FLM. The state feedback gain K is 

calculated using ARE of (18) and manual fine-tuned 

given in equation (19) and (20) as given below: 

 

𝑄 = [

112 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]    and  R=1  

  

𝐾 = [10.5830  − 10.9735    1.1003   − 0.0139]  
   

The response obtained of angular position 𝜃 vs time 

(t), tip deflection angle 𝛼(𝑡) are shown in figure below: 

 

 
Fig. 8: Angular position 𝜃(𝑡) response w.r.t. to 

reference input. 
 

 
Fig. 9. Error between desired and obtained angular 

position 𝜃(𝑡). 

 
Fig. 10. Controlled voltage 𝑢(𝑡)  to the position. 

 

 
Fig. 11. Tip deflection 𝛼(𝑡) for flexible link. 

The results in Fig. 8 and the angular position 𝜃(𝑡) 
illustrate that the desired path is approximately tracked 

by the FLM arm after every deflection. The error 

between desired trajectory and actual trajectory is shown 

in Fig. 9. After every deflection, the manipulator tracks 

the new desired position within certain period and hence 

the tracking error approaches to zero as shown in Fig. 

10. Next, the actuator (motor) are the key part to provide 

the motion in FLM. These actuator are controlled by 

controller by means of control voltage. Therefore, the 

control voltage has an important role to play. After every 

deflection, controller has to provide the control efforts 

based on error value, in terms of control voltage. 

Actuator work is provided by motor in the system. 

So, the control voltage 𝑢(𝑡) should be minimum.  Here, 

Figs. 10 and 11 shows stable control action voltage and 

tip deflection for flexible link. Table 4 shows various 

time response parameters of FLM. 

 

Table 4. Time domain parameter (TDP) of FLM 

using LQR. 

Sr. No Peak 

Overshoot 

(in sec) 

Rise 

Time 

(in sec) 

Settling 

Time 

(in sec) 

𝜃 31 0.3 0.37 

𝑢 7.2 0.01 0.25 

𝛼 11.3 0.05 0.6 

Error 58.5 0.01 0.35 
 

5.1.2 Simulation result using m-PSO tuned 

LQR 

In this section, modified-PSO has been used to find 
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the optimal parameter of matrix Q and to eliminate the 

regress process of choosing Q & K matrix parameter. 

The parameters are obtained using the process given in 

section III (C) and corresponding parameters are given 

in equation 30 & 31. LQR controller has been simulated 

with these parameters and corresponding results are 

displayed in following figures. 

 

 
Fig. 12. Angular position 𝜃(𝑡) response w.r.t. to 

reference input. 
 

 
Fig. 13. Error between desired and obtained angular 

position 𝜃(𝑡). 
 

 
Fig. 14. Controlled voltage 𝑢(𝑡)  to the position. 

 

 
Fig. 15. Tip deflection 𝛼(𝑡) for flexible link. 

Using optimal selection of parameters of LQR, it has 

been observed from Fig. 12 that, FLM is tracking the 

desired input trajectory more accurately as compared to 

Fig. 11. The tracking error has been compared in Fig. 13, 

with LQR design error. Figs. 12 and 13 also show stable 

control action voltage and minimal tip deflection 

respectively. These results are shown in Table 5. 

 

Table 5. TDP of FLM using PSO tuned LQR. 

 
Peak 

Overshoot 

(in sec) 

Rise 

Time 

(in sec) 

Settling 

Time 

(in sec) 

𝜃 
30 0.27 0.35 

𝑢 
5.4 0.01 0.35 

𝛼 
7 0.09 0.6 

Error 
59 0.01 0.5 

 

By comparing the parameters of Table 4 and 5, it has 

been observed that in case of settling time and rise time, 

much difference is not identified. But for the case of 

peak overshot, all three measures i.e. 
𝜃, 𝑢, and  α  have been reduced in case of PSO tuned 

LQR as compared to LQR. 

 

5.2 Experimental Validation of result for FLM 

5.2.1 Experiment result using LQR 

In this section, control law designed for simulation 

model, is validated using laboratory hardware set-up of 

FLM model. The control action voltage is measured 

using data acquisition setup. The angular position and tip 

deflection are measured using strain gauge sensor 

installed on FLM kit as shown in Fig. 6. First, model is 

tested with initial Q=diag ([112 1 1 1]) and 

corresponding result are displayed in following figures 

for theta, alpha and u. 

 

 
Fig. 16. Angular position 𝜃(𝑡) response w.r.t. to 

reference input. 
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Fig. 17. Error between desired and obtained angular 

position 𝜃(𝑡). 
 

 
Fig. 18. Controlled voltage 𝑢(𝑡)  to the position. 

 

 
Fig. 19. Tip deflection 𝛼(𝑡) for flexible link. 

 

Although, there is slightly error in tracking as shown 

in Figs. 8 & 16 between simulated model and 

experimental model respectively, but overall the system 

tracks the desired trajectory with designed control law 

successfully. This validates the simulated model of LQR 

control law working in practical environment. 

 

Table 6. TDP of FLM hardware kit using LQR. 

Sr. No Peak 

Overshoot 

(in sec) 

Rise 

Time 

(in sec) 

Settling 

Time 

(in sec) 

𝜃 29 0.5 0.6 

𝑢 7 0.21 0.9 

𝛼 13.5 0.26 0.6 

Error 59 0.01 0.8 

 

The quantized results obtained in Table 6 show the 

experimental. 

 

5.2.2 Experiment result using m-PSO 

optimized LQR 

Further, as given in section III (C), m-PSO has been 

employed to optimize the LQR design for FLM and 

corresponding parameter are given in equation 30 & 31. 

The effectiveness of simulated model is implemented on 

FLM hardware laboratory kit and corresponding result 

are displayed as following. 

 

 
Fig.20. Angular position 𝜃(𝑡) response w.r.t. to 

reference input. 
 

 
Fig. 21. Controlled voltage 𝑢(𝑡)  to the position. 

 
Fig. 22. Tip deflection 𝛼(𝑡) for flexible link. 

 

 
Fig. 23. Error between desired and obtained angular 

position 𝜃(𝑡) for LQR and PSO tuned LQR. 
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Figs. 20 and 23 show that m-PSO based LQR 

designed model is tracking the desired trajectory more 

precisely and faster than manually selected LQR based 

control law. The tip deflection and control voltage show 

stable result. So a better control strategy designed in 

Simulink has been validated experimentally.  

 

Table 7. TDP of FLM kit using PSO tuned LQR. 

Sr. No Peak 

Overshoot 

(in sec) 

Rise 

Time 

(in sec) 

Settling 

Time 

(in sec) 

𝜃 30 0.55 0.61 

𝑢 5.2 0.2 1 

𝛼 8.5 0.24 1 

Error 60 0.01 0.6 

 

6.  CONCLUSION 

Owing the various advantages in industries, flexible 

link manipulator is a complex in nature such as flexible 

and light weight of link. The vibration & oscillations 

occur in system due to said complexity, while tracking 

the trajectory. In this paper, LQR controller has been 

designed to minimize the tracking error, vibrations and 

oscillations. The LQR parameter are primarily tuned 

based on literature and manually fine-tuned to obtain the 

good result. In addition, problem arising in literature for 

selection of LQR parameters, has been eliminated by 

using modified PSO. Here first, a simulated model has 

been designed using m-PSO optimized LQR so as to 

minimize the vibrations and oscillation at the change in 

every deflection angle. The simulated designed model is 

further implemented in FLM laboratory experimental 

set-up to test the ability to work in real time. The 

working ability of designed simulated control law model 

is further tested and validated in laboratory experimental 

set-up. Further, M-PSO based LQR gives better result 

while following the desired trajectory in simulation as 

well as experiment. 
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