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ABSTRACT: 

The recent state of electrical system comprises the conventional generating units along with the sources of renewable 

energy. The suggested article recommends a method for the solution of single and multi-objective optimal power flow, 

incorporating wind energy with traditional coal-based generating stations. In this article, the two thermal power plants 

are replaced with the wind power plants. The techno-economic analysis are done with this state of electrical system. In 

proposed work, Weibull probability distribution functions is used for calculating wind power output. A non-dominated 

sorting based multi-objective moth flame optimization technique is used for the optimization issue. The fuzzy 

decision-making approach is applied for extracting the best compromise solution. The results are authenticated though 

modified IEEE-30 bus test system, which is combined with wind and thermal generating plants. 
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1. INTRODUCTION 

The Optimal Power Flow (OPF) plays a vital role 

in obtaining regulation and operational management of 

the electrical grid. The root focus of OPF is to find out 

the operational region of the electrical network by 

optimizing the certain objective along with non-

violating equality and inequality bounds. It was first 

introduced by Carpentier [1].   

Conventional OPF objective contemplates thermal 

generating units working by fossil fuels. Due to the 

growing utilization of renewable energy in the power 

system, the analysis of OPF is very essential after 

integrating unpredictability of these non-conventional 

energy units. OPF considering thermal or coal-based 

generating units has been broadly analyzed by 

scientists over the world. Last few years, many 

stochastic techniques have been proposed in [2-8] for 

the OPF problem.  

While above-mentioned citations consider only 

classical generating units, an electrical system 

comprising wind and thermal power units has currently 

been considered in search of optimum generating cost 

in some of the articles. Gbest directed Artificial Bee 

Colony (GABC) is put and used in [9] for the 

enhancement of OPF outputs obtained in earlier articles 

using same experimental arrangement. A Modified 

Bacteria Foraging Approach (MBFA) was proposed in 

[10]. With Doubly Fed Induction Generator (DFIG) 

structure in the OPF agenda to express bounds on VAR 

power production capacity. Another VAR power 

compensating device, STATCOM (static synchronous 

compensator) is integrating with [11] for a network 

having thermal and wind units. Also, the OPF issue 

was solved with the help of Ant Colony Optimization 

(ACO) as well as MBFA. Authors in [12] introduced a 

pattern for the formulation of the cost of wind power. 

Generators scheduling problem for economic dispatch 

is a usual problem for a utility having wind power and 

thermal units. Ref. [13] offered a stochastic model of 

wind power production. In additional, while solving the 

similar issue, researchers in [14] involved DFIG model 

of wind turbine. Article [15] introduced Dynamic 

Economic Dispatch (DED) structure comprising a wide 

range of wind energy with risk reserve limits. 

Ref. [16] included valve-point loading effect of 

generating unit and emission in DED structure. OPF 

scheduling system for a solitary hybrid network having 

solar PV, battery and the diesel generating unit is 

explained in [17]. Pumped hydro storage is presented 

in [18] as a substitute storage for the same standalone 

hybrid network comprising of a wind generating unit, a 

solar PV, and a diesel generating unit.   

Recently, the major challenge in power system is 

integrating the renewable energy sources like wind 

power in power grid. The single and multi-objective 
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optimal power flows, including the renewable energy 

sources, have attracted the maximum attention.  

The author’s influence in this paper, are as follows:  

 Calculations and modeling of Weibull 

probability density function comprising the 

stochastic wind power plants.  

 Thermal power plants are replaced with the 

wind power plants and finally obtain the 

solution of single and multi-objective OPF 

problem with the comparative techno-

economic analysis. This analysis is devoted to 

the mathematical modeling of the single and 

multi-objective OPF problem including 

complete uncertainty modeling of thermal 

plants and wind power plants. 

 The non-dominated sorting Moth Flame 

Optimization technique is applied for finding 

solutions of single and multi-objective OPF 

problems including stochastic renewable 

energy sources like wind power and 

Comparison of results with numerous runs of 

three newly developed algorithms. 

The further sections of the article are arranged as: 

Section 2 consists of the analysis of mathematical 

models containing a formulation of uncertainties in 

solar and wind energy outcomes regarding OPF 

problem. Section 3 includes discussion on the 

objectives which is to be optimized. Explanation and 

application of multi-objective MFO approach are 

explained in section 4. Numerical results and 

discussion are presented in section 5 and conclusive 

notes are given in section 6. 

 

2. MATHEMATICAL MODELS 

      The elementary information data of modified IEEE-

30 bus power system considering the thermal power 

plants and renewable resources is shown in Table 1. 

The bus number 5 and bus number 11 are replaced with 

the wind power plants as displayed in Fig. 1. 

 

 

Table 1. The main characteristics of the system under study. 

Items Quantity Details 

Buses 30 [19] 

Branches 41 [19] 

Thermal generators (TG1;TG2;TG3; TG4) 3 Buses: 1 (swing), 2,8 and 13 

Wind generators (WG1;WG2) 2 Buses: 5 and 11 

Control variables 24 - 

Connected load - 283.4 MW, 126.2 MVAr 

 
Fig. 1. Modified IEEE 30-bus system with renewable energy units.  

https://www.sciencedirect.com/science/article/pii/S0196890417306167#s0010
https://www.sciencedirect.com/science/article/pii/S0196890417306167#s0055
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All the thermal plants and wind power plants 

contribute to the total cost of generation. The cost of 

the conventional thermal generating plants and the 

renewable sources plants are described in the below 

section. 

 

2.1. Cost of Thermal Power Units 

The thermal generating units operating with the 

fossil fuels can be figured as the quadratic curve as 

follows, 

 

𝐶𝑇0(𝑃𝑇𝐺) = ∑ 𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖
2𝑁𝑇𝐺

𝑖=1
                    (1) 

 

Where, 𝑎𝑖 𝑏𝑖 and 𝑐𝑖  are the cost coefficients for 𝑖𝑡ℎ 

thermal power plant. In the real power framework, the 

generator's fuel cost curves are not simple but they are 

much intricate and nonlinear in nature. In general, the 

generation fuel cost function has non-convexity 

containing numerous swells because of the existence of 

stacking impacts of the valve point. The ripple effect 

upon the cost curve is included as redressing sinusoids 

with quadratic costs. Scientifically, the cost in $/hr 

having a valve-point effect is treated as, 

  

𝐶𝑇(𝑃𝑇𝐺) = ∑ 𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖
2 +

𝑁𝑇𝐺

𝑖=1

|𝑑𝑖 × sin(𝑒𝑖 × (𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 − 𝑃𝑇𝐺𝑖))|                                  (2) 

 

Where, 𝑒𝑖  and 𝑑𝑖  are the cost coefficients because 

of valve point effect?  

 

2.2. Emission  

The non-renewable energy sources release toxic 

gases in the atmosphere during power generation. The 

discharge of NOx and SOx rises with an increase in 

thermal plants outputs as indicated in Eq. (3). Emission 

in tones per hour (Ton/hr) can be determined as: 

 

Emission 𝐸 = ∑ [(𝛼𝑖 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃𝑇𝐺𝑖
2 ) × 0.01 +

𝑁𝑇𝐺

𝑖=1

𝜔𝑖𝑒
(𝜇𝑖𝑃𝑇𝐺𝑖)]                                                           (3) 

 

Where, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜔𝑖 and 𝜇𝑖  are the emission 

coefficients with respect to the 𝑖𝑡ℎ  thermal unit. The 

values of thermal cost coefficients and emission 

coefficients of thermal power plants are displayed 

in Table 2.  

 

Table 2. Cost coefficients and emission coefficients of the system under study. 
Generator Bus 𝒂 𝒃 𝒄 𝒅 𝒆 𝜶 𝜷 𝜸 𝝎 𝝁 

𝑇𝐺1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 2.857 

𝑇𝐺2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333 

𝑇𝐺3 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2 

𝑇𝐺4 13 0 3 0.025 13.5 0.041 6.131 -5.555 5.151 0.0001 6.667 

 
2.3. Direct Cost of Stochastic Renewable Plants 

The renewable sources are stochastic in nature and 

it is very difficult to integrate these sources into the 

power grid.  The wind and solar power units are 

controlled through the Independent System Operator 

(ISO). So the private operator has to make the 

agreement with the grid for a certain amount of 

scheduled power. The ISO must be sustained the 

scheduled power. If these renewable farms are not able 

to maintain the scheduled power, ISO is responsible for 

the deficiency of the power. Therefore, the spinning 

reserve supplies the power, if power demand arises. 

This spinning reserve adds extra cost for the ISO and 

this condition is termed as overestimation of the 

renewable sources like wind and solar PV farms. 

Similarly, in opposite way, if these renewable sources 

produced more power compared to the scheduled 

power, it can be wasted because of non-utilization. 

Therefore, the ISO must tolerate the penalty charge. 

Thus, the direct cost of the non-conventional units is 

allied with the scheduled power, overestimation cost 

because of the spinning reserve and the penalty cost 

because of the underestimation.  

Direct cost related to the wind farms from the 𝑗𝑡ℎ  

power plant is modeled with the 𝑃𝑤𝑠,𝑗 scheduled power 

from the same sources as, 

 

𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) = 𝑔𝑗𝑃𝑤𝑠,𝑗                                            (4) 

 

Where, 𝑔𝑗  indicates the direct cost coefficient and  

𝑃𝑤𝑠,𝑗 is treated as the scheduled power of the 𝑗𝑡ℎ power 

plant. 

 

2.4. Uncertain Renewable Wind Power Cost 

Owing to the uncertainty of the wind, occasionally 

the wind farm produces the less amount of the power as 

compared to scheduled power. Sometimes, it may be 

possible that actual power provided by wind farm may 

not satisfy the demand and have lower values. Such 

power is known as overestimated power by an 

indeterminate resource. The network ISO should 

require a spinning reserve to cope up with this type of 

uncertainty and deliver continuous power source to the 

end users. The cost of obligating a reserve generator to 

fulfill the overestimated power is named as reserve 

cost. 

Reserve cost for the 𝑗𝑡ℎ wind unit is formulated by: 

https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0045
https://www.sciencedirect.com/science/article/pii/S0196890417306167#t0010
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𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗) = 𝐾𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 − 𝑃𝑤𝑎𝑣,𝑗)          

   = 𝐾𝑅𝑤,𝑗 ∫ (𝑃𝑤𝑠,𝑗 − 𝑝𝑤,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑠,𝑗

0
            (5) 

 

Where,  𝐾𝑅𝑤,𝑗  represents a reserve cost coefficient 

regarding 𝑗𝑡ℎ wind unit, 𝑃𝑤𝑠,𝑗  is the definite accessible 

power from the same unit. 𝑓𝑤(𝑝𝑤,𝑗) represents the wind 

power probability density function for 𝑗𝑡ℎ wind unit.ae 

Opposite to the overestimation condition, it may be 

possible that the actual power provided by the wind 

farm is higher from the demand value. Such a scenario 

is called underestimated power. The leftover power will 

be lost if there is not any provision for controlling the 

output power from thermal units. ISO should be paid a 

penalty charge regarding the excess power.  

Penalty charge for the 𝑗𝑡ℎ wind unit is given by: 

 

𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) = 𝐾𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗) 

   = 𝐾𝑃𝑤,𝑗 ∫ (𝑝𝑤,𝑗 − 𝑃𝑤𝑠,𝑗)𝑓𝑤(𝑝𝑤,𝑗)𝑑𝑝𝑤,𝑗

𝑃𝑤𝑟,𝑗

𝑃𝑤𝑠,𝑗
          (6) 

 

Where,𝐾𝑃𝑤,𝑗 represents a penalty cost coefficient of 

𝑗𝑡ℎ wind unit, 𝑃𝑤𝑟,𝑗  gives the specified output power of 

the same unit. 

 

2.5. Uncertainty Model of Stochastic Wind Power 

In adapted IEEE-30 bus case study, the thermal 

generating units which are located at bus-5 and bus-11, 

are replaced by wind power generating units. Data of 

proposed Weibull shape (𝑘)  and scale(𝑐 ) parameters 

were displayed in Table 3. Weibull fitting and wind 

frequency distributions in Fig. 2 and  Fig. 3 are 

achieved by taking 8000 Monte-Carlo scenarios. The 

Standard given in [19] instructs the design necessity of 

wind turbines and states maximum turbulent class IA 

that is verified to operate at highest yearly average 

wind velocity of 10 meters/sec at hub height. Special 

focus is for taking shape (𝑘) and scale(𝑐) parameters of 

wind farms as highest Weibull PDF mean value stuck 

near 10. In addition, various PDF parameters for two 

wind farms depict the accurate topographical variety of 

locations. This is very well known that the distribution 

of wind speed tracks Weibull Probability Density 

Function (PDF). 

 

 

 
Fig. 2. Weibull PDF for wind farm located at bus-5. 

https://www.sciencedirect.com/science/article/pii/S0196890417306167#t0015
https://www.sciencedirect.com/science/article/pii/S0196890417306167#f0005
https://www.sciencedirect.com/science/article/pii/S0196890417306167#b0155
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Fig. 3. Weibull PDF for wind farm located at bus-11. 

 

The possibility of wind velocity 𝑣  meter/sec 

pursuing weibull PDF including shape factor(𝑘)  and 

scale factor(𝑐) can be calculated as: 

 

𝑓𝑣(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
(𝑘−1)

𝑒−(
𝑣

𝑐
)
𝑘

      𝑓𝑜𝑟 0 < 𝑣 < ∞      (7) 

 

Mean of weibull distribution is stated as: 
 

𝑀𝑤𝑏𝑙 = 𝑐 ∗ Γ(1 + 𝑘
−1)                     (8) 

 

Where, gamma function Γ(𝑥) is given by: 

 

Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡  
∞

0
                         (9)

 

 

Table 3. PDF parameters of wind power plants. 

Wind power generating plants at Bus-5 and Bus-11. 

 

 

Wind farm 

# 

 

No. 

of 

Turbi

-nes 

 

Rated 

power,  

𝑃𝑤𝑟 

 

(MW) 

 

Weibull 

PDF 

parameters 

 

Weibull 

mean, 

𝑀𝑤𝑏𝑙 

1 (bus 5) 25 75 𝑐 = 9, 𝑘 = 2 𝑣 = 7.976 m/s 

2 (bus 11) 20 60 𝑐 = 10, 𝑘 = 2 𝑣 = 8.862 m/s 

 
2.6. Wind Power Model 

Wind unit coupled at bus number 5 is taken as the 

additive outputs of 25 turbines in the farm and output 

of wind farm containing 20 turbines is coupled at bus 

number 11. The output rating of each turbine is 3 MW. 

The accurate output of the wind turbine is varying 

according to the wind velocity. Turbine output power 

as a function of wind velocity (𝑣) can be expressed by: 

𝑝𝑤(𝑣) = {

0,              for 𝑣〈𝑣𝑖𝑛𝑎𝑛𝑑𝑣〉𝑣𝑜𝑢𝑡

𝑝𝑤𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
)          for 𝑣𝑖𝑛 ⩽ 𝑣 ⩽ 𝑣𝑟

𝑝𝑤𝑟                       for 𝑣𝑟 < 𝑣 ⩽ 𝑣𝑜𝑢𝑡

      (10) 

 

Where,𝑣𝑖𝑛 , 𝑣𝑟 and𝑣𝑜𝑢𝑡  show the cut-in, rated and 

cut-out wind velocity of turbine 

respectively. 𝑝𝑤𝑟  shows the rated value of the 

generated power of the wind turbine. For the 3-MW 

wind turbine, Enercon E82-E4 model datasheet is 
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referred. The different speeds are 𝑣𝑖𝑛 =
3   metre/sec, 𝑣𝑟 = 16  metre/sec and 𝑣𝑜𝑢𝑡 =
25 metre/sec. 

 

2.7. Calculation of Wind Power Probabilities 

From Eq. (10), it can be seen that the uncertain 

wind generation is distinct in some of the spans of wind 

speeds. If the wind speed (𝑣) is more than the cut-out 

speed (𝑣𝑜𝑢𝑡 ) or less than the cut-in speed (𝑣𝑖𝑛 ), the 

generated power would be zero. So, the turbine 

provides rated generated power 𝑝𝑤𝑟  in the range of 

rated wind velocity (𝑣𝑟 ) and cut-out velocity (𝑣𝑜𝑢𝑡 ). 

Probabilities of these regions can be expressed by [19]: 

 

𝑓𝑤(𝑝𝑤){𝑝𝑤 = 0} = 1 − exp [− (
𝑣𝑖𝑛

𝑐
)
𝑘

] +

exp [− (
𝑣𝑜𝑢𝑡

𝑐
)
𝑘

]                                             (11) 

𝑓𝑤(𝑝𝑤){𝑝𝑤 = 𝑝𝑤𝑟} = exp [− (
𝑣𝑟

𝑐
)
𝑘

] − exp [− (
𝑣𝑜𝑢𝑡

𝑐
)
𝑘

]

                                              (12) 

 

The wind output is constant between cut-in velocity 

(𝑣𝑖𝑛) and rated velocity (𝑣𝑟) of wind. In the probability 

to the continuous zone can be formulated as [19]: 

 

𝑓𝑤(𝑝𝑤){𝑝𝑤 = 𝑝𝑤𝑟} = exp [− (
𝑣𝑟

𝑐
)
𝑘

] − exp [− (
𝑣𝑜𝑢𝑡

𝑐
)
𝑘

]

                                               (13) 

 

3. OBJECTIVES OF OPTIMIZATION 

The optimal power flow contains the objectives of 

optimal active power dispatch and optimal reactive 

power dispatch. In this section, the objectives of 

optimal power flow with wind power plants are 

incorporated as follows; 

 

3.1. Minimization of Total Fuel Cost Including 

Renewable Energy Resources 

The OPF objective is modeled by integrating each 

cost function that are discussed earlier. In the first 

objective, the cost of wind and solar power plants are 

added to the conventional thermal power plants. While, 

emission cost is not considered. Next objective function 

is formulated by including emission cost to analyze the 

change in generation schedule at the time of imposition 

carbon tax. 

 

Objective 1: Minimize – 

𝐹1 = 𝐶𝑇(𝑃𝑇𝐺) +∑ [𝐶𝑤,𝑗(𝑃𝑤𝑠,𝑗) + 𝐶𝑅𝑤,𝑗(𝑃𝑤𝑠,𝑗 −
𝑁𝑊𝐺

𝑗=1

𝑃𝑤𝑎𝑣,𝑗) + 𝐶𝑃𝑤,𝑗(𝑃𝑤𝑎𝑣,𝑗 − 𝑃𝑤𝑠,𝑗)]                        (14) 

 

Where, 𝑁𝑊𝐺 and 𝑁𝑆𝐺 represent the no. of wind units 

and solar PV units in a grid, respectively. Remaining 

cost parameters are determined from Eq. (2) and Eq. 

(4)-(6). 

 

3.2. Minimization of Total Fuel Cost Plus Carbon 

Emission Tax Including Renewable Energy 

Resources 

Nowadays, some of the countries are pressurizing 

the whole power utility to diminish the carbon 

discharge to control the global warming [19]. In order 

to inspire venture in cleaner ways of power such as 

solar and wind, carbon tax ( 𝐶𝑡𝑎𝑥)  is charged on 

discharged of per unit greenhouse smokes. The 

emission cost (in $/hr) is denoted by Eq. (3) : 

Emission cost,𝐶𝐸 = 𝐶𝑡𝑎𝑥𝐸  

         

Objective 2: Minimize – 

𝐹2 = 𝐹1 + 𝐶𝑡𝑎𝑥𝐸                             (15) 

 

3.3. Minimization of Voltage Deviation with 

Renewable Energy Resources 

Bus voltage is a standout among the highest 

imperative safety and administration superiority lists. 

The enhancing voltage profile will be acquired by 

limiting the deviations in voltage of PQ bus from 1.0 

for every unit. The objective function will be given by: 

 

Objective 3: Minimize – 

𝐹3 = ∑ |𝑣𝑖 − 1.0|
𝑁𝑝𝑞
𝑖=1

            (16) 

 

Where, 𝑁𝑝𝑞 shows the no. of load (PQ) buses, 𝑣𝑖 

shows the p.u. the voltage level of 𝑖th bus. 

 

3.4. Minimization of Active Power Losses With 

Renewable Energy Resources 

The optimization of real power losses 𝑃𝐿𝑂𝑆𝑆 (MW) 

may be computed by: 

 

Objective 4: Minimize – 

𝐹4 = 𝑃𝐿𝑂𝑆𝑆 = ∑ 𝑃𝐺𝑖 −
𝑁𝐵
𝑖=1 ∑ 𝑃𝐷𝑖

𝑁𝐵
𝑖=1            (17) 

 

Where, 𝑃𝐺𝑖  and 𝑃𝐷𝑖  represent the output and 

dispatch at 𝑖th bus; 𝑁𝐵 shows the number of buses. 

 

3.5. Enhancement of Voltage Stability Index 

Containing Renewable Energy Resources 

The most significant index, which indicates the 

voltage constancy margin of each bus, is the 𝐿𝑚𝑎𝑥 

index to preserve the constant voltage within suitable 

level under normal operating conditions. L-index 

provides a scalar number for every PQ bus. 𝐿𝑚𝑎𝑥  index 

lies in a span of ‘0’ (no load) and ‘1’ (voltage collapse). 

The amount of voltage collapse indicator for 𝑗th bus is 

obtained as; 

𝐿𝑗 = |1 − ∑ 𝐹𝑗𝑖
𝑉𝑖

𝑉𝑗

𝑁𝑔
𝑖=1

|     ∀𝑗 = 1,2, …… ,𝑁𝐿           (18) 

https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0155
https://www.sciencedirect.com/science/article/pii/S0196890417306167#b0065
https://www.sciencedirect.com/science/article/pii/S0196890417306167#b0065
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0010
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0010
https://www.sciencedirect.com/science/article/pii/S0196890417306167#b0095


Majlesi Journal of Electrical Engineering                                                               Vol. 14, No. 2, June 2020 

 

99 
 

𝐹𝑗𝑖 = −[𝑌1]
−1[𝑌2]              (19) 

 

Where,  𝑌1  and 𝑌2  were the sub-matrices of 𝑌𝐵𝑈𝑆 . 

The objective function of voltage stability enhancement 

is written by; 

 

𝐹5 = 𝐿 = max(𝐿𝑗)     ∀𝑗 = 1,2, …… ,𝑁𝐿           (20) 

 

3.6. Equality Constraints 

Equality bounds are given by power flow equations 

which shows that both real and imaginary power 

produced in a system should have satisfied the load 

demand and losses in the system. 

 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖∑ 𝑉𝑗[𝐺𝑖𝑗cos(𝛿𝑖𝑗) + 𝐵𝑖𝑗sin(𝛿𝑖𝑗)] =
𝑁𝐵

𝑗=1

0∀𝑖 ∈ 𝑁𝐵                                    (21) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖∑ 𝑉𝑗[𝐺𝑖𝑗sin(𝛿𝑖𝑗) − 𝐵𝑖𝑗cos(𝛿𝑖𝑗)] =
𝑁𝐵

𝑗=1

0∀𝑖 ∈ 𝑁𝐵                                        (22) 

 

Where, 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗 , is the variance in phase 

angles of voltage among bus 𝑖  and bus 𝑗 , 𝑁𝐵  shows 

overall buses, 𝑃𝐷𝑖  and 𝑄𝐷𝑖  are real and VAR power 

demand respectively at 𝑖th bus. 𝑃𝐺𝑖  and 𝑄𝐺𝑖  are real and 

VAR outputs respectively of 𝑖 th bus by either unit 

(thermal or non-conventional) as applicable. 𝐺𝑖𝑗  shows 

the conductance and 𝐵𝑖𝑗  shows the susceptance 

between bus 𝑗 and bus 𝑖, respectively. 

 

3.7. Inequality Constraints 

Inequality bounds were the operational boundaries 

of devices and security bounds of lines and PQ buses. 

 

Generator bounds: 

𝑃𝑇𝐺𝑖
𝑚𝑖𝑛 ⩽ 𝑃𝑇𝐺𝑖 ⩽ 𝑃𝑇𝐺𝑖

𝑚𝑎𝑥 ,𝑖 = 1,… . .,𝑁𝑇𝐺          (23) 

𝑃ws,j
𝑚𝑖𝑛 ⩽ 𝑃𝑤𝑠,𝑗 ⩽ 𝑃ws,j

𝑚𝑎𝑥,𝑗 = 1,… . .,𝑁𝑊𝐺          (24) 

𝑄𝑇𝐺𝑖
𝑚𝑖𝑛 ⩽ 𝑄𝑇𝐺𝑖 ⩽ 𝑄𝑇𝐺𝑖

𝑚𝑎𝑥 ,𝑖 = 1,… . .,𝑁𝑇𝐺          (25) 

𝑄ws,j
𝑚𝑖𝑛 ⩽ 𝑄𝑤𝑠,𝑗 ⩽ 𝑄ws,j

𝑚𝑎𝑥 ,𝑗 = 1,… . .,𝑁𝑊𝐺          (26) 

𝑉𝐺𝑖
𝑚𝑖𝑛 ⩽ 𝑉𝐺𝑖 ⩽ 𝑉𝐺𝑖

𝑚𝑎𝑥,𝑖 = 1,… . .,𝑁𝐺           (27) 

Security bounds: 
𝑉𝐿𝑝
𝑚𝑖𝑛 ⩽ 𝑉𝐿𝑝 ⩽ 𝑉𝐿𝑝

𝑚𝑎𝑥,𝑝 = 1,… . .,𝑁𝐿          (28) 

𝑆𝑙𝑞 ⩽ 𝑆𝑙𝑞
𝑚𝑎𝑥,𝑞 = 1,… . .,𝑛𝑙                         (29) 

 

Eq. (23) and Eq. (33) signify the real power output 

bounds of thermal, wind units. Afterward, Eq. (25) and 

Eq. (26) signify the VAR power capacity of generating 

units. 𝑁𝐺 shows the overall voltage control buses. Eq. 

(27) shows bounds on the voltage of PV buses, 

whereas, Eq. (28) shows the voltage bounds on PQ 

buses where 𝑁𝐿  is the number of PQ buses. Line 

loading boundaries are defined using Eq. (29) for 

total 𝑛𝑙 number of lines in a system. 

 

4. MULTI-OBJECTIVE MOTH FLAME 

OPTIMIZER  

Here, the Moth Flame Optimization (MFO) 

algorithm is adopted to solve the multi-objective 

optimal power flow problem. 

 

4.1. Inspiration 

It is basically inspired from the moths in nature. 

The navigation of the moths at night is a little bit 

interesting by using the moonlight. The transverse 

orientation of mechanism is utilized by the moths for 

navigation as shown in Fig. 4. The moth flies by 

keeping up some point concerning the moon, the vital 

and viable mechanics of long traveling long 

separations. Be that as it may, regardless of the 

transverse orientation, moths fly spirally around the 

lights as appeared in Fig. 5. This is a direct result of the 

inadequacy of the transverse introduction, in which it is 

valuable for suffering in a linear way at the time of 

remote location light source. Exactly when moths get 

an artificial light source, they do efforts to keep up a 

comparative edge to a light source to soar in a linear 

way. Meanwhile, this light is to an extraordinary degree 

close stood out from the moon, nevertheless, keeping 

up the same point at a light source creates a vain or 

lethal winding to sail route for moths. 

 

 
Fig. 4. Transverse Orientation [20]. 

https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0075
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0090
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0090
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0105
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0110
https://www.sciencedirect.com/science/article/pii/S0196890417306167#e0115
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4.2. MFO algorithm 

In MFO algorithm, the solutions of problems are 

given by moths and the variables are represented by the 

positions of moths in a space, flying in 1D, 2D, 3D or 

any other dimensional space by varying its position 

vectors. 

 

1. Initialize position vector of moths: 

With ‘𝑛’ shows the overall variables and‘𝑑’ shows 

the dimensions, the position matrix is given by, 

 

𝑀 = [

𝑚1,1 𝑚1,2

𝑚2,1 𝑚2,2

⋯ 𝑚1,𝑑

⋯ 𝑚2,𝑑

⋮ ⋮
𝑚𝑛,1 𝑚1,1

⋮ ⋮
⋯ 𝑚𝑛,𝑑

]                         (30) 

 

2. Initialize position vector of Flames: 

Another valuable matrix is the position vector 

matrix of flames which is given by; 

 

𝐹 = [

𝐹1,1 𝐹1,2
𝐹2,1 𝐹2,2

⋯ 𝐹1,𝑑
⋯ 𝐹2,𝑑

⋮ ⋮
𝐹𝑛,1 𝐹1,1

⋮ ⋮
⋯ 𝐹𝑛,𝑑

]                         (31) 

 

Where, the ‘𝑛’ shows overall variables and the‘𝑑’ 

shows overall dimensions. 

 

3. Fitness evaluation:  

For the finding the fitness, there is an array of the 

moths which is given by, 

 

𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑛

]                 (32) 

Where, ‘𝑛’ gives the overall value of moths. It may 

be seen that the dimensions of the position vectors of 

moths and flames are the same. So the vector for saving 

the equivalent fitness value is given by, 

 

𝑂𝐹 = [

𝑂𝐹1
𝑂𝐹2
⋮
𝑂𝐹𝑛

]                  (33) 

 

The MFO approach is having the three main 

functions for finding the global results as below; 

 

𝑀𝐹𝑂 = (𝐼, 𝑃, 𝑇)                             (34) 

 

𝐼 illustrates the function for generating the custom 

populations with the corresponding fitness which is 

given by, 

 

𝐼: ∅ → {𝑀, 𝑂𝑀}                           (35) 

 

Similarly, 𝑃 function is also the main function, and 

getting from the matrix of 𝑀 eventually updated as; 

 

𝑃: 𝑀 → 𝑀                           (36) 

 

Also, there is another termination criterion for 𝑇 

function for the condition, satisfaction means if 

satisfied than true otherwise false. 

 

𝑇: 𝑀 → {𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}                          (37) 

 

Firstly, the initialization of the functions, the ‘𝑃’ 

function is evaluated until the satisfaction standards of 

the ‘𝑇 ’ function are not fulfilled. Now the moth is 

modified according to the flame, so the mathematical 

model of the transverse orientations of this behavior is 

given by the equation given below;  

 

𝑀𝑖 = 𝑆(𝑀𝑖 , 𝐹𝑖)                                        (38) 

 

Where, 𝑀𝑖  indicates the 𝑖𝑡ℎ moth,  𝐹𝑖  indicates the 

𝑗𝑡ℎ moth of the spiral function 𝑆. Here, the motion of 

moth is 𝑛  logarithmic spiral whose starting point 

should be the moth, the final point should be flame and 

a range does not surpass the exploration area. So the 

point of the MFO approach in logarithmic scale is 

shown in Fig. 5 and given as follows; 
 

𝑆(𝑀𝑖 , 𝐹𝑖) = 𝐷𝑖 . 𝑒
𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑗             (39) 

 

Where, 𝐷𝑖  is the remoteness of 𝑖𝑡ℎmoth from 𝑗𝑡ℎ 

flame. “𝑏" is the constant indicating the profile of the 

log spiral and 𝑡 is the random number in the range of [-

1, 1]. The calculation of distance 𝐷𝑖  can be given as; 

 

𝐷𝑖 = |𝐹𝑗 −𝑀𝑖|                           (40) 

 

Where, 𝐷𝑖  is the remoteness of 𝑖𝑡ℎmoth from the 𝑗𝑡ℎ 

moth, 𝐹𝑗  shows the 𝑗𝑡ℎ  flame and 𝑀𝑖  shows the 

𝑖𝑡ℎmoth.  
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Fig. 5. Logarithmic spiral, space around a flame, and the position with respect to t [20]. 

 

4. Adaptive nature of reducing the number of 

flames: 

Further, the numbers of flames are reduced while 

the number of iterations is increasing which is given 

by; 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑎𝑚𝑒𝑠 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝐼 ∗
𝑁−1

𝑇
)        (41) 

 

Where, 𝐼  illustrates the present iteration, 𝑁  shows 

the highest number of flames having the overall 

iterations 𝑇. 

 

4.3. Formulation of Multi-Objective Function with 

the Non-sorting MFO Algorithm 

The multi-objective optimization issues comprising 

the amount of clashing objective functions are 

optimized simultaneously while at the same time 

fulfilling all the constraints. There are the number of 

optimization methods that are utilized prior to the 

article to explain the multi-objective OPF problem. 

Starting with those works of literature, it is seen that 

numerous researchers have changed over that multi-

objective issue under a single objective issue utilizing 

the straight mixture of the two clashing objective works 

toward applying the weighting components approach. 

Furthermore, the finer route for finding the result of the 

multi-objective issue may be to estimate the set of ideal 

tradeoffs what's more discovering the best 

compromising solutions around every last one of pareto 

fronts. The multi-objective optimization problem needs 

to be figured as; 

 

𝑀𝑖𝑛 𝑓𝑖(𝑢),     𝑖 = 1,2,3………… . , 𝑁           (42) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑔𝑗(𝑢) = 0,   𝑗 = 1,2,3… .𝑀             (43) 

ℎ𝑘(𝑢) ≤ 0,    𝑘 = 1,2,3………… .𝐾            (44) 

 

Where, 𝑓𝑖  shows the 𝑖𝑡ℎ  objective function; 𝑢 

represents the decision vectors;  𝑁  stands for total 

objective function; 𝑀  stands for the total power flow 

bounds and 𝐾  stands for total physical bounds on 

devices. In the multi-objective optimization, the non-

dominated sorting technique can have two 

probabilities, one dominating the other objectives or no 

one dominated the other. In other words, without losing 

generality; 𝑢1  dominates the 𝑢2  only if the given two 

criteria are fulfilled; 

 

∀𝑖 ∈  {1,2,3……𝑁}               ∶  𝑓𝑖(𝑢1) ≤ 𝑓𝑖(𝑢2)      (45) 

∃𝑗 ∈  {1,2,3……𝑁}               ∶  𝑓𝑗(𝑢1) ≤ 𝑓𝑗(𝑢2)      (46) 

 

In the event that any of the above conditions is 

disregarded, at that point, arrangement 𝑢1  does not 

rule 𝑢2 . The arrangement 𝑢1  is known as the non-

commanded arrangement, if 𝑢1 overwhelms the 𝑢2 

arrangements. Flowchart of given MFO approach for 

resolving OPF issue is shown in Fig. 6, the method of 

the suggested non-sorting MFO approach has appeared 

in algorithm-2. Initially, introduce parameters, for 

example, population size𝑁𝑝𝑜𝑝, and stopping value, here 

it is the most extreme no. of generation to proceed the 

method. Besides, a random parent population 𝑃𝑜  in 

possible space S is produced and every objective 

function of the objective vector F for 𝑃𝑜  is assessed. 

Afterward, non-dominated sorting along with crowding 

distance calculation as clarified in [21] is implemented 

on 𝑃𝑜. Subsequently, the MFO approach is utilized to 

make the fresh population 𝑃𝑗 , and then it is converged 

with 𝑃𝑜  to shape the blended population 𝑃𝑖 . This 𝑃𝑖  is 

arranged in view of elitism non-domination, and in 

light of the figured estimations of crowding distance 

(CD) and non-domination rank (NDR), the best 𝑁𝑝𝑜𝑝 

arrangements are refreshed to frame another parent 

population. This procedure is repeated until the highest 

no. of generations (cycles) are come to. It must be 

noticed that a similar approach can be utilized along 
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with end criteria set according to the total evaluations 

of the function. 

 

Algorithm-2 Non-dominated Moth Flame 

Optimization [21]  

Step 1:- 

Create population 𝑃𝑜 randomly in the set of solution S 

and objective function vector F for the created 𝑃𝑜. 

Step 2:- 

Sort the 𝑃𝑜  in light of the elitist non dominated sort 

strategy and discover the non-domination rank (NDR) 

and pareto fronts. 

Step 3:- 

For each pareto front, find the crowding distance (CD). 

Step 4:- 

Now using MFO algorithm, modernize solutions 𝑃𝑗 . 

Step 5:- 

To create 𝑃𝑖 = 𝑃𝑜 ∪ 𝑃𝑗, combine 𝑃𝑜and𝑃𝑗. 

Step 6:- 

For  𝑃𝑖  accomplish step 2 according to NDR and CD 

sort 𝑃𝑖 . 
Step 7:- 

For first 𝑁𝑝𝑜𝑝 members of 𝑃𝑖 , Substitute 𝑃𝑜 with 𝑃𝑖 . 

 

4.4. Fuzzy Model for the Multi-Objective Problem 

For finding the best compromising solution among 

all the non-inferior results, the fuzzy membership 

approach can be applied in multi-objective functions. 

The fuzzy membership function 𝜇𝑓𝑖  is looking after 

minimum 𝑓𝑖
𝑚𝑖𝑛 and maximum 𝑓𝑖

𝑚𝑎𝑥  values for every 

objective goal with the help of fuzzy membership 

function. Now, the membership function of 𝑖𝑡ℎ 

objective is expressed as; 

 

𝜇𝑓𝑖 =

{
 

 
1                        𝑓𝑖 ≤ 𝑓𝑖

𝑚𝑖𝑛 

𝑓𝑖
𝑚𝑎𝑥−𝑓𝑖

𝑓𝑖
𝑚𝑎𝑥−𝑓𝑖

𝑚𝑖𝑛               𝑓𝑖
𝑚𝑖𝑛 < 𝑓𝑖 < 

0                        𝑓𝑖 ≥ 𝑓𝑖
𝑚𝑎𝑥 

𝑓𝑖
𝑚𝑎𝑥        (47) 

 

The values of membership functions lie in the scale 

of (0-1) and show that how much it satisfies the 

function 𝑓𝑖 .  Afterward, the decision-making function 

𝜇𝑘 should be computed as follows; 

 

𝜇𝑘 =
∑ 𝜇𝑓𝑖

𝑘𝑁
𝑖=1

∑ ∑ 𝜇𝑓𝑖
𝑘𝑁

𝑖=1
𝑀
𝑘=1

                                        (48) 

 

The decision-making function can also be 

considered as the normalized membership function for 

non-inferior results and shows the ranking of the non-

dominated results. The final result is treated as the best 

compromising solution among all the pareto front 

having the value  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 {𝜇𝑘: 𝑘 = 1,2,3…… . .𝑀} .
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Fig. 6. Flowchart of proposed MFO for solving OPF. 

 

5. SIMULATION RESULTS AND ANALYSIS 

In this analysis, the single objective and multi-

objective optimization using MFO algorithm are 

implemented to solve the stochastic OPF problem with 

wind-thermal power plants. The adapted IEEE-30 bus 

framework with wind-thermal plants can be utilized to 

show the adequacy of the suggested approach. The line 

information, load information and the data of wind and 

solar power plants are directly taken from ref. [19]. The 

primary qualities of adapted IEEE-30 bus framework 

are given in Table 1.  

Here, total 11 dissimilar test cases are considered as 

presented in Table 4. The first six case studies are for 

single objectives optimization and rest of the cases are 

multi-objective optimization problems incorporated 

with thermal and wind power plants. In proposed work, 
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the programming is done with MATLAB programming 

language and calculated on the system having 2.5 GHz 

core to duo processor with 2 GB RAM. Here, the 

search agent value is choosing to be 40 and each 

algorithm is analyzed for 10 independent runs with 100 

iterations per run. 

 

Table 4. Summary of case studies for adapted IEEE-30 bus test system. 

Test system Case # Single and Multi Objectives Functions 

 

 

 

 

IEEE 30-bus test 

system 

(Modified) 

Case # 1 Minimization total fuel cost.  

Case # 2 Emission minimization.  

Case # 3 Active power loss minimization.  

Case # 4 Voltage deviation minimization. 

Case # 5 Voltage stability enhancement.  

Case # 6 Total Fuel Cost with carbon Tax minimization.  

Case # 7  Total Fuel Cost and Emission minimization.  

Case # 8 Total Fuel Cost and active power loss minimization.  

Case # 9 Total Fuel Cost, Emission, and active power loss minimization.  

Case # 

10 

Total Fuel Cost, Emission, and voltage deviation minimization. 

Case # 

11 

Total Fuel Cost, Emission, Voltage deviation and active power loss 

minimization. 

 
. 5.1. Scenario-1 (Single objective OPF with wind-

thermal power plants) 

Here, all the objectives are treated as the single 

objectives and optimized with the help of moth flame 

optimization algorithm. The best optimized results are 

tabulated in Table 5 to Table-7. For Case-1, the total 

fuel cost including renewable wind power plants as in 

case-1 is 669.523 $/hr. The convergence curve of total 

fuel cost with all four algorithms is displayed in Fig. 7. 

The pollutant gas emission in case-2 is 0.092 Ton/hr. 

The active power loss of different transmission lines in 

case-3 is 1.747 MW. Likewise, the voltage deviation of 

each bus that is case-4, the minimum value is 0.294 

p.u. The voltage stability index, also known as 𝐿𝑚𝑎𝑥  

index fluctuates from 0 (no load) to 1 (voltage 

collapse). So the minimum value for the 𝐿𝑚𝑎𝑥  index in 

case-5 is 0.134. In case-6, the carbon tax rate 𝐶𝑡𝑎𝑥  is 

taken as 20 $/Tonne. The simulation result of total cost 

with emission is 697.703 $/hr. After comparing the 

simulation outcomes with three newly developed 

algorithms, it shows that the proposed MFO algorithm 

is well applied for the OPF Problem with the wind-

thermal power plants. 

  

 

Table 5. Single objectives simulation results for case-1 and case-2  

(Adapted IEEE 30 bus system). 

Control & State 

variables 

Min Max Case-1 Case-2 

MFO GWO MVO IMO MFO GWO MVO IMO 

PG2(Thermal) 20 80 24.906 26.884 25.433 38.227 46.634 46.607 46.609 47.373 

        PG5(Wind) 0 75 42.010 42.247 42.907 22.701 74.921 71.362 73.825 75.000 

PG8(Thermal) 10 35 10.000 10.000 10.054 15.577 35.000 35.000 35.000 35.000 

        PG11(Wind) 0 60 37.064 35.034 35.669 38.368 58.454 60.000 59.283 55.124 

PG13(Thermal) 12 40 40.000 40.000 40.000 39.993 39.999 39.366 38.065 39.319 

VG1 1.10 0.95 1.100 1.100 1.099 1.100 1.100 1.077 1.011 1.100 

VG2 1.10 0.95 1.089 1.007 1.090 1.100 0.950 0.958 1.080 1.100 

VG5 1.10 0.95 1.069 1.067 1.098 1.100 0.950 1.030 1.073 1.100 

VG8 1.10 0.95 1.091 1.099 1.099 1.100 1.082 1.077 1.009 1.100 

VG11 1.10 0.95 1.100 1.099 1.098 1.100 0.998 1.098 1.013 1.100 

VG13 1.10 0.95 1.095 1.086 1.067 1.068 0.986 1.093 0.957 1.100 
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QC10 5.00 0.00 5.000 1.857 0.316 5.000 5.000 1.791 0.812 5.000 

QC12 5.00 0.00 4.490 1.857 0.437 3.649 5.000 4.821 4.985 5.000 

QC15 5.00 0.00 0.746 2.024 2.945 5.000 0.546 3.520 3.599 5.000 

QC17 5.00 0.00 0.000 0.036 0.881 5.000 3.024 1.080 1.112 2.981 

QC20 5.00 0.00 0.010 1.048 2.595 0.979 4.162 4.750 4.995 5.000 

QC21 5.00 0.00 4.298 1.361 4.732 3.113 0.012 2.162 3.677 5.000 

QC23 5.00 0.00 4.867 0.596 1.072 5.000 2.746 3.433 2.870 0.513 

QC24 5.00 0.00 4.990 3.218 4.952 4.298 0.001 0.263 0.133 5.000 

QC29 5.00 0.00 5.000 0.042 2.464 2.389 5.000 0.743 4.455 5.000 

T11(6-9) 1.10 0.9 1.099 1.100 0.909 1.100 0.900 1.092 0.932 1.100 

T12(6-10) 1.10 0.9 1.074 0.929 0.939 1.100 1.100 1.077 0.936 1.100 

T15(4-12) 1.10 0.9 0.931 0.958 0.938 1.100 1.099 1.100 0.909 1.100 

T36(28-27) 1.10 0.9 0.901 1.100 0.910 1.100 0.900 0.928 1.017 1.100 

Total Fuel Cost 

($/hr) 

    669.523 669.942 669.722 687.804 - - - - 

Emission 

 (Ton/hr) 

    - - - - 0.092 0.092 0.092 0.092 

 

Table 6. Single objectives simulation results for case-3 and case-4  

(Adapted IEEE 30 bus system). 

Control & State variables Min Max Case-3 Case-4 

MFO GWO MVO IMO MFO GWO MVO IMO 

PG2(Thermal) 20 80 65.254 77.746 72.026 65.756 22.328 39.173 69.326 79.321 

               PG5(Wind) 0 75 75.000 75.000 74.829 75.000 0.000 57.618 73.328 42.434 

PG8(Thermal) 10 35 35.000 35.000 35.000 35.000 34.995 19.456 26.076 33.141 

             PG11(Wind) 0 60 60.000 59.898 59.695 60.000 17.067 39.698 25.180 12.290 

PG13(Thermal) 12 40 40.000 40.000 40.000 40.000 12.000 12.070 15.651 13.112 

VG1 1.10 0.95 1.100 1.029 1.100 1.100 0.973 0.961 0.983 1.063 

VG2 1.10 0.95 1.100 1.100 1.100 1.100 0.955 0.952 0.950 0.983 

VG5 1.10 0.95 1.090 1.090 1.092 1.100 1.100 1.003 1.040 1.021 

VG8 1.10 0.95 1.095 1.092 1.093 1.100 1.091 1.067 1.036 1.084 

VG11 1.10 0.95 1.100 1.100 1.100 1.100 1.100 1.100 1.069 1.095 

VG13 1.10 0.95 1.098 1.100 1.100 1.100 1.054 1.071 1.091 1.095 

QC10 5.00 0.00 4.959 0.056 3.255 5.000 0.690 1.640 2.734 4.335 

QC12 5.00 0.00 3.710 3.006 1.018 5.000 4.998 0.370 3.246 3.420 

QC15 5.00 0.00 1.191 1.030 0.555 5.000 0.260 1.252 3.439 0.316 

QC17 5.00 0.00 5.000 0.317 0.113 5.000 3.294 3.891 1.861 2.887 

QC20 5.00 0.00 4.992 2.391 1.687 5.000 0.000 1.926 0.776 2.210 

QC21 5.00 0.00 1.816 0.185 2.817 5.000 4.964 4.132 2.589 2.733 

QC23 5.00 0.00 0.000 0.000 4.867 5.000 4.999 0.258 2.416 2.166 

QC24 5.00 0.00 3.415 0.434 3.975 5.000 3.153 3.151 4.769 1.750 

QC29 5.00 0.00 2.107 2.389 4.771 5.000 0.001 0.468 0.965 1.471 
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T11(6-9) 1.10 0.9 1.100 1.097 0.933 1.100 0.901 0.966 0.996 0.965 

T12(6-10) 1.10 0.9 0.900 1.067 1.052 1.100 0.998 1.037 1.100 1.100 

T15(4-12) 1.10 0.9 1.100 0.910 1.095 1.100 0.906 0.929 0.932 0.982 

T36(28-27) 1.10 0.9 0.900 0.919 0.932 1.100 0.900 1.027 0.967 1.026 

Active Power Loss (MW)     1.747 1.797 1.760 1.770  - -  -   - 

Voltage Deviation (p.u)     -   -  -  - 0.294 0.316 0.315 0.395 

 

Table 7. Single objectives simulation results for case-5 and Case-6 

(Adapted IEEE 30 bus system). 

Control & State 

variables 

Min Max Case-5 Case-6 

MFO GWO MVO IMO MFO GWO MVO IMO 

PG2(Thermal) 20 80 20.000 20.000 20.000 61.428 31.831 32.930 30.941 23.852 

        PG5(Wind) 0 75 65.299 67.581 64.957 75.000 45.234 44.664 45.326 52.845 

PG8(Thermal) 10 35 35.000 35.000 35.000 35.000 10.000 10.065 10.000 17.025 

        PG11(Wind) 0 60 60.000 60.000 60.000 60.000 38.176 37.439 38.826 32.230 

PG13(Thermal) 12 40 25.375 15.714 28.953 33.666 40.000 40.000 40.000 40.000 

VG1 1.10 0.95 0.950 0.950 0.950 1.100 1.100 1.100 1.100 1.100 

VG2 1.10 0.95 1.100 1.100 1.100 1.100 1.090 1.088 0.976 1.100 

VG5 1.10 0.95 1.100 1.100 1.100 1.100 1.071 1.077 1.071 1.100 

VG8 1.10 0.95 1.100 1.100 1.100 1.100 1.096 1.089 1.098 1.100 

VG11 1.10 0.95 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 

VG13 1.10 0.95 1.100 1.100 1.100 1.100 1.100 1.081 1.100 1.100 

QC10 5.00 0.00 0.099 0.696 2.058 5.000 5.000 1.768 4.550 0.370 

QC12 5.00 0.00 4.865 1.898 4.049 5.000 1.383 0.766 0.734 5.000 

QC15 5.00 0.00 3.328 0.202 2.886 5.000 5.000 2.398 3.311 1.073 

QC17 5.00 0.00 5.000 4.443 4.629 5.000 2.759 2.055 0.107 1.808 

QC20 5.00 0.00 5.000 2.067 1.249 5.000 5.000 0.218 4.936 2.355 

QC21 5.00 0.00 5.000 0.327 1.390 5.000 0.000 3.193 2.490 1.914 

QC23 5.00 0.00 5.000 1.717 3.902 5.000 1.566 0.796 2.218 2.808 

QC24 5.00 0.00 5.000 0.356 0.508 5.000 0.000 4.096 3.812 0.983 

QC29 5.00 0.00 0.020 1.005 0.033 3.944 4.942 1.514 0.015 2.826 

T11(6-9) 1.10 0.9 1.100 0.965 1.100 1.100 1.100 0.919 1.082 1.100 

T12(6-10) 1.10 0.9 1.100 1.019 0.900 1.100 1.079 0.953 0.921 1.100 

T15(4-12) 1.10 0.9 0.900 1.031 1.100 1.100 1.097 1.009 1.016 1.100 

T36(28-27) 1.10 0.9 1.100 0.960 0.900 1.100 1.099 0.973 0.936 1.100 

L index     0.134 0.134 0.134 0.134  - -  -   - 

Total Fuel Cost With 

Carbon Tax ($/hr) 

    -   -  -  - 697.703 697.857 698.138 705.190 
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Fig. 7. Convergence characteristics of total fuel cost minimization with two wind power plants. 

 

5.2 Scenario-2 (Multi-objective OPF with wind-

thermal power plants) 

The multi-objective optimization problems that is 

two objectives, three objectives and four objectives 

with case-7 to case-11 are optimized simultaneously 

with all four algorithms. With fuzzy decision 

technique, the tradeoff of best compromise solution is 

illustrated in Fig. 8 to Fig. 10. The results of multi-

objective optimal power flow are portrayed in Table 8. 

From the results, it analyzed that the MOMFO 

approach is one of the techniques for searching the 

optimal solutions of the multi-objective OPF issue 

integrating wind-thermal power plants.  

 

Fig. 8. Pareto front of total fuel cost and emission minimization with thermal-wind power plants. 
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Fig. 9. Pareto front of total fuel cost and active power loss minimization with thermal-wind power plants. 

 

Fig. 10. Pareto front of total fuel cost, Emission and active power loss minimization with wind- thermal power plants. 
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Table 8. Multi-objectives simulation results obtained for wind-thermal power plants. 

Multi-Objectives  MFO GWO MVO IMO 

CASE-7 

Total Fuel Cost ($/hr) 702.026 700.309 697.637 697.652 

Emission (Ton/hr) 0.344 0.431 0.443 0.414 

CASE-8 

Total Fuel Cost ($/hr) 727.794 726.439 720.058 733.418 

Active Power Loss (MW) 3.113 3.182 3.689 2.906 

CASE-9 

Total Fuel Cost ($/hr) 732.523 738.015 719.702 737.940 

Emission (Ton/hr) 0.122 0.109 0.223 0.113 

Active Power Loss (MW) 3.196 2.904 4.250 2.927 

CASE-10 

Total Fuel Cost ($/hr) 694.780 693.595 683.557 683.974 

Emission (Ton/hr) 0.585 0.523 2.044 1.150 

Voltage Deviation (p.u) 0.527 0.460 0.451 0.425 

CASE-11 

Total Fuel Cost ($/hr) 721.415 736.263 689.020 714.091 

Emission (Ton/hr) 0.172 0.353 0.865 0.242 

Voltage Deviation (p.u) 0.690 0.521 0.707 0.528 

Active Power Loss (MW) 3.768 4.958 5.606 3.955 

 
6. CONCLUSION 

This paper proposes the techno-economic analysis 

of single and Multi-Objective Optimal Power Flow 

(MOOPF) issue containing wind-thermal power plants 

with the moth flame optimizer. The stochastic wind 

power plants are modelled as Weibull probability 

density function. The performances are compared with 

recently available optimization technique. From the 

obtained result, it is concluded that the suggested 

MOMFO accomplishes improved quality and 

additionally feasible solutions for each situation of 

optimal power flow and has better convergence 

compare to other algorithms. So finally, it is shown that 

with a non-dominated sorting method, MOMFO can be 

proficiently utilized for solving small and large optimal 

power flow issues by incorporating wind-thermal 

power plants. 

 

LIST OF NOMENCLATURE 

 

OPF   Optimal Power Flow 

TG   Thermal Generator 

WG   Wind Generator 

ISO   Independent System Operator 

PDF   Probability Density Function 

BCS    Best Compromise Solution 

MOMFO  Multi-Objective Moth Flame 

Optimization 

MOOPF Multi-Objective Optimal Power Flow 

MFO  Moth Flame Optimization 

GWO  Grew Wolf Optimization 

MVO  Multi Verse Optimization 

IMO  Ion Motion Optimization 

𝑃𝑇𝐺𝑖  Power output of 𝑖𝑡ℎ thermal unit. 

𝑃𝑤𝑠,𝑗 Scheduled power from 𝑗𝑡ℎ  wind 

power unit 

𝑃𝑤𝑎𝑣,𝑗 Actual available power from 𝑗𝑡ℎwind 

power unit 

𝑔𝑗 Direct cost coefficient for 𝑗𝑡ℎ wind 

power unit 

𝐾𝑅𝑤,𝑗 Reserve cost coefficient for 

overestimation of wind power 

from 𝑗𝑡ℎunit 

𝐾𝑃𝑤,𝑗  Penalty cost coefficient for 

underestimation of wind power 

from 𝑗𝑡ℎunit 

𝐶𝑡𝑎𝑥  Carbon tax in $/Tonne 

𝑓𝑣(𝑣)  Probability of wind speed 𝑣 m/s 

𝑝𝑤𝑟  Rated output power of a wind turbine 
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𝑐,𝑘 Weibull PDF scale and shape 

parameters respectively 

𝑃𝑙𝑜𝑠𝑠  Real power loss in the grid 

𝑉𝐷 Cumulative voltage deviation in a 

grid 
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