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ABSTRACT:  

Cloud computing is introduced as a high-performance computing environment that manages a variety of virtualized 

resources. One of the major aspects of cloud computing is its dynamic scheduling of great number of task requests that 

are submitted by users. Cloud data centers in addition to implementing these tasks, should meet the conflicting multiple 

requirements of different users. Minimizing makespan and deadline violation on a great number of tasks are difficult 

while costs are reduced. Therefore, in this paper, a multi-objective strategy for dynamic task scheduling through elastic 

cloud resources (MODE) is proposed, where an algorithm is proposed to construct individual non-dominated sets of 

new received tasks. These non-dominated sets are sorted in different levels through a new crowding distance of the 

individuals. In addition, an elastic resource provisioning based on the maximum available VMs’ load is proposed to 

provide resources in a dynamic manner. The total cost, makespan, and the deadline violations are reduced by 85.84%, 

58.03%, and 47.77%, respectively, and the utilization of virtual machines is increased up to 53.2% through this strategy 

when compared to its counterparts. 

 

KEYWORDS: Cloud Computing, Dynamic Task Scheduling, Multi-Objective Scheduling, Elasticity, Quality of 

Service. 

  

1. INTRODUCTION 

Cloud computing is a computing model based on 

dynamic provisioning of hardware, software, or services 

applicable in a pay-as-you-go method [1]. The concept 

of Virtual Machines (VMs) which act as the 

computational units is applied in this model. Depending 

on the computational needs of the tasks, the new VMs 

can be leased and released in a dynamic manner [2]. 

Many end-users can request services from cloud at any 

time. In these situations, the number of tasks, and the 

available resources, can rise on demand. Calculating and 

selecting all possible task-resource mappings in cloud 

computing is almost impossible because the complexity 

here would grow in an exponential manner. To reduce 

the complexity of the search space, a heuristic algorithm 

assures an acceptable runtime of the scheduling 

algorithm. Many heuristic optimization algorithms have 

been and are being applied in many works to optimize 

task scheduling, mostly in minimizing the task execution 

time in the cloud environment [3]. However, most of the 

existing scheduling strategies have more than one 

conflict objectives while executing the applications in 

the Cloud data center. These problems are referred to as 

Multi-Objective Optimization Problems (MOPs). There 

might be a state of conflict within these objectives, 

where no single solution exists. In this context, a good 

trade-off solution can be devised which would represent 

the best possible compromises among scheduling 

objectives [4-6]. Multi-objective scheduling problems 

can be divided into two groups of: priority-based 

methods with a weight assigned to each objective 

(classical methods) and methods including a set of non-

dominated solutions [7]. Classical methods have the 

following three basic drawbacks compared to non-

dominated solution: first, these methods are not able to 

search for all the permissible space related to the 

problem, second, are not considered as an intelligent 

method and third, the objective functions of these 

methods need to be normalized for summation. To solve 

these drawbacks, development of a dynamic task 

scheduling strategy where a set of non-dominated 

solutions is of concern for multiple and conflicting 

objectives, is a critical part of task scheduling 

optimization problems. Among the available studies, 

mailto:st_yazdanbakhsh@yahoo.com
mailto:Reihaneh_khm@yahoo.com
mailto:ramezanpour@mau.ac.ir
https://www.sciencedirect.com/topics/computer-science/virtualized-resource
https://www.sciencedirect.com/topics/computer-science/virtualized-resource


Majlesi Journal of Electrical Engineering                                                                Vol. 14, No. 2, June 2020 

 

128 

 

authors of [8-10] mainly emphasize on the optimization 

of the multi objectives in their scheduling models, which 

are not in conflict with each other. In addition, there are 

several studies [11-19] that mainly emphasize the 

minimization of job makespan and task execution cost in 

their multi-objective optimization models by applying 

evolutionary algorithms. However, these studies fail to 

consider the need to improve VM utilization by the 

cloud infrastructure. Meanwhile, there is a considerable 

amount of research work that fails to consider the 

dynamic resource provisioning by the cloud 

infrastructure. Also, to the best of our knowledge, 

applying a Pareto-based method able to make trade-offs 

within sets, instead of considering every performance 

metrics’ full range has not been investigated in the 

proposed task scheduling optimization models. To 

improve previous research work and address these 

shortcomings in the existing literature, in this paper, a 

multi-objective approach for dynamic task scheduling 

through elastic resources in cloud environments is 

proposed. The efficiency of the proposed model is 

evaluated through different scenarios. Simulation results 

show that the proposed model significantly meets the 

multi-objective QoS requirements for optimization, in 

both cloud users’ and providers’ context by minimizing 

makespan and deadline violations for user, and 

minimizing total cost and improving VM utilization for 

providers. In fact, the proposed model is able to 

determine trade-off solutions that offer the best possible 

compromises among the optimization objectives. It has 

also been found that MODE is a faster and more accurate 

evolutionary algorithm than its counterparts for solving 

such problems. The main contribution of this study is 

briefed as follows: 

 Designing a multi-objective task-scheduling 

framework where point of views of both users 

and provider in minimizing are of concern 

makespan, deadline violation, total cost and 

maximizing the resource utilization that are in 

conflict with one another. 

 Applying a Pareto-based method able to make 

trade-offs within sets, instead of considering 

every performance metrics’ full range.  

 Proposing a task scheduling algorithm named 

MODE to construct the individual non-

dominated sets of the newly received tasks 

where the non-dominated sorting approach is 

applied to generate Pareto fronts. 

 Applying a new crowding distance operator to 

generate a uniformity in the distribution of the 

individuals in the Pareto optimal frontier.  

 Applying the dynamic lease and release of 

resources, which can reduce the additional 

costs to maintain unusable VMs. 

 Applying a series of experiments to evaluate 

this proposed approach’s performance subject 

in different experiment conditions. 

The structure of this paper is as follows: Section 2 

provides an overview of related works. Section 3 

describes the proposed MODE strategy acting in a multi-

objective and dynamic manner. Section 4 provides an 

experimental design and discusses the experimental 

results. Section 5 concludes the paper and presents 

future works. 

 

2. LITERATURE REVIEW 

The contribution of task-scheduling problem is 

important in optimizing cloud utilization [11-13]. The 

scheduling algorithms can be classified based on the 

improvement parameters in the cloud computing 

environments like load balancing, cost, priority, 

makespan, and resource utilization. 

To improve the load balancing in the cloud 

computing, Babu and Samuel [14] proposed an 

improved honey colony algorithm where the bee’s 

behavior is applied to balance load through VMs. Patel 

et al. [15] modified the Min-Min load balancing 

algorithm, which is based on the effect of the Min-Min 

load balancing algorithm on the grid computing. The 

tasks with a minimum makespan are selected and 

allocated to the appropriate resources for producing the 

makespan time and the use of resources effectively 

through this algorithm. A Group Scheduling Algorithm 

(GTS) is proposed by Gamal et al. [16] to schedule tasks 

in a cloud computing with respect to quality of service 

requirements. This algorithm is evaluated through 

different performance metrics like execution time, load 

balancing, and average latency. The drawback of this 

algorithm is that it does not consider the elasticity of the 

cloud. 

To improve the cost in the cloud computing, Lakra 

and Yadav [17] proposed a multi-objective task 

scheduling algorithm for mapping tasks to VMs which 

improves the throughput of the data center and reduces 

costs without Service Level Agreement (SLA) violation 

for the software. It is necessary for this algorithm to 

lease and release the new VM which are assessed here. 

A scaling approach equipped with a super professional 

executor named Suprex with a cost-aware approach is 

proposed by Aslanpour et al. [18]. Their evaluation 

results indicate that Suprex can reduce resource rental 

costs for the application providers, together with a 

decrease in both the response time and SLA violation. 

Gabi et al. [19] proposed a QoS task scheduling 

algorithm with Taguchi optimization approach for cloud 

computing. Their proposed algorithm indicates better 

cost and time values than that of standard CSO, 

MOPSO, EPCSO, and OTB-CSO algorithms. The 

drawbacks of their approach is in applying static 

resource provisioning, moreover, non-consideration of 
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the important performance metrics like the utilization of 

VMs, makespan, and deadline violations. To improve 

the priority-based task scheduling, Baofang et al. [20] 

designed a Parallel Adaptive Genetic Algorithm 

(PAGA) based on the priority mechanism in the cloud 

when dealing with the problem of assigning priority to 

the tasks and sub-tasks, while their algorithm is of high 

complexity. Based on Analytic Hierarchy Process 

(AHP) theory, Ghanbari and Othman [21] proposed a 

job scheduling algorithm applying a multi-criteria 

decision model. To improve the makespan in the cloud 

computing, Bhoi and Ramanuj [22] chose the expected 

execution instead of the completion time as the base with 

the objective to schedule several jobs on several 

machines in a dynamic manner to decrease makespan 

and increase efficiency. Goyal and Agrawal [23] 

proposed a scheduling model based on the principles of 

improved genetic algorithm. Panda et al. [24] proposed 

three allocation-aware task-scheduling algorithms for 

multi-cloud environments. The traditional Min-Min and 

Max-Min algorithms are the source of this algorithms 

developed for multi-cloud environment. In these 

algorithms matching, allocating, and scheduling are the 

common stages to adapt multi-cloud environment.  

To improve the resource utilization in the cloud 

computing, Islam et al. [25] revealed the elasticity 

metrics based on penalties for over and under-utilization 

of resources. Shawky and Ali [26] presented a method 

to measure the cloud elasticity in reference to elasticity 

in physics. Belteran et al.  [27] introduced a new metric 

of elasticity capable of considering the scalability, 

accuracy, time and cost independent main components 

where an approach is provided to assess behavior of the 

service elasticity. An autonomic resource provisioning 

method is proposed by Ghobaei-Arani et al. [28] 

according to the MAPE-k (monitoring-analysis-

planning-execution control loop with a shared 

Knowledge) control loop. This approach should adapt to 

uncertainties and workload spikes in a dynamic manner, 

and should manage undesirable states of over and under-

provisioning. The detailed of the task scheduling 

methods are tabulated in Table 1.  
 

Table 1. Summary of cloud based task scheduling algorithms. 

Literature Algorithm Types of 

Classification 

Performance metrics Elasticity 

 [14] 
Enhanced Bee Colony Algorithm for Efficient 

Load Balancing 
Load balancing 

Response time, Load 

balancing 
- 

 [15] 
Enhanced Load Balanced Min-Min task 

scheduling algorithm (ELBMM) 
Load balancing Makespan, VM Utilization - 

 [16] Grouped Tasks Scheduling Algorithm (GTS) Load balancing 

Average latency to expected 

urgent priority of tasks with 

urgent users  

- 

 [17] 
Multi-objective task scheduling algorithm 

with the goal of reducing costs 
Cost 

Throughput, execution time, 

bandwidth 
- 

 [18] 
An executor for the cost-aware auto-scaling 

mechanism (Suprex) 
Cost 

SLA violation, resource rental 

costs, response time 
- 

 [19] 
A QoS task scheduling algorithm with 

Taguchi optimization approach 
Hybrid average execution time, cost - 

 [20] 
An improved Adaptive Genetic Algorithm 

(PAGA) 
Priority Iteration times, Bandwidth - 

 [21] 
A new Priority based Job Scheduling 

algorithm (PJSC) 
Priority Consistency, makespan, - 

 [22] 
Enhanced Max-Min task scheduling 

Algorithm 
makespan Makespan, - 

 [23] 
Genetic algorithm coupled with suffrage 

heuristic 
makespan Response time - 

 [24] 
Allocation-aware Min-Min Max-Min batch 

algorithm (AMinMaxB) 
makespan 

Makespan, Average 

utilization, Throughput 
- 

 [25] 
Improved ways to quantify the elasticity 

concept, using data available to the consumer 
Elasticity Elasticity   

 [26] Defining a Measure of Elasticity Elasticity Elasticity   

 [27] 
A new approach to analyse elasticity enablers 

of cloud  services  
Elasticity 

Scalability, Accuracy, Time, 

Cost 
  

 [28] 
An autonomic approach for resource 

provisioning of cloud services 

Resource 

utilization 

Total cost, resource 

utilization, SLA violation 
- 

The 

proposed 

approach 

A Multi-Objective Strategy for Dynamic Task 

Scheduling using Elastic Cloud Resources 
Hybrid 

Total cost , makespan, 

deadline violations, mean 

utilization of VMs 
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Some studies apply task scheduling based on single 

criteria [13-14]. In the cloud computing environment, 

single-objective scheduling algorithms encounter some 

problems, like, high-priority tasks with high chance to 

be run, and tasks with low priority which have to wait 

for a long time. Sometimes tasks with low priority 

receive an opportunity to be run while high-priority tasks 

always are run before the low priority task, which lead 

to an increase in execution time and a decrease in system 

throughput. It only satisfies one user's requirements at 

execution time, and the user does not achieve other 

objectives [15], [29]. Some of the previous algorithms 

[17, 29] may reduce the cost but violate the deadline, 

which will not allow the overall costs to be reduced. 

Another notable challenge is that most prior research 

works [15, 30-32] apply a fixed number of VMs at 

execution time, which are not flexible. 
 

Table 2. Definitions of variables. 

Definition Symbol 

The number of arrival tasks n 

The set of arrival tasks={t1, 

t2, …, tn} 
T 

Virtual machine j, j={1, 2, 

…, k} 
VMj 

The task load Task_Load 

The total load of users’ 

requests 
Total_Task_Load 

The maximum VM Mips 

(VM Mips × its Cores) 
Maximum_VM_Mips 

The system total rate System_Total_Rate 

The normal rate of VM VM_Normal_Rate 

The leased VM counts Rental_Vm_Counts 

Total number of VMs 

including the number of 

initial VMs plus leased 

VMs. 

m 

The VM Cost Cost_of_VM 

The execution time of the 

tasks allocated to the  VMk 
Task_Execution_Timek 

The number of service QoS 

attributes 
r 

The k-th QoS attribute value 

of service s 
qk(s) 

The priority of the user Pk 

Load of VM Li,j 

Maximum value of k-th 

QoS attribute of all 

candidate services 

belonging to service class S 

respectively. 

Qj,k
max 

Minimum value of k-th QoS 

attribute of all candidate 

services belonging to 

service class S respectively. 

 Qj,k
min 

The size of k-th task Task_Sizek 

3. PROPOSED APPROACH (MODE) 

Multi-objective optimization problem devises a set 

of points known as the Pareto optimal set. The dynamic 

task scheduling is a multi-objective optimization 

problem with the most important objectives to minimize 

1) the overall execution time or makespan, 2) deadline 

violation of a set of tasks, and 3) the total cost in both 

the customer and provider context. Due to independent 

and conflicting nature of these objectives, reducing one 

objective would lead to compromising the other. The 

details of the basic notation and their definitions used in 

the proposed approach are tabulated in Table 2.  

In task scheduling approach, there exist n tasks { t1 , 

t2,…, tn } with variable task receiving rates assignable 

to k VMs { VM1, VM2,…, VMk } for execution. In this 

paper, a multi-objective strategy named MODE is 

proposed for dynamic task scheduling through elastic 

cloud resources according to the improved non-

dominated sorting algorithm. The framework of this 

proposed approach for multi-objective task scheduling 

problem is shown in Fig. 1.  

 

 
Fig. 1. The perspective of MODE scheduling 

framework in cloud environments . 

 

Cloud runtime receives tasks from users at first. The 

submitted tasks from the users are inserted in the 

Request queue and the MODE task scheduler is called. 

The objective of the MODE scheduler is to generate the 

individual non-dominated sets of the newly received 

tasks, which are sorted by the crowding distance in 

different levels. Individuals at higher non-dominated 

sets level and greater crowding distance have higher 

priority to the next level. If the points with the same rank 

for the problem of task scheduling are selected 

randomly, the distribution of the solution in the optimal 

solution set would not be met. To make this distribution 

consistent in the Pareto optimal front, a new crowding 

distance operator is applied in this paper. Therefore, the 

MODE scheduler performs the final assignment of tasks 

to resources. In step 2, during runtime, Elastic resource 
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provisioning controller checks resources status in λ time 

intervals and if there exists any overload in the VM, it 

will create a new VM for scheduling in next step. 

      The pseudo-code of the proposed MODE 

(algorithm1) is described as follows: 

Step 1: The initial number of VMs is determined 

based on the received task load and status of load on 

VMs is determined according to Eq. (1), (Line 1) 

Step 2: For each VM, the QoS utility function is 

calculated through the Eq. (3), and then the VMs are 

sorted in a descending order based on these values (Line 

2). 

Step 3: The set of received tasks are sorted by the 

non-dominated sorting method in a descending order, as 

shown in Eqs. (4 and 5) based on the size and cost of the 

task execution performance metrics.  

      In addition, the cost of executing the task is obtained 

through Eq. (6) in a sense that the cost of each VM 

obtained from Eq. (7) is multiplied by task execution 

time obtained from Eq. (8), (Line 3) 

Step 4: After sorting tasks and VMs, some tasks will 

be placed on the execution list according to their 

priorities. Then, dispatcher component allocates the first 

task from the execution list to the first VM at the 

beginning of the sorted VM list, while the normal rate of 

each VM is calculated through Eq. (9) and is compared 

with the threshold rate until the normal rate becomes 

greater than the threshold. If its available workload on 

VM plus the next task load exceeds the threshold, this 

task will be allocated to the next VM. This algorithm re-

calculates VM load to find the appropriate VM. This 

process is repeated until all tasks from the list are 

assigned to the proper VMs (Lines 4-12). 

Step 5: When the second series of tasks are received, 

the tasks of the list are resorted with respect to the new 

tasks. Then, according to Eq. (9), the total rate of each 

VM is calculated, and compared with the threshold rate. 

If the total rate system is lower than that of the threshold 

rate, the new set of the received task are executable on 

VMs that were devised at the beginning. Further, the 

maximum workload of existing VMs applied in Eq. (10) 

is calculated through Eq. (11), otherwise, the system is 

overloaded, and the new VM number must be leased by 

applying the calculated value of Eq. (12). At this point, 

the new VMs are sorted and tasks are allocated to VMs 

(Lines 13-18) 

Step 6: In case of a deadline violation, the provider 

adds a specified value based on Eq. (13), for each delay 

in response time to the service being served in a time unit 

(Lines 19-21) 

Step 7: In every step, if the load on the leased VMs 

reaches to zero, they are considered to be excessive and 

eliminated (Lines 22-24) 

 

 
Algorithm 1: Proposed MODE algorithm. 

Input: A set of different types of tasks with variable entry rates, deadline and cost of tasks parameters. 

Output: A set of scheduling and allocation results for tasks. 

1. Determine the number of VMs according to the arrival tasks load that are calculated by Eq.1. 

2. Calculate of the QoS_Utility(s) function for VMs by Eq.3, and sort VMs descending order. 

3. Sort tasks by non-dominated sorting based on task size and task execution cost, that are calculated by Eqs.4 and 6 

4. for i ← 1 to Size of VM's list do 

5.            for j ← 1 to Size of task's list do 

6.                  Calculate VM_Normal_Rate by Eq.9. 

7.                  if VMi_Normal_Rate < Threshold_rate then                            

8.                            Resource allocation taskj to VMi. 

9.                  end if 

10.             end for 

11. end for 

12. a new set of task arrived  

13. Calculate System_Total_Rate by Eq.10. 

14.         if System_Total_Rate < Threshold_rate then 

15.                New arrived tasks are executable on available VMs. 

16.                else system is overloaded. 

17.                     rent a VM according to the calculated number by Eq.12. 

18.        end if 
19. if deadline missed then 

20.        Penalty cost= deadline missed seconds * penalty cost per second (calculated by Eq.13). 

21. end if 

22. if new VM load == 0 then 

23.        Delete VM. 

24. end if 

25. Return a set of task scheduling solutions, VM counts 
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3.1. Elastic Resource Provisioning Controller  

3.1.1. Determining the number of VMs 

To compromise cost reduction and a decrease of 

deadline violations, it is essential to prevent over-loaded 

and under-loaded VMs. In this approach, the number of 

VMs is determined according to the received task load. 

The initial number of required VMs is calculated by 

dividing the sum of received task load to current status 

of load on VMs (the maximum MIPS value of VMs) 

through Eq. (1).  

 

(1) 𝑉𝑚_𝐶𝑜𝑢𝑛𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙_𝑇𝑎𝑠𝑘_𝐿𝑜𝑎𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠
   

Where, Eq. (2) is applied in calculating the total received 

task load as follows: 

(2)  𝑇𝑜𝑡𝑎𝑙_𝑇𝑎𝑠𝑘_𝐿𝑜𝑎𝑑 = ∑ 𝑇𝑎𝑠𝑘_𝐿𝑜𝑎𝑑      

𝑛

𝑘=1

 

Where, n is the task count.  

 
3.1.2. Sorting VMs 

After determining the required VMs count, sorting 

VMs become must take place. QoS is applied in 

describing user’s requirements. Different users require 

different cloud computing services. In this paper, the 

service execution time, cost, and bandwidth are applied 

to describe QoS on resource services. Here, the 

QoS_Utility(s) function (Li , 2014) are obtained through 

Eq. (3), to map QoS attributes vector Qs={ q1(s), q2(s), 

..., qr(s)} of each candidate service to one real value. 

(3) 𝑄𝑜𝑆_𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑠) = ∑
𝑄𝑗,𝑘

𝑚𝑎𝑥  −  𝑞𝑘(𝑠)

𝑄𝑗,𝑘
𝑚𝑎𝑥 −  𝑄𝑗,𝑘

𝑚𝑖𝑛
 

𝑟

𝑘=1

×  𝑃𝑘      
Where, r is the count of QoS attributes of VM, qk(s) 

is the kth qualitative attribute value on the service s. Pk 

is the priority of the user. 𝑄𝑗,𝑘
𝑚𝑎𝑥 and 𝑄𝑗,𝑘

𝑚𝑖𝑛 are the 

maximum and minimum values of the kth attribute of the 

QoS of all the candidate VMs. After calculating the QoS 

utility function for each VM, according to the values 

obtained for each VM, they are sorted in a descending 

order. According to this proposed approach, tasks with 

higher cost and size are sent to VMs with high 

processing power. 

 

3.2. MODE Task Scheduler  

3.2.1. Sorting tasks by non-dominated sorting 

method 

When a multi-objective algorithm is applied to solve 

a problem, at least two objective functions are of 

concern, where it is not easy to give a definitive opinion 

about some of the responses. In most cases, there exist 

points where none has priority on other, and they cannot 

be compared with the domination concept. Therefore, in 

order to obtain the best responses, they should be sorted 

according to a certain standard. In this paper, for 

handling multi-objective scheduling, a Pareto-based 

method is applied for the non-dominated solutions to be 

selected and to direct the study towards the true Pareto-

optimal front. In this process, a rank is allocated to each 

response, based on the number of their domination 

compared to other points. The points with the best rank, 

1, and the lowest domination are chosen as the response 

set or points of the Pareto fronts. Allocating goods 

among individuals where none can improve his/her 

situation without worsening another’s is defined as 

Pareto efficiency; the individuals of such set generate a 

Pareto frontier curve, the Pareto front, which is 

particularly applicable where designers would make 

trade-offs within sets, instead of considering full range 

of every parameter’s. After constructing the individual 

non-dominated sets of the new received tasks, the non-

dominated sets are sorted through the crowding distance 

of the individuals in different levels. 

 

3.2.2. Construct a Non-dominant Set 

In sorting tasks through the non-dominated sorting 

method, the objective here is to select a set of tasks with 

the minimum task size, which affects the overall 

execution time or makespan and the execution cost from 

the customer perspective. Therefore, in this proposed 

approach the two objective functions are obtained 

through Eqs. (4 and 5).  

 

(4) 
𝑀𝑖𝑛  𝑓(𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒𝑘

)

= 𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒𝑘
|∀ 𝑗 ∃ 𝑖,       𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑖)

≤ 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑗) 

(5) 𝑀𝑖𝑛  𝑔(𝑇𝑎𝑠𝑘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑘
)

= 𝑇𝑎𝑠𝑘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑘
 | ∀ 𝑗 ∃ 𝑖,

𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑖)

≤ 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑗) 
 

Where, 𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒  is the task size, 

𝑇𝑎𝑠𝑘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 is the cost of executing the task, T is 

a set of tasks = {t1, t2, …, tn} and n is the count of tasks. 

To implement a multi-objective task-scheduling 

algorithm through these two functions, the non-

dominated sorting is applied.  

     The cost of executing tasks, which is one of the 

intended objectives in non-dominated sorting, is 

calculated through Eq. (6): 

(6) 

𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡

= ∑ 𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀𝑘

𝑘∈𝑆𝑃𝑝

×  𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑘 
 

Where, 𝑆𝑃𝑝 is the set of VMs of the pth provider ( 
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SPp={ k | VMk ∈ P-th cloud provider, P∈ {1,2,…,cp} } 

), and cp is the count of cloud providers. The 

𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀𝑘 is the cost of a CPU unit for the kth 

provider, which can be calculated by Eq. (7), and 

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑘 is the execution time of the 

tasks allocated to the  𝑉𝑀𝑘, calculated through Eq. (8): 

(7) 𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀 = 𝐶𝑜𝑠𝑡_𝑃𝑒𝑟_𝑆𝑒𝑐𝑜𝑛𝑑() 
/ 𝑀𝑖𝑝𝑠_𝑂𝑓_𝑂𝑛𝑒_𝑃𝑒() 

(8) 

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑘

= ∑
𝐿𝑒𝑛𝑔𝑡ℎ ×  𝑃𝐸  +  𝑂𝑢𝑡𝑃𝑢𝑡𝑆𝑖𝑧𝑒

𝑀𝐼𝑃𝑆 ×  𝑃𝐸
 

𝑛

𝑖=1

 

 

To shade more light on the concept of domination, 

Fig. 2 is drawn. A number of points are specified in the 

space of all possible solutions of the problem where each 

has two objective functions 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑘) 

and 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘). 

The status of point 2 Vs. other points in the page is 

checked, indicating that point 2 dominates all members 

in range A. The value of the objective functions 

𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑘) and 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘) for this 

point in relation to the value of the objective functions 

𝑓(𝑇𝑎𝑠𝑘 𝑆𝑖𝑧𝑒𝑘) and 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘) for all 

points on page A is low and it is dominated by all points 

in space C. In this process, sometimes the candid 

opinions cannot be provided about the superiority of 

points. Consequently, the points in spaces B and D 

cannot be directly judged compared to point 2 because 

the points on page B, on the function 

𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘), are better than 2 and worse 

than 2 for the function 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑘). Through this 

direct comparison, one cannot claim which point 

dominates the other, and in such cases, presence of other 

members of the population becomes contributive in 

judgment.  

 
Fig. 2. Domination concept for sorting tasks. 

 

In the same context, as observed because there is no 

point in space C, a comparison is made between points 

2 and 4 in space B. In this situation, it should be checked 

whether there exists another point which is better than 

these points in terms of both the objective functions: If 

point 1 is better than point 4, point 1 dominates point 4, 

while none of these points are better than point 2, 

indicating that point 4 is dominated by other members of 

the population once, while point 2 in this condition is 

never dominated. Consequently, point 2 has a better 

chance of being chosen between either of points 1 and 4. 

This fact holds true for points 2 and 5. As to the points 1 

and 3, it is not possible to comment on 2, because these 

points are not dominated by any point, and each has a 

superiority and non-superiority over the other. Since, 

points 1, 2 and 3, which have never been dominated and 

ranked 1, constitute the Pareto front points. Here, the 

points with the same ranking are selected by the 

crowding distance of the individuals. 

   

3.2.3. Improving the crowding distance 

calculation 

Different dimensions of optimization objectives like 

the task execution cost and execution time (task size) 

generate the individuals of the optimal Pareto front that 

show a big gap on these sub-objectives while the 

crowding distance is calculated. The traditional multi-

objective optimization algorithms obtain the crowding 

distance of an individual through calculating the sum of 

distance difference between the individual and two 

individuals next to it in each sub-objective and it does 

not consider the influence brought by the different sub-

objective. According to the traditional crowding 

distance operator, a normalizing technique is applied on 

the sub-objectives fitness where the individual is 

located, weakening the influence of the crowding 

distance calculation because of the difference of the 

dimension, in a sense that make the distribution of 

individuals in optimal Pareto frontier better. To obtain a 

uniform measurement between the task execution cost 

and time, the Simple Additive Weighting (SAW) 

technique [33] is applied to normalize these two 

scheduling objectives. The fitness value of the individual 

will increase by reducing the task execution cost and 

time. Thus, when calculating the crowding distance, the 

sub-objective fitness is normalized where the individual 

is located, it can further weaken the situation where the 

individual distribution is not ideal in the optimal Pareto 

front due to the difference between the sub-objectives. 

Therefore, we improve the crowding distance of the 

individual as follows: 

 

Crowding distance = 

|𝑓−𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒
𝑖+1 − 𝑓−𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒

𝑖−1 |+|𝑓−𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡
𝑖+1 −

𝑓−𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡
𝑖−1 | 

(9) 

 

Where, 𝑓𝑖−1and 𝑓𝑖+1are previous and next 

individuals to the current individual in each sub-

objective, respectively. 
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In the proposed MODE, the non-dominated sorting 

and crowding distance calculation operations in each 

execution, and the time complexity for these two 

operations is O(M(2N)2+M*2N*log(2N)  where M and 

N are the number of objectives and the population size, 

respectively.  

 

3.2.4. Mapping of tasks to VMs 

After sorting the tasks and VMs, at first, a number of 

tasks are placed on the execution list according to their 

priority, next, the first task from the execution list is 

allocated to the first VM at the beginning of the sorted 

VM list. The normal rate of each VM is calculated 

according to Eq. (10) and is compared to the threshold 

rate. If the normal rate is lower than the threshold rate, 

the next task becomes executable on VMs generated 

first. In a similar sense, the next task is allocated to VMs 

from the list until tasks are entirely allocated to the 

existing VMs, otherwise, if the normal rate is greater 

than the threshold rate, the system becomes overloaded, 

and a new VM must be leased. To avoid/minimize the 

deadline violations caused service response delay, this 

configuration is chosen. 

(10) 
𝑉𝑀_𝑁𝑜𝑟𝑚𝑎𝑙_𝑅𝑎𝑡𝑒

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑜𝑓_𝑎_𝑉𝑀

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠
 

 

3.2.5. Lease and release of resources 

National Institute of Standards and Technology 

(NIST) defines elasticity in cloud computing as: 

“capabilities can be elastically provisioned and released, 

in some cases automatically, to scale rapidly outward 

and inward commensurate with demand” [34]. To the 

consumer, the capabilities available for provisioning 

often appear to be unlimited and can be appropriated in 

any quantity at any time. In this paper, a resource-

provisioning approach is proposed to reduce the total 

cost and deadline violation. In addition, deadline 

violations are due to the elapse in the expected deadline, 

and where a monetary penalty is imposed, consequently, 

cost minimization is expressed as follows: 

 

min(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡) =
VM cost + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡  

(11) 

 

Where the VM cost is the total cost for all VMs 

expressed through Eq. (12): 
 

𝑉𝑀 𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀𝑖

𝐼

𝑖=1

 
(12) 

Where, I is the count of initiated VMs, and i is the 

VM id. Many of the available algorithms may reduce the 

cost, where violating the deadline, in a sense that no cost 

reduction may be observed. Therefore, to calculate the 

cost in case of deadline violation by imposing penalty on 

the cost of leasing VM, one can confidently claim that 

the lower cost is a sign of success. A deadline violation 

occurs when the execution time of a task exceeds its 

deadline value. Penalty cost consists of total penalty 

costs incurred in all task requests, expressed through Eq. 

(13): 

 
𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡 

= ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_𝐶𝑜𝑠𝑡𝑖

𝐶

𝑖=1

 

(13) 

Where, the penalty cost for every task requests is 

calculated though Eq. (14).  
 

(14) 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_𝐶𝑜𝑠𝑡𝑖 = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑀𝑖𝑠𝑠𝑒𝑑𝑆𝑒𝑐𝑜𝑛𝑑𝑠

× 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_𝑟𝑎𝑡𝑒 
 

Where, penalty-rate is the monetary cost per unit of 

time delay, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑀𝑖𝑠𝑠𝑒𝑑𝑆𝑒𝑐𝑜𝑛𝑑𝑠
is delay time. The 

product of which yields the 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_cost per $.  

In this paper, elasticity feature is applied to avoid 

unnecessary additional costs in maintaining not needed 

VMs. After allocating a set of tasks and increasing 

workload at execution time, additional VMs can be 

required at any time. Therefore, first, some VMs are 

leased and next, released to reduce network load and 

prevent resource wastes. For this purpose, first, system 

total rate is calculated to obtain the overload information 

through Eq. (16). The maximum workload of the existed 

VMs applied in Eq. (15) is calculated through Eq. (16). 

If the system is overloaded, new VMs must be leased 

indicated through Eq. (18). Following this, the new VMs 

are sorted and, the tasks are allocated to VMs, which in 

turn, reduce the count of VMs to decrease total cost. The 

deadline violations of existing task requests are avoided 

by not allocating new task request to the initiated VM. 

(15) 
𝑆𝑦𝑠𝑡𝑒𝑚_𝑇𝑜𝑡𝑎𝑙_𝑅𝑎𝑡𝑒

=
𝑇𝑜𝑡𝑎𝑙_𝐿𝑜𝑎𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑜𝑓_𝑒𝑥𝑖𝑠𝑡𝑒𝑑_𝑉𝑀𝑠
 

(16) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑜𝑓_𝑒𝑥𝑖𝑠𝑡𝑒𝑑_𝑉𝑀𝑠

= ∑ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠

𝑛

𝑘=1

 

(17)  

𝑅𝑒𝑛𝑡𝑎𝑙𝑉𝑚𝐶𝑜𝑢𝑛𝑡𝑠
= 

𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑜𝑡𝑎𝑙𝑅𝑎𝑡𝑒
− 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑Of𝑒𝑥𝑖𝑠𝑡𝑒𝑑𝑉𝑀𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠
 

 

If the load on a VM is zero, it will be removed and 

released. If the next series of tasks are to be met and are 

needed again, they will be reused. The time complexity 

of lease and release algorithm of VMs is O (ITC+I), 

where, I is the total VMs count, T is VM types and C is 

https://www.nist.gov/
https://www.nist.gov/


Majlesi Journal of Electrical Engineering                                                                Vol. 14, No. 2, June 2020 

 

135 

 

the total count of requests. 

 

4. EVALUATIONS 

4.1. Experimental Setup 

In this paper, the simulation is run by applying the 

CloudSim 3.0.3 toolkit [17, 35-36] to accomplish the 

proposed MODE. The objective of the proposed 

approach is to meet the multi-objective QoS 

requirements, in both cloud users’ and providers’ 

context by minimizing makespan and deadline 

violations for user, and minimizing total cost and 

improving VM utilization for providers. This total cost 

includes both the execution and penalty cost of both the 

customer and provider. From the provider view, because 

there exist no public data on the SaaS provider’s 

spending on VMs, the price schema of Amazon EC2 

[36] is applied here to estimate the per hour cost of a 

hosted VM. The MIPS ratings are applied to simulate the 

effect of using different VM types. Resource price and 

capabilities applying in modeling VMs are tabulated in 

Table 3 similar to that of by Wu et al. [38]. 

From the customer view, the received request rate 

varies in evaluating their impact on implementing of this 

proposed algorithm. The received request rate is 

subjected to Poisson distribution. Due to lack of 

available workload as to specify these parameters, 

standard deviation = (1/2) × mean is applied as the 

normal distribution in modeling all parameters. The 

received request rate for 100, 200, 400, 600, 800, 1000 

users per second are applied similar to [39] and the tasks 

are allocated to each VM at the threshold rate of 0.9 

similar to [40] in the simulation.  

 

Table 3. Type of VMs. 
Cost 

per 

hour 

Size Ram Pes 
VM 

Capacity 

VM 

Type 

0.12 

$ 

160 G 

Disk 
2 GB 1 1 CPU unit 1 

0.48 

$ 

850 G 

Disk 
4 GB 2 2 CPU unit 2 

0.96 

$ 

1690 

G 

Disk 

8 GB 4 4 CPU unit 3 

 

4.2. Metrics for Evaluating the Proposed MODE 

To compare the proposed approach with its 

counterparts, the following metrics are applied:  

 Makespan: It is the completion time of the task, 

which includes the execution time and the latency 

of the cloud system response [30] 

 Total cost: It is the sum of VM allocating and 

penalties of SLA violation costs calculated through 

Eqs. (11, 12, and 13) 

 Mean utilization of the VM: It is the capacity of 

resources applied during execution time, known as 

resource utilization. This criterion is calculated 

through Eq. (18):  

(18) 
𝑉𝑀𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛

= 

∑
∫ 𝐿𝑖,𝑗

𝑓𝑖

𝑠𝑖

( 𝐹𝑖𝑛𝑖𝑠ℎ_𝑇𝑖𝑚𝑒_𝑜𝑓_𝑒𝑎𝑐ℎ_𝑉𝑀𝑖 −  𝑆𝑡𝑎𝑟𝑡_𝑇𝑖𝑚𝑒_𝑜𝑓_𝑒𝑎𝑐ℎ_𝑉𝑀𝑖  )

𝑚

𝑖=1

𝑚
 

 

Where, L(i, j) is the load on VM and m is the total 

number of VMs including the number of initial VMs 

plus leased VMs. 

 Deadline violation: If the completion time of each 

task is greater than the deadline, it leads a deadline 

violation. This performance metric has a direct 

relation with the total cost. Many specially devised 

algorithms may reduce costs while they violate the 

deadline, thus no cost reduction. For this purpose, 

the system receives the penalty for every second of 

deadline violation [41-42]. 

4.3. Evaluation Experiments 

The proposed approach is conceptually different 

from the ones like, and although it is in the same 

category with a number of them. To evaluate the MODE 

approach and to have a better view of its advantages, the 

following algorithms are described which are then 

compared in the following subsections: 

 FCFS: is an algorithm where the incoming tasks 

are scheduled based on First Come First Serve 

(FCFS) concept [17].  

 Improved Min-Min algorithm: A single objective 

popular algorithm in existing task scheduling. The 

task with minimum completion time is selected and 

allocated to the corresponding VM through this 

algorithm [43].  

 The cost-based priority algorithm: A single 

objective scheduling algorithm, with the drawback 

of: high priority tasks always get chance to be 

executed first, while the low priority task have to 

wait for a long time [44].  

 MOTS: A multi-objective task-scheduling 

algorithm applied in allocating tasks to VMs to 

increase the throughput of the datacenter and 

decrease the execution time in cloud SaaS. This 

algorithm sorts tasks with non-dominated sorting 

method, and then allocates them to VMs sorted by 

MIPS in an ascending order and applies a fixed 

count of VMs during the experiments [17]. 

 SHARP: It concentrate prioritized jobs in a 

dynamic manner according to their and VM 

attributes. It allocates the jobs with an appropriate 

count of VMs in the cloud service providers subject 

to their requirements and system load for 

processing [45]. 
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The newly proposed MODE approach is compared 

with the above mentioned approaches with respect to the 

characteristics tabulated in Table 4. In the simulation, 

values are obtained by running each algorithm for 20 

times inspired by [46].  

 

Table 4. Experiments configuration. 

 

4.3.1. Makespan metric during user tasks count 

variation 

To observe the makespan of the algorithm, the count 

of user tasks is within 100-1000, Fig. 3 and Table 5, 

where a direct relation is evident between the increase in 

makespan and the task count, due to an increase in task 

request per VM processing. When the user task count is 

high a significant difference is observed between 

different algorithm’s makespant. For example, with 

1000 user task, this MODE provides users with 57.31%, 

55.43%, 30.32% lower makespan than FCFS, Cost-

based priority and Improved Min-Min, respectively. 

MODE and SHARP outperform other algorithms, 

because they use a dynamic resource provisioning, while 

MODE outperforms SHARP, because MODE sends 

tasks with higher cost and size to the VMs with higher 

power. 

 

 
Fig. 3. Overall algorithms’ makespan during 

variation in number of user tasks. 

 

Table 5. Improvement percentages of MODE 

according to the makespan metric. 

Number of Task 
Algorithm 

1000 800 600 400 200 100 

22/5 23/29 26/33 13/24 - - SHARP 

30/32 33/86 34/09 22/83 3/21 - 
Improved 

Min-Min 

45/4 49/63 51/23 42/52 12/52 - MOTS 

55/43 54/36 56/76 49/74 24/94 - 
Cost-based 

priority 

57/31 56/17 58/03 51/88 12/56 - FCFS 

4.3.2. Mean utilization metric during user tasks 

count variation  

The mean utilization metric subject to different user 

tasks count, compared with the other five algorithms is 

bar charted in Fig. 4. The objective of SHARP is to meet 

user requirements, to stabilize the VMs count, and to 

promote resource utilization with the assistance of 

resource provisioning, with it no concern on the multi 

objective scheduling. In MOTS, the resource 

provisioning is not considered, because the objective is 

to satisfy the cloud user’s objectives. As observed in 

Fig.4 and Table 6, this MODE in all cases has better 

utilization than the other algorithms. This MODE seeks 

to increase the revenue of the service provider by 

optimally VM utilizing and concentrates on data center 

utilization. Data center utilization is determined through 

the VMs count applied in processing the given task 

requests. This reason for improving the mean utilization 

0
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of user 

tasks 

VM count Experiment 

Variable 
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Variable  for 

MODE and SHARP 

approaches &  

Constant (20) for 
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1) Overall algorithms’ 

makespan during 

variation in number of 

user tasks 

Variable 

100-1000 

Variable for MODE 

and SHARP 

approaches &  

Constant (20) for 
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2) Overall algorithms’ 

mean utilization 

during variation in 

number of user tasks 

Variable 

100-1000 

Variable for MODE 

and SHARP 

approaches &  

Constant (20) for 

other approaches 

3) Overall algorithms’ 

deadline violation 

during variation in 

number of user tasks 

Variable 

100-1000 

Variable  for 

MODE and SHARP 

approaches &  

Constant (20) for 

other approaches 

4) Overall algorithms’ 

total cost during 

variation in number of 

user tasks 

Const

ant 

1000 

Variable for MODE 

and SHARP 

approaches &  

Constant (20) for 

other approaches 

5) Impact of variation 

in  received request 

rate 

Const

ant 

1000 

Variable for MODE 

and SHARP 

approaches &  

Constant (20) for 

other approaches 

6) Impact of variation 

in penalty rate 

Variable 
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Variable for MODE 

and SHARP 

approaches 
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VMs required in 

various approaches 
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in this proposed algorithm is due to resource 

provisioning and lease and release of resources required 

according to the cloud's elasticity in a manner that the 

surplus leased VMs are released when the load reaches 

zero, and the existence of additional VMs does not lead 

to a lower overall utilization. 

 

 

Fig. 4. Overall algorithms’ mean utilization during 

variation in number of user tasks . 

 

4.3.3. The deadline violation metric during user 

tasks count variation  

The results of deadline violation metric in relation to 

variation in task count are bar charted in Fig. 5. One of 

the reasons for evaluating this metric is to assure cost 

reduction. There exists a direct relation between cost and 

deadline violation. As observed in Fig. 5, the reason of 

this considerable difference between the MODE and 

SHARP group and other algorithms is due to their 

initiating new VMs upon receiving more user task. The 

count of tasks vary in relation to time. Unlike the 

available algorithms, which do not apply system load to 

allocate the resource, the MODE and SHARP do so. 

Here, it can be deduced that MODE outperforms 

SHARP, because it sends tasks with higher cost and size 

on the VMs with higher power. The improvements for 

deadline violation metric are tabulated in Table 7. 

 

 
Fig. 5. Overall algorithms’ deadline violation during 

variation in number of user tasks.  

 

Table 7. Improvement percentages for MODE 

according to the deadline violation  metric. 

Number of Task 
Algorithm 

1000 800 600 400 200 100 

5/61 7/45 6/72 7/37 7/26 4/07 SHARP 

44/56 46/58 46/96 46/15 21/69 - 
Improved 

Min-Min 

43/25 43/12 41/05 41/66 36/39 8/13 MOTS 

45/43 45/89 47/38 46/47 23/14 - 
Cost-based 

priority 

47/33 47/77 47/51 46/31 26/87 - FCFS 

 

4.3.4. The total cost during user tasks count 

variation   

Comparisons of cost metric are bar charted in Fig. 6, 

where as observed an increase in tasks and VMs count, 

increase the cost. The advantages of MODE in cost 

metric, and the proportional improvement of cost values 

are much more steady than that of the other algorithm. 

This improvement is because in MODE, the cost metric 

at different stages is of concern. MODE and Cost-based 

priority consider the cost metric at sorting and allocating 

stages, consequently, both outperform other algorithms 

at large scale workloads. The details of these 

improvements for total cost values are tabulated in Table 

8. 
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Table 6. Improvement percentages for MODE 

according to the mean utilization  metric. 

Number of Task Algorith

m 1000 800 600 400 200 100 

4/21 5/21 5/81 7/1 7/32 8 SHARP 

10/1

9 

12/7

9 

12/3

7 

13/5

7 

14/6

5 
20 

Improved 

Min-Min 

18/9

5 

24/8

8 

23/2

6 

22/3

3 

22/2

5 
30/4 MOTS 

28/8

2 

31/9

9 

30/9

4 

35/7

8 

40/5

7 

45/8

6 

Cost-

based 

priority 

36/6

9 

40/7

5 

40/8

4 
43/4 48/5 53/2 FCFS 
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Fig. 6. Overall algorithms’ total cost during variation 

in number of user tasks. 

 

4.3.5. The effect of variation on received user task 

rate 

To observe this effect in MODE, the received task 

rate factor varies, while keeping all other factors 

constant. All experiments are run with 1000 user 

requests. As observed in Fig. 7, when the received task 

rate is high, a considerable effect is observed in the 

performance of SHARP, and MODE. Due to more 

received tasks per second, the overall trend of the 

makespan increases and service capability decreases due 

to applying fewer new VMs. As observed in Fig. 7, the 

MODE provides the smallest makespan and accepts 

more tasks count with less VMs count except when the 

received task rate is high. Even at high received task 

count, the difference between MODE and SHARP’s 

makespan is about 20%. There exists a considerable 

increase in makespan when the received task rate is high 

due to high task requests accepted per VM, which in turn 

delay request processing. Here it can be deduced that 

even considering the makespan constraints on from 

users’ part, the first choice for a SaaS provider is the 

MODE. 

 

 
Fig. 7. Impact of arrival rate variation. 

 

4.3.6. The effect of variation on the penalty rate 

The penalty rate symbolized as (β), Eq. (14) depends 

on how long the user is willing to wait (r), here defined 

as penalty rate factor. Consequently, the larger the (r), 

the smaller the (β), Fig. 8. As observed in Fig. 8, the 

effect of variation in penalty rate is considered in 

MODE, because this is the only algorithm where the 

concept of penalty is of major concern in decreasing 

total cost. In this algorithm, the total cost is increased 

slightly and the average makespan decreases slightly 

when (r) changes from low to high, because when 

MODE accepts a few task requests with similar VMs 

count, the count of requests in each VM becomes 

smaller, leading to lower makespan for each task 

request. 

 

 
Fig. 8. Impact of arrival rate variation. 

4.3.7. Comparison of VMs required in different 

approaches 

The count of VMs required for processing the tasks 

is bar charted in Fig. 9. This section shows how the 

number of VMs utilized vary with respect to task 

requests to meet the QoS requirements of the users and 

complete them successfully. As observed, the count of 
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Table 8. Improvement percentages for MODE 

according to the total cost  metric. 

Number of Task 
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VMs applied in MODE approach remains 

approximately stable in relation to task requests count. 

Here, the average count of VMs applied in MODE is 

approximately 20% less than that of SHARP. The reason 

for this variation is that the MODE approach seeks to run 

tasks by applying unutilized VMs with the assistant of 

dynamic resource provisioning when lower count of 

tasks are received. When more count of tasks are 

received, the MODE maintains stability by allocating the 

least count of VMs according to the system load. During 

overloading, the servers applied by the SHARP 

approach are scaled up leading to an increase in the 

count of VMs up to 75. By comparing these two 

algorithms, it is revealed that MODE outperforms 

SHARP, because it sends tasks with higher cost and size 

to the VMs with higher power, and the remaining idle 

computing power is consumed to run the subsequent 

tasks requests.  

 

 
Fig. 9. Comparison of VMs required in various 

approaches 

5. CONCLUSION AND FUTURE WORKS 

Dynamic scheduling of many task requests 

constitutes one of the major aspects of Cloud computing. 

The task scheduling algorithms should concentrate on 

performing tasks and meeting the multiple quality of 

service requirements, which may have conflicting 

nature. Reducing makespan and deadline violation on a 

large count of tasks is difficult while costs are reduced. 

Optimizing these conflicting objectives and distribution 

of variable user tasks is difficult due to the unspecified 

execution time conditions, like elasticity. In this paper, 

the most important scheduling algorithms and existing 

methods are assessed, according to which, a multi-

objective approach is proposed for dynamic task 

scheduling where the elasticity attribute of the cloud 

resource is applied. The received request rate for 100, 

200, 400, 600, 800, 1000 users per second are applied 

and the tasks are allocated to each VM in the simulation. 

First through the received task requests of variable rates, 

the volume of received task load determines the count of 

VMs. Next, VMs are sorted by considering user 

requirements and tasks are sorted in a multi-objective 

manner, which will be allocated and executed with the 

capacity of VMs in a dynamic manner. Finally, if there 

is a delay in responding to a tasks’ request, the provider 

will be penalized per time unit. During execution, 

according to the received task count, and applying the 

elasticity attribute of the cloud, if required, the new VMs 

will be leased and, if not required, they will be released. 

The evaluation results reveal that this MODE approach 

offers better scheduling in quality of service metrics like 

makespan, mean utilization of VM, total cost and 

deadline violation compared to SHARP, Improved Min-

Min, MOTS, Cost-based priority and FCFS algorithms. 

In the future, attempt should be made to apply more 

quality of service metrics for multi-objective tasks in 

non-dominated sorting. In the resource allocation 

process, VMs can be checked before tasks allocation, in 

a sense that the maximum possible task space in the VM 

is occupied. 
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