
Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

127

MODE: A Multi-Objective Strategy for Dynamic Task

Scheduling through Elastic Cloud Resources

MinaYazdanbakhsh1, Reihaneh Khorsand Motlagh Isfahani2*, Mohammadreza Ramezanpour 3

1- Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran.

Email: st_yazdanbakhsh@yahoo.com

2- Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran.

Email: Reihaneh_khm@yahoo.com (Corresponding author)

3- Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran.

Email: ramezanpour@mau.ac.ir

Received: July 2019 Revised: October 2019 Accepted: December 2019

ABSTRACT:

Cloud computing is introduced as a high-performance computing environment that manages a variety of virtualized

resources. One of the major aspects of cloud computing is its dynamic scheduling of great number of task requests that

are submitted by users. Cloud data centers in addition to implementing these tasks, should meet the conflicting multiple

requirements of different users. Minimizing makespan and deadline violation on a great number of tasks are difficult

while costs are reduced. Therefore, in this paper, a multi-objective strategy for dynamic task scheduling through elastic

cloud resources (MODE) is proposed, where an algorithm is proposed to construct individual non-dominated sets of

new received tasks. These non-dominated sets are sorted in different levels through a new crowding distance of the

individuals. In addition, an elastic resource provisioning based on the maximum available VMs’ load is proposed to

provide resources in a dynamic manner. The total cost, makespan, and the deadline violations are reduced by 85.84%,

58.03%, and 47.77%, respectively, and the utilization of virtual machines is increased up to 53.2% through this strategy

when compared to its counterparts.

KEYWORDS: Cloud Computing, Dynamic Task Scheduling, Multi-Objective Scheduling, Elasticity, Quality of

Service.

1. INTRODUCTION

Cloud computing is a computing model based on

dynamic provisioning of hardware, software, or services

applicable in a pay-as-you-go method [1]. The concept

of Virtual Machines (VMs) which act as the

computational units is applied in this model. Depending

on the computational needs of the tasks, the new VMs

can be leased and released in a dynamic manner [2].

Many end-users can request services from cloud at any

time. In these situations, the number of tasks, and the

available resources, can rise on demand. Calculating and

selecting all possible task-resource mappings in cloud

computing is almost impossible because the complexity

here would grow in an exponential manner. To reduce

the complexity of the search space, a heuristic algorithm

assures an acceptable runtime of the scheduling

algorithm. Many heuristic optimization algorithms have

been and are being applied in many works to optimize

task scheduling, mostly in minimizing the task execution

time in the cloud environment [3]. However, most of the

existing scheduling strategies have more than one

conflict objectives while executing the applications in

the Cloud data center. These problems are referred to as

Multi-Objective Optimization Problems (MOPs). There

might be a state of conflict within these objectives,

where no single solution exists. In this context, a good

trade-off solution can be devised which would represent

the best possible compromises among scheduling

objectives [4-6]. Multi-objective scheduling problems

can be divided into two groups of: priority-based

methods with a weight assigned to each objective

(classical methods) and methods including a set of non-

dominated solutions [7]. Classical methods have the

following three basic drawbacks compared to non-

dominated solution: first, these methods are not able to

search for all the permissible space related to the

problem, second, are not considered as an intelligent

method and third, the objective functions of these

methods need to be normalized for summation. To solve

these drawbacks, development of a dynamic task

scheduling strategy where a set of non-dominated

solutions is of concern for multiple and conflicting

objectives, is a critical part of task scheduling

optimization problems. Among the available studies,

mailto:st_yazdanbakhsh@yahoo.com
mailto:Reihaneh_khm@yahoo.com
mailto:ramezanpour@mau.ac.ir
https://www.sciencedirect.com/topics/computer-science/virtualized-resource
https://www.sciencedirect.com/topics/computer-science/virtualized-resource

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

128

authors of [8-10] mainly emphasize on the optimization

of the multi objectives in their scheduling models, which

are not in conflict with each other. In addition, there are

several studies [11-19] that mainly emphasize the

minimization of job makespan and task execution cost in

their multi-objective optimization models by applying

evolutionary algorithms. However, these studies fail to

consider the need to improve VM utilization by the

cloud infrastructure. Meanwhile, there is a considerable

amount of research work that fails to consider the

dynamic resource provisioning by the cloud

infrastructure. Also, to the best of our knowledge,

applying a Pareto-based method able to make trade-offs

within sets, instead of considering every performance

metrics’ full range has not been investigated in the

proposed task scheduling optimization models. To

improve previous research work and address these

shortcomings in the existing literature, in this paper, a

multi-objective approach for dynamic task scheduling

through elastic resources in cloud environments is

proposed. The efficiency of the proposed model is

evaluated through different scenarios. Simulation results

show that the proposed model significantly meets the

multi-objective QoS requirements for optimization, in

both cloud users’ and providers’ context by minimizing

makespan and deadline violations for user, and

minimizing total cost and improving VM utilization for

providers. In fact, the proposed model is able to

determine trade-off solutions that offer the best possible

compromises among the optimization objectives. It has

also been found that MODE is a faster and more accurate

evolutionary algorithm than its counterparts for solving

such problems. The main contribution of this study is

briefed as follows:

 Designing a multi-objective task-scheduling

framework where point of views of both users

and provider in minimizing are of concern

makespan, deadline violation, total cost and

maximizing the resource utilization that are in

conflict with one another.

 Applying a Pareto-based method able to make

trade-offs within sets, instead of considering

every performance metrics’ full range.

 Proposing a task scheduling algorithm named

MODE to construct the individual non-

dominated sets of the newly received tasks

where the non-dominated sorting approach is

applied to generate Pareto fronts.

 Applying a new crowding distance operator to

generate a uniformity in the distribution of the

individuals in the Pareto optimal frontier.

 Applying the dynamic lease and release of

resources, which can reduce the additional

costs to maintain unusable VMs.

 Applying a series of experiments to evaluate

this proposed approach’s performance subject

in different experiment conditions.

The structure of this paper is as follows: Section 2

provides an overview of related works. Section 3

describes the proposed MODE strategy acting in a multi-

objective and dynamic manner. Section 4 provides an

experimental design and discusses the experimental

results. Section 5 concludes the paper and presents

future works.

2. LITERATURE REVIEW

The contribution of task-scheduling problem is

important in optimizing cloud utilization [11-13]. The

scheduling algorithms can be classified based on the

improvement parameters in the cloud computing

environments like load balancing, cost, priority,

makespan, and resource utilization.

To improve the load balancing in the cloud

computing, Babu and Samuel [14] proposed an

improved honey colony algorithm where the bee’s

behavior is applied to balance load through VMs. Patel

et al. [15] modified the Min-Min load balancing

algorithm, which is based on the effect of the Min-Min

load balancing algorithm on the grid computing. The

tasks with a minimum makespan are selected and

allocated to the appropriate resources for producing the

makespan time and the use of resources effectively

through this algorithm. A Group Scheduling Algorithm

(GTS) is proposed by Gamal et al. [16] to schedule tasks

in a cloud computing with respect to quality of service

requirements. This algorithm is evaluated through

different performance metrics like execution time, load

balancing, and average latency. The drawback of this

algorithm is that it does not consider the elasticity of the

cloud.

To improve the cost in the cloud computing, Lakra

and Yadav [17] proposed a multi-objective task

scheduling algorithm for mapping tasks to VMs which

improves the throughput of the data center and reduces

costs without Service Level Agreement (SLA) violation

for the software. It is necessary for this algorithm to

lease and release the new VM which are assessed here.

A scaling approach equipped with a super professional

executor named Suprex with a cost-aware approach is

proposed by Aslanpour et al. [18]. Their evaluation

results indicate that Suprex can reduce resource rental

costs for the application providers, together with a

decrease in both the response time and SLA violation.

Gabi et al. [19] proposed a QoS task scheduling

algorithm with Taguchi optimization approach for cloud

computing. Their proposed algorithm indicates better

cost and time values than that of standard CSO,

MOPSO, EPCSO, and OTB-CSO algorithms. The

drawbacks of their approach is in applying static

resource provisioning, moreover, non-consideration of

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

129

the important performance metrics like the utilization of

VMs, makespan, and deadline violations. To improve

the priority-based task scheduling, Baofang et al. [20]

designed a Parallel Adaptive Genetic Algorithm

(PAGA) based on the priority mechanism in the cloud

when dealing with the problem of assigning priority to

the tasks and sub-tasks, while their algorithm is of high

complexity. Based on Analytic Hierarchy Process

(AHP) theory, Ghanbari and Othman [21] proposed a

job scheduling algorithm applying a multi-criteria

decision model. To improve the makespan in the cloud

computing, Bhoi and Ramanuj [22] chose the expected

execution instead of the completion time as the base with

the objective to schedule several jobs on several

machines in a dynamic manner to decrease makespan

and increase efficiency. Goyal and Agrawal [23]

proposed a scheduling model based on the principles of

improved genetic algorithm. Panda et al. [24] proposed

three allocation-aware task-scheduling algorithms for

multi-cloud environments. The traditional Min-Min and

Max-Min algorithms are the source of this algorithms

developed for multi-cloud environment. In these

algorithms matching, allocating, and scheduling are the

common stages to adapt multi-cloud environment.

To improve the resource utilization in the cloud

computing, Islam et al. [25] revealed the elasticity

metrics based on penalties for over and under-utilization

of resources. Shawky and Ali [26] presented a method

to measure the cloud elasticity in reference to elasticity

in physics. Belteran et al. [27] introduced a new metric

of elasticity capable of considering the scalability,

accuracy, time and cost independent main components

where an approach is provided to assess behavior of the

service elasticity. An autonomic resource provisioning

method is proposed by Ghobaei-Arani et al. [28]

according to the MAPE-k (monitoring-analysis-

planning-execution control loop with a shared

Knowledge) control loop. This approach should adapt to

uncertainties and workload spikes in a dynamic manner,

and should manage undesirable states of over and under-

provisioning. The detailed of the task scheduling

methods are tabulated in Table 1.

Table 1. Summary of cloud based task scheduling algorithms.

Literature Algorithm Types of

Classification

Performance metrics Elasticity

 [14]
Enhanced Bee Colony Algorithm for Efficient

Load Balancing
Load balancing

Response time, Load

balancing
-

 [15]
Enhanced Load Balanced Min-Min task

scheduling algorithm (ELBMM)
Load balancing Makespan, VM Utilization -

 [16] Grouped Tasks Scheduling Algorithm (GTS) Load balancing

Average latency to expected

urgent priority of tasks with

urgent users

-

 [17]
Multi-objective task scheduling algorithm

with the goal of reducing costs
Cost

Throughput, execution time,

bandwidth
-

 [18]
An executor for the cost-aware auto-scaling

mechanism (Suprex)
Cost

SLA violation, resource rental

costs, response time
-

 [19]
A QoS task scheduling algorithm with

Taguchi optimization approach
Hybrid average execution time, cost -

 [20]
An improved Adaptive Genetic Algorithm

(PAGA)
Priority Iteration times, Bandwidth -

 [21]
A new Priority based Job Scheduling

algorithm (PJSC)
Priority Consistency, makespan, -

 [22]
Enhanced Max-Min task scheduling

Algorithm
makespan Makespan, -

 [23]
Genetic algorithm coupled with suffrage

heuristic
makespan Response time -

 [24]
Allocation-aware Min-Min Max-Min batch

algorithm (AMinMaxB)
makespan

Makespan, Average

utilization, Throughput
-

 [25]
Improved ways to quantify the elasticity

concept, using data available to the consumer
Elasticity Elasticity 

 [26] Defining a Measure of Elasticity Elasticity Elasticity 

 [27]
A new approach to analyse elasticity enablers

of cloud services
Elasticity

Scalability, Accuracy, Time,

Cost


 [28]
An autonomic approach for resource

provisioning of cloud services

Resource

utilization

Total cost, resource

utilization, SLA violation
-

The

proposed

approach

A Multi-Objective Strategy for Dynamic Task

Scheduling using Elastic Cloud Resources
Hybrid

Total cost , makespan,

deadline violations, mean

utilization of VMs



Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

130

Some studies apply task scheduling based on single

criteria [13-14]. In the cloud computing environment,

single-objective scheduling algorithms encounter some

problems, like, high-priority tasks with high chance to

be run, and tasks with low priority which have to wait

for a long time. Sometimes tasks with low priority

receive an opportunity to be run while high-priority tasks

always are run before the low priority task, which lead

to an increase in execution time and a decrease in system

throughput. It only satisfies one user's requirements at

execution time, and the user does not achieve other

objectives [15], [29]. Some of the previous algorithms

[17, 29] may reduce the cost but violate the deadline,

which will not allow the overall costs to be reduced.

Another notable challenge is that most prior research

works [15, 30-32] apply a fixed number of VMs at

execution time, which are not flexible.

Table 2. Definitions of variables.

Definition Symbol

The number of arrival tasks n

The set of arrival tasks={t1,

t2, …, tn}
T

Virtual machine j, j={1, 2,

…, k}
VMj

The task load Task_Load

The total load of users’

requests
Total_Task_Load

The maximum VM Mips

(VM Mips × its Cores)
Maximum_VM_Mips

The system total rate System_Total_Rate

The normal rate of VM VM_Normal_Rate

The leased VM counts Rental_Vm_Counts

Total number of VMs

including the number of

initial VMs plus leased

VMs.

m

The VM Cost Cost_of_VM

The execution time of the

tasks allocated to the VMk
Task_Execution_Timek

The number of service QoS

attributes
r

The k-th QoS attribute value

of service s
qk(s)

The priority of the user Pk

Load of VM Li,j

Maximum value of k-th

QoS attribute of all

candidate services

belonging to service class S

respectively.

Qj,k
max

Minimum value of k-th QoS

attribute of all candidate

services belonging to

service class S respectively.

 Qj,k
min

The size of k-th task Task_Sizek

3. PROPOSED APPROACH (MODE)

Multi-objective optimization problem devises a set

of points known as the Pareto optimal set. The dynamic

task scheduling is a multi-objective optimization

problem with the most important objectives to minimize

1) the overall execution time or makespan, 2) deadline

violation of a set of tasks, and 3) the total cost in both

the customer and provider context. Due to independent

and conflicting nature of these objectives, reducing one

objective would lead to compromising the other. The

details of the basic notation and their definitions used in

the proposed approach are tabulated in Table 2.

In task scheduling approach, there exist n tasks { t1 ,

t2,…, tn } with variable task receiving rates assignable

to k VMs { VM1, VM2,…, VMk } for execution. In this

paper, a multi-objective strategy named MODE is

proposed for dynamic task scheduling through elastic

cloud resources according to the improved non-

dominated sorting algorithm. The framework of this

proposed approach for multi-objective task scheduling

problem is shown in Fig. 1.

Fig. 1. The perspective of MODE scheduling

framework in cloud environments .

Cloud runtime receives tasks from users at first. The

submitted tasks from the users are inserted in the

Request queue and the MODE task scheduler is called.

The objective of the MODE scheduler is to generate the

individual non-dominated sets of the newly received

tasks, which are sorted by the crowding distance in

different levels. Individuals at higher non-dominated

sets level and greater crowding distance have higher

priority to the next level. If the points with the same rank

for the problem of task scheduling are selected

randomly, the distribution of the solution in the optimal

solution set would not be met. To make this distribution

consistent in the Pareto optimal front, a new crowding

distance operator is applied in this paper. Therefore, the

MODE scheduler performs the final assignment of tasks

to resources. In step 2, during runtime, Elastic resource

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

131

provisioning controller checks resources status in λ time

intervals and if there exists any overload in the VM, it

will create a new VM for scheduling in next step.

 The pseudo-code of the proposed MODE

(algorithm1) is described as follows:

Step 1: The initial number of VMs is determined

based on the received task load and status of load on

VMs is determined according to Eq. (1), (Line 1)

Step 2: For each VM, the QoS utility function is

calculated through the Eq. (3), and then the VMs are

sorted in a descending order based on these values (Line

2).

Step 3: The set of received tasks are sorted by the

non-dominated sorting method in a descending order, as

shown in Eqs. (4 and 5) based on the size and cost of the

task execution performance metrics.

 In addition, the cost of executing the task is obtained

through Eq. (6) in a sense that the cost of each VM

obtained from Eq. (7) is multiplied by task execution

time obtained from Eq. (8), (Line 3)

Step 4: After sorting tasks and VMs, some tasks will

be placed on the execution list according to their

priorities. Then, dispatcher component allocates the first

task from the execution list to the first VM at the

beginning of the sorted VM list, while the normal rate of

each VM is calculated through Eq. (9) and is compared

with the threshold rate until the normal rate becomes

greater than the threshold. If its available workload on

VM plus the next task load exceeds the threshold, this

task will be allocated to the next VM. This algorithm re-

calculates VM load to find the appropriate VM. This

process is repeated until all tasks from the list are

assigned to the proper VMs (Lines 4-12).

Step 5: When the second series of tasks are received,

the tasks of the list are resorted with respect to the new

tasks. Then, according to Eq. (9), the total rate of each

VM is calculated, and compared with the threshold rate.

If the total rate system is lower than that of the threshold

rate, the new set of the received task are executable on

VMs that were devised at the beginning. Further, the

maximum workload of existing VMs applied in Eq. (10)

is calculated through Eq. (11), otherwise, the system is

overloaded, and the new VM number must be leased by

applying the calculated value of Eq. (12). At this point,

the new VMs are sorted and tasks are allocated to VMs

(Lines 13-18)

Step 6: In case of a deadline violation, the provider

adds a specified value based on Eq. (13), for each delay

in response time to the service being served in a time unit

(Lines 19-21)

Step 7: In every step, if the load on the leased VMs

reaches to zero, they are considered to be excessive and

eliminated (Lines 22-24)

Algorithm 1: Proposed MODE algorithm.

Input: A set of different types of tasks with variable entry rates, deadline and cost of tasks parameters.

Output: A set of scheduling and allocation results for tasks.

1. Determine the number of VMs according to the arrival tasks load that are calculated by Eq.1.

2. Calculate of the QoS_Utility(s) function for VMs by Eq.3, and sort VMs descending order.

3. Sort tasks by non-dominated sorting based on task size and task execution cost, that are calculated by Eqs.4 and 6

4. for i ← 1 to Size of VM's list do

5. for j ← 1 to Size of task's list do

6. Calculate VM_Normal_Rate by Eq.9.

7. if VMi_Normal_Rate < Threshold_rate then

8. Resource allocation taskj to VMi.

9. end if

10. end for

11. end for

12. a new set of task arrived

13. Calculate System_Total_Rate by Eq.10.

14. if System_Total_Rate < Threshold_rate then

15. New arrived tasks are executable on available VMs.

16. else system is overloaded.

17. rent a VM according to the calculated number by Eq.12.

18. end if
19. if deadline missed then

20. Penalty cost= deadline missed seconds * penalty cost per second (calculated by Eq.13).

21. end if

22. if new VM load == 0 then

23. Delete VM.

24. end if

25. Return a set of task scheduling solutions, VM counts

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

132

3.1. Elastic Resource Provisioning Controller

3.1.1. Determining the number of VMs

To compromise cost reduction and a decrease of

deadline violations, it is essential to prevent over-loaded

and under-loaded VMs. In this approach, the number of

VMs is determined according to the received task load.

The initial number of required VMs is calculated by

dividing the sum of received task load to current status

of load on VMs (the maximum MIPS value of VMs)

through Eq. (1).

(1) 𝑉𝑚_𝐶𝑜𝑢𝑛𝑡𝑠 =
𝑇𝑜𝑡𝑎𝑙_𝑇𝑎𝑠𝑘_𝐿𝑜𝑎𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠

Where, Eq. (2) is applied in calculating the total received

task load as follows:

(2) 𝑇𝑜𝑡𝑎𝑙_𝑇𝑎𝑠𝑘_𝐿𝑜𝑎𝑑 = ∑ 𝑇𝑎𝑠𝑘_𝐿𝑜𝑎𝑑

𝑛

𝑘=1

Where, n is the task count.

3.1.2. Sorting VMs

After determining the required VMs count, sorting

VMs become must take place. QoS is applied in

describing user’s requirements. Different users require

different cloud computing services. In this paper, the

service execution time, cost, and bandwidth are applied

to describe QoS on resource services. Here, the

QoS_Utility(s) function (Li , 2014) are obtained through

Eq. (3), to map QoS attributes vector Qs={ q1(s), q2(s),

..., qr(s)} of each candidate service to one real value.

(3) 𝑄𝑜𝑆_𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑠) = ∑
𝑄𝑗,𝑘

𝑚𝑎𝑥 − 𝑞𝑘(𝑠)

𝑄𝑗,𝑘
𝑚𝑎𝑥 − 𝑄𝑗,𝑘

𝑚𝑖𝑛

𝑟

𝑘=1

× 𝑃𝑘
Where, r is the count of QoS attributes of VM, qk(s)

is the kth qualitative attribute value on the service s. Pk

is the priority of the user. 𝑄𝑗,𝑘
𝑚𝑎𝑥 and 𝑄𝑗,𝑘

𝑚𝑖𝑛 are the

maximum and minimum values of the kth attribute of the

QoS of all the candidate VMs. After calculating the QoS

utility function for each VM, according to the values

obtained for each VM, they are sorted in a descending

order. According to this proposed approach, tasks with

higher cost and size are sent to VMs with high

processing power.

3.2. MODE Task Scheduler

3.2.1. Sorting tasks by non-dominated sorting

method

When a multi-objective algorithm is applied to solve

a problem, at least two objective functions are of

concern, where it is not easy to give a definitive opinion

about some of the responses. In most cases, there exist

points where none has priority on other, and they cannot

be compared with the domination concept. Therefore, in

order to obtain the best responses, they should be sorted

according to a certain standard. In this paper, for

handling multi-objective scheduling, a Pareto-based

method is applied for the non-dominated solutions to be

selected and to direct the study towards the true Pareto-

optimal front. In this process, a rank is allocated to each

response, based on the number of their domination

compared to other points. The points with the best rank,

1, and the lowest domination are chosen as the response

set or points of the Pareto fronts. Allocating goods

among individuals where none can improve his/her

situation without worsening another’s is defined as

Pareto efficiency; the individuals of such set generate a

Pareto frontier curve, the Pareto front, which is

particularly applicable where designers would make

trade-offs within sets, instead of considering full range

of every parameter’s. After constructing the individual

non-dominated sets of the new received tasks, the non-

dominated sets are sorted through the crowding distance

of the individuals in different levels.

3.2.2. Construct a Non-dominant Set

In sorting tasks through the non-dominated sorting

method, the objective here is to select a set of tasks with

the minimum task size, which affects the overall

execution time or makespan and the execution cost from

the customer perspective. Therefore, in this proposed

approach the two objective functions are obtained

through Eqs. (4 and 5).

(4)
𝑀𝑖𝑛 𝑓(𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒𝑘

)

= 𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒𝑘
|∀ 𝑗 ∃ 𝑖, 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑖)

≤ 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑗)

(5) 𝑀𝑖𝑛 𝑔(𝑇𝑎𝑠𝑘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑘
)

= 𝑇𝑎𝑠𝑘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑘
 | ∀ 𝑗 ∃ 𝑖,

𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑖)

≤ 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑗)

Where, 𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒 is the task size,

𝑇𝑎𝑠𝑘𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 is the cost of executing the task, T is

a set of tasks = {t1, t2, …, tn} and n is the count of tasks.

To implement a multi-objective task-scheduling

algorithm through these two functions, the non-

dominated sorting is applied.

 The cost of executing tasks, which is one of the

intended objectives in non-dominated sorting, is

calculated through Eq. (6):

(6)

𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡

= ∑ 𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀𝑘

𝑘∈𝑆𝑃𝑝

× 𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑘

Where, 𝑆𝑃𝑝 is the set of VMs of the pth provider (

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

133

SPp={ k | VMk ∈ P-th cloud provider, P∈ {1,2,…,cp} }

), and cp is the count of cloud providers. The

𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀𝑘 is the cost of a CPU unit for the kth

provider, which can be calculated by Eq. (7), and

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑘 is the execution time of the

tasks allocated to the 𝑉𝑀𝑘, calculated through Eq. (8):

(7) 𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀 = 𝐶𝑜𝑠𝑡_𝑃𝑒𝑟_𝑆𝑒𝑐𝑜𝑛𝑑()
/ 𝑀𝑖𝑝𝑠_𝑂𝑓_𝑂𝑛𝑒_𝑃𝑒()

(8)

𝑇𝑎𝑠𝑘_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑘

= ∑
𝐿𝑒𝑛𝑔𝑡ℎ × 𝑃𝐸 + 𝑂𝑢𝑡𝑃𝑢𝑡𝑆𝑖𝑧𝑒

𝑀𝐼𝑃𝑆 × 𝑃𝐸

𝑛

𝑖=1

To shade more light on the concept of domination,

Fig. 2 is drawn. A number of points are specified in the

space of all possible solutions of the problem where each

has two objective functions 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑘)

and 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘).

The status of point 2 Vs. other points in the page is

checked, indicating that point 2 dominates all members

in range A. The value of the objective functions

𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑘) and 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘) for this

point in relation to the value of the objective functions

𝑓(𝑇𝑎𝑠𝑘 𝑆𝑖𝑧𝑒𝑘) and 𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘) for all

points on page A is low and it is dominated by all points

in space C. In this process, sometimes the candid

opinions cannot be provided about the superiority of

points. Consequently, the points in spaces B and D

cannot be directly judged compared to point 2 because

the points on page B, on the function

𝑓(𝑇𝑎𝑠𝑘_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑘), are better than 2 and worse

than 2 for the function 𝑓(𝑇𝑎𝑠𝑘_𝑆𝑖𝑧𝑒𝑘). Through this

direct comparison, one cannot claim which point

dominates the other, and in such cases, presence of other

members of the population becomes contributive in

judgment.

Fig. 2. Domination concept for sorting tasks.

In the same context, as observed because there is no

point in space C, a comparison is made between points

2 and 4 in space B. In this situation, it should be checked

whether there exists another point which is better than

these points in terms of both the objective functions: If

point 1 is better than point 4, point 1 dominates point 4,

while none of these points are better than point 2,

indicating that point 4 is dominated by other members of

the population once, while point 2 in this condition is

never dominated. Consequently, point 2 has a better

chance of being chosen between either of points 1 and 4.

This fact holds true for points 2 and 5. As to the points 1

and 3, it is not possible to comment on 2, because these

points are not dominated by any point, and each has a

superiority and non-superiority over the other. Since,

points 1, 2 and 3, which have never been dominated and

ranked 1, constitute the Pareto front points. Here, the

points with the same ranking are selected by the

crowding distance of the individuals.

3.2.3. Improving the crowding distance

calculation

Different dimensions of optimization objectives like

the task execution cost and execution time (task size)

generate the individuals of the optimal Pareto front that

show a big gap on these sub-objectives while the

crowding distance is calculated. The traditional multi-

objective optimization algorithms obtain the crowding

distance of an individual through calculating the sum of

distance difference between the individual and two

individuals next to it in each sub-objective and it does

not consider the influence brought by the different sub-

objective. According to the traditional crowding

distance operator, a normalizing technique is applied on

the sub-objectives fitness where the individual is

located, weakening the influence of the crowding

distance calculation because of the difference of the

dimension, in a sense that make the distribution of

individuals in optimal Pareto frontier better. To obtain a

uniform measurement between the task execution cost

and time, the Simple Additive Weighting (SAW)

technique [33] is applied to normalize these two

scheduling objectives. The fitness value of the individual

will increase by reducing the task execution cost and

time. Thus, when calculating the crowding distance, the

sub-objective fitness is normalized where the individual

is located, it can further weaken the situation where the

individual distribution is not ideal in the optimal Pareto

front due to the difference between the sub-objectives.

Therefore, we improve the crowding distance of the

individual as follows:

Crowding distance =

|𝑓−𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒
𝑖+1 − 𝑓−𝑇𝑎𝑠𝑘𝑆𝑖𝑧𝑒

𝑖−1 |+|𝑓−𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡
𝑖+1 −

𝑓−𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡
𝑖−1 |

(9)

Where, 𝑓𝑖−1and 𝑓𝑖+1are previous and next

individuals to the current individual in each sub-

objective, respectively.

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

134

In the proposed MODE, the non-dominated sorting

and crowding distance calculation operations in each

execution, and the time complexity for these two

operations is O(M(2N)2+M*2N*log(2N) where M and

N are the number of objectives and the population size,

respectively.

3.2.4. Mapping of tasks to VMs

After sorting the tasks and VMs, at first, a number of

tasks are placed on the execution list according to their

priority, next, the first task from the execution list is

allocated to the first VM at the beginning of the sorted

VM list. The normal rate of each VM is calculated

according to Eq. (10) and is compared to the threshold

rate. If the normal rate is lower than the threshold rate,

the next task becomes executable on VMs generated

first. In a similar sense, the next task is allocated to VMs

from the list until tasks are entirely allocated to the

existing VMs, otherwise, if the normal rate is greater

than the threshold rate, the system becomes overloaded,

and a new VM must be leased. To avoid/minimize the

deadline violations caused service response delay, this

configuration is chosen.

(10)
𝑉𝑀_𝑁𝑜𝑟𝑚𝑎𝑙_𝑅𝑎𝑡𝑒

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑜𝑓_𝑎_𝑉𝑀

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠

3.2.5. Lease and release of resources

National Institute of Standards and Technology

(NIST) defines elasticity in cloud computing as:

“capabilities can be elastically provisioned and released,

in some cases automatically, to scale rapidly outward

and inward commensurate with demand” [34]. To the

consumer, the capabilities available for provisioning

often appear to be unlimited and can be appropriated in

any quantity at any time. In this paper, a resource-

provisioning approach is proposed to reduce the total

cost and deadline violation. In addition, deadline

violations are due to the elapse in the expected deadline,

and where a monetary penalty is imposed, consequently,

cost minimization is expressed as follows:

min(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡) =
VM cost + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡

(11)

Where the VM cost is the total cost for all VMs

expressed through Eq. (12):

𝑉𝑀 𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑜𝑠𝑡_𝑜𝑓_𝑉𝑀𝑖

𝐼

𝑖=1

(12)

Where, I is the count of initiated VMs, and i is the

VM id. Many of the available algorithms may reduce the

cost, where violating the deadline, in a sense that no cost

reduction may be observed. Therefore, to calculate the

cost in case of deadline violation by imposing penalty on

the cost of leasing VM, one can confidently claim that

the lower cost is a sign of success. A deadline violation

occurs when the execution time of a task exceeds its

deadline value. Penalty cost consists of total penalty

costs incurred in all task requests, expressed through Eq.

(13):

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡

= ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_𝐶𝑜𝑠𝑡𝑖

𝐶

𝑖=1

(13)

Where, the penalty cost for every task requests is

calculated though Eq. (14).

(14) 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_𝐶𝑜𝑠𝑡𝑖 = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑀𝑖𝑠𝑠𝑒𝑑𝑆𝑒𝑐𝑜𝑛𝑑𝑠

× 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_𝑟𝑎𝑡𝑒

Where, penalty-rate is the monetary cost per unit of

time delay, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑀𝑖𝑠𝑠𝑒𝑑𝑆𝑒𝑐𝑜𝑛𝑑𝑠
is delay time. The

product of which yields the 𝑃𝑒𝑛𝑎𝑙𝑡𝑦_cost per $.

In this paper, elasticity feature is applied to avoid

unnecessary additional costs in maintaining not needed

VMs. After allocating a set of tasks and increasing

workload at execution time, additional VMs can be

required at any time. Therefore, first, some VMs are

leased and next, released to reduce network load and

prevent resource wastes. For this purpose, first, system

total rate is calculated to obtain the overload information

through Eq. (16). The maximum workload of the existed

VMs applied in Eq. (15) is calculated through Eq. (16).

If the system is overloaded, new VMs must be leased

indicated through Eq. (18). Following this, the new VMs

are sorted and, the tasks are allocated to VMs, which in

turn, reduce the count of VMs to decrease total cost. The

deadline violations of existing task requests are avoided

by not allocating new task request to the initiated VM.

(15)
𝑆𝑦𝑠𝑡𝑒𝑚_𝑇𝑜𝑡𝑎𝑙_𝑅𝑎𝑡𝑒

=
𝑇𝑜𝑡𝑎𝑙_𝐿𝑜𝑎𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑜𝑓_𝑒𝑥𝑖𝑠𝑡𝑒𝑑_𝑉𝑀𝑠

(16)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑜𝑓_𝑒𝑥𝑖𝑠𝑡𝑒𝑑_𝑉𝑀𝑠

= ∑ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠

𝑛

𝑘=1

(17)

𝑅𝑒𝑛𝑡𝑎𝑙𝑉𝑚𝐶𝑜𝑢𝑛𝑡𝑠
=

𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑜𝑡𝑎𝑙𝑅𝑎𝑡𝑒
− 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑Of𝑒𝑥𝑖𝑠𝑡𝑒𝑑𝑉𝑀𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑉𝑀_𝑀𝑖𝑝𝑠

If the load on a VM is zero, it will be removed and

released. If the next series of tasks are to be met and are

needed again, they will be reused. The time complexity

of lease and release algorithm of VMs is O (ITC+I),

where, I is the total VMs count, T is VM types and C is

https://www.nist.gov/
https://www.nist.gov/

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

135

the total count of requests.

4. EVALUATIONS

4.1. Experimental Setup

In this paper, the simulation is run by applying the

CloudSim 3.0.3 toolkit [17, 35-36] to accomplish the

proposed MODE. The objective of the proposed

approach is to meet the multi-objective QoS

requirements, in both cloud users’ and providers’

context by minimizing makespan and deadline

violations for user, and minimizing total cost and

improving VM utilization for providers. This total cost

includes both the execution and penalty cost of both the

customer and provider. From the provider view, because

there exist no public data on the SaaS provider’s

spending on VMs, the price schema of Amazon EC2

[36] is applied here to estimate the per hour cost of a

hosted VM. The MIPS ratings are applied to simulate the

effect of using different VM types. Resource price and

capabilities applying in modeling VMs are tabulated in

Table 3 similar to that of by Wu et al. [38].

From the customer view, the received request rate

varies in evaluating their impact on implementing of this

proposed algorithm. The received request rate is

subjected to Poisson distribution. Due to lack of

available workload as to specify these parameters,

standard deviation = (1/2) × mean is applied as the

normal distribution in modeling all parameters. The

received request rate for 100, 200, 400, 600, 800, 1000

users per second are applied similar to [39] and the tasks

are allocated to each VM at the threshold rate of 0.9

similar to [40] in the simulation.

Table 3. Type of VMs.
Cost

per

hour

Size Ram Pes
VM

Capacity

VM

Type

0.12

$

160 G

Disk
2 GB 1 1 CPU unit 1

0.48

$

850 G

Disk
4 GB 2 2 CPU unit 2

0.96

$

1690

G

Disk

8 GB 4 4 CPU unit 3

4.2. Metrics for Evaluating the Proposed MODE

To compare the proposed approach with its

counterparts, the following metrics are applied:

 Makespan: It is the completion time of the task,

which includes the execution time and the latency

of the cloud system response [30]

 Total cost: It is the sum of VM allocating and

penalties of SLA violation costs calculated through

Eqs. (11, 12, and 13)

 Mean utilization of the VM: It is the capacity of

resources applied during execution time, known as

resource utilization. This criterion is calculated

through Eq. (18):

(18)
𝑉𝑀𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛

=

∑
∫ 𝐿𝑖,𝑗

𝑓𝑖

𝑠𝑖

(𝐹𝑖𝑛𝑖𝑠ℎ_𝑇𝑖𝑚𝑒_𝑜𝑓_𝑒𝑎𝑐ℎ_𝑉𝑀𝑖 − 𝑆𝑡𝑎𝑟𝑡_𝑇𝑖𝑚𝑒_𝑜𝑓_𝑒𝑎𝑐ℎ_𝑉𝑀𝑖)

𝑚

𝑖=1

𝑚

Where, L(i, j) is the load on VM and m is the total

number of VMs including the number of initial VMs

plus leased VMs.

 Deadline violation: If the completion time of each

task is greater than the deadline, it leads a deadline

violation. This performance metric has a direct

relation with the total cost. Many specially devised

algorithms may reduce costs while they violate the

deadline, thus no cost reduction. For this purpose,

the system receives the penalty for every second of

deadline violation [41-42].

4.3. Evaluation Experiments

The proposed approach is conceptually different

from the ones like, and although it is in the same

category with a number of them. To evaluate the MODE

approach and to have a better view of its advantages, the

following algorithms are described which are then

compared in the following subsections:

 FCFS: is an algorithm where the incoming tasks

are scheduled based on First Come First Serve

(FCFS) concept [17].

 Improved Min-Min algorithm: A single objective

popular algorithm in existing task scheduling. The

task with minimum completion time is selected and

allocated to the corresponding VM through this

algorithm [43].

 The cost-based priority algorithm: A single

objective scheduling algorithm, with the drawback

of: high priority tasks always get chance to be

executed first, while the low priority task have to

wait for a long time [44].

 MOTS: A multi-objective task-scheduling

algorithm applied in allocating tasks to VMs to

increase the throughput of the datacenter and

decrease the execution time in cloud SaaS. This

algorithm sorts tasks with non-dominated sorting

method, and then allocates them to VMs sorted by

MIPS in an ascending order and applies a fixed

count of VMs during the experiments [17].

 SHARP: It concentrate prioritized jobs in a

dynamic manner according to their and VM

attributes. It allocates the jobs with an appropriate

count of VMs in the cloud service providers subject

to their requirements and system load for

processing [45].

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

136

The newly proposed MODE approach is compared

with the above mentioned approaches with respect to the

characteristics tabulated in Table 4. In the simulation,

values are obtained by running each algorithm for 20

times inspired by [46].

Table 4. Experiments configuration.

4.3.1. Makespan metric during user tasks count

variation

To observe the makespan of the algorithm, the count

of user tasks is within 100-1000, Fig. 3 and Table 5,

where a direct relation is evident between the increase in

makespan and the task count, due to an increase in task

request per VM processing. When the user task count is

high a significant difference is observed between

different algorithm’s makespant. For example, with

1000 user task, this MODE provides users with 57.31%,

55.43%, 30.32% lower makespan than FCFS, Cost-

based priority and Improved Min-Min, respectively.

MODE and SHARP outperform other algorithms,

because they use a dynamic resource provisioning, while

MODE outperforms SHARP, because MODE sends

tasks with higher cost and size to the VMs with higher

power.

Fig. 3. Overall algorithms’ makespan during

variation in number of user tasks.

Table 5. Improvement percentages of MODE

according to the makespan metric.

Number of Task
Algorithm

1000 800 600 400 200 100

22/5 23/29 26/33 13/24 - - SHARP

30/32 33/86 34/09 22/83 3/21 -
Improved

Min-Min

45/4 49/63 51/23 42/52 12/52 - MOTS

55/43 54/36 56/76 49/74 24/94 -
Cost-based

priority

57/31 56/17 58/03 51/88 12/56 - FCFS

4.3.2. Mean utilization metric during user tasks

count variation

The mean utilization metric subject to different user

tasks count, compared with the other five algorithms is

bar charted in Fig. 4. The objective of SHARP is to meet

user requirements, to stabilize the VMs count, and to

promote resource utilization with the assistance of

resource provisioning, with it no concern on the multi

objective scheduling. In MOTS, the resource

provisioning is not considered, because the objective is

to satisfy the cloud user’s objectives. As observed in

Fig.4 and Table 6, this MODE in all cases has better

utilization than the other algorithms. This MODE seeks

to increase the revenue of the service provider by

optimally VM utilizing and concentrates on data center

utilization. Data center utilization is determined through

the VMs count applied in processing the given task

requests. This reason for improving the mean utilization

0

100

200

300

400

500

600

700

800

100 200 400 600 800 1000

M
a
k

es
p

a
n

 (
se

co
n

d
s)

User task count

MODE SHARP

Improved Min-Min MOTS

Cost-based priority FCFS

Number

of user

tasks

VM count Experiment

Variable

100-1000

Variable for

MODE and SHARP

approaches &

Constant (20) for

other approaches

1) Overall algorithms’

makespan during

variation in number of

user tasks

Variable

100-1000

Variable for MODE

and SHARP

approaches &

Constant (20) for

other approaches

2) Overall algorithms’

mean utilization

during variation in

number of user tasks

Variable

100-1000

Variable for MODE

and SHARP

approaches &

Constant (20) for

other approaches

3) Overall algorithms’

deadline violation

during variation in

number of user tasks

Variable

100-1000

Variable for

MODE and SHARP

approaches &

Constant (20) for

other approaches

4) Overall algorithms’

total cost during

variation in number of

user tasks

Const

ant

1000

Variable for MODE

and SHARP

approaches &

Constant (20) for

other approaches

5) Impact of variation

in received request

rate

Const

ant

1000

Variable for MODE

and SHARP

approaches &

Constant (20) for

other approaches

6) Impact of variation

in penalty rate

Variable

100-1000

Variable for MODE

and SHARP

approaches

7) Comparison of

VMs required in

various approaches

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

137

in this proposed algorithm is due to resource

provisioning and lease and release of resources required

according to the cloud's elasticity in a manner that the

surplus leased VMs are released when the load reaches

zero, and the existence of additional VMs does not lead

to a lower overall utilization.

Fig. 4. Overall algorithms’ mean utilization during

variation in number of user tasks .

4.3.3. The deadline violation metric during user

tasks count variation

The results of deadline violation metric in relation to

variation in task count are bar charted in Fig. 5. One of

the reasons for evaluating this metric is to assure cost

reduction. There exists a direct relation between cost and

deadline violation. As observed in Fig. 5, the reason of

this considerable difference between the MODE and

SHARP group and other algorithms is due to their

initiating new VMs upon receiving more user task. The

count of tasks vary in relation to time. Unlike the

available algorithms, which do not apply system load to

allocate the resource, the MODE and SHARP do so.

Here, it can be deduced that MODE outperforms

SHARP, because it sends tasks with higher cost and size

on the VMs with higher power. The improvements for

deadline violation metric are tabulated in Table 7.

Fig. 5. Overall algorithms’ deadline violation during

variation in number of user tasks.

Table 7. Improvement percentages for MODE

according to the deadline violation metric.

Number of Task
Algorithm

1000 800 600 400 200 100

5/61 7/45 6/72 7/37 7/26 4/07 SHARP

44/56 46/58 46/96 46/15 21/69 -
Improved

Min-Min

43/25 43/12 41/05 41/66 36/39 8/13 MOTS

45/43 45/89 47/38 46/47 23/14 -
Cost-based

priority

47/33 47/77 47/51 46/31 26/87 - FCFS

4.3.4. The total cost during user tasks count

variation

Comparisons of cost metric are bar charted in Fig. 6,

where as observed an increase in tasks and VMs count,

increase the cost. The advantages of MODE in cost

metric, and the proportional improvement of cost values

are much more steady than that of the other algorithm.

This improvement is because in MODE, the cost metric

at different stages is of concern. MODE and Cost-based

priority consider the cost metric at sorting and allocating

stages, consequently, both outperform other algorithms

at large scale workloads. The details of these

improvements for total cost values are tabulated in Table

8.

0

10

20

30

40

50

60

70

80

90

100

100 200 400 600 800 1000

M
ea

n
 u

ti
li

za
ti

o
n

User task count

MODE SHATP

Improved Min-Min MOTS

Cost-based priority FCFS

0

10

20

30

40

50

60

70

80

90

100

100 200 400 600 800 1000

D
ea

d
li

n
e

v
io

la
ti

o
n

(%
)

User task count
MODE SHARP

Improved Min-Min MOTS

Cost-based priority FCFS

Table 6. Improvement percentages for MODE

according to the mean utilization metric.

Number of Task Algorith

m 1000 800 600 400 200 100

4/21 5/21 5/81 7/1 7/32 8 SHARP

10/1

9

12/7

9

12/3

7

13/5

7

14/6

5
20

Improved

Min-Min

18/9

5

24/8

8

23/2

6

22/3

3

22/2

5
30/4 MOTS

28/8

2

31/9

9

30/9

4

35/7

8

40/5

7

45/8

6

Cost-

based

priority

36/6

9

40/7

5

40/8

4
43/4 48/5 53/2 FCFS

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

138

Fig. 6. Overall algorithms’ total cost during variation

in number of user tasks.

4.3.5. The effect of variation on received user task

rate

To observe this effect in MODE, the received task

rate factor varies, while keeping all other factors

constant. All experiments are run with 1000 user

requests. As observed in Fig. 7, when the received task

rate is high, a considerable effect is observed in the

performance of SHARP, and MODE. Due to more

received tasks per second, the overall trend of the

makespan increases and service capability decreases due

to applying fewer new VMs. As observed in Fig. 7, the

MODE provides the smallest makespan and accepts

more tasks count with less VMs count except when the

received task rate is high. Even at high received task

count, the difference between MODE and SHARP’s

makespan is about 20%. There exists a considerable

increase in makespan when the received task rate is high

due to high task requests accepted per VM, which in turn

delay request processing. Here it can be deduced that

even considering the makespan constraints on from

users’ part, the first choice for a SaaS provider is the

MODE.

Fig. 7. Impact of arrival rate variation.

4.3.6. The effect of variation on the penalty rate

The penalty rate symbolized as (β), Eq. (14) depends

on how long the user is willing to wait (r), here defined

as penalty rate factor. Consequently, the larger the (r),

the smaller the (β), Fig. 8. As observed in Fig. 8, the

effect of variation in penalty rate is considered in

MODE, because this is the only algorithm where the

concept of penalty is of major concern in decreasing

total cost. In this algorithm, the total cost is increased

slightly and the average makespan decreases slightly

when (r) changes from low to high, because when

MODE accepts a few task requests with similar VMs

count, the count of requests in each VM becomes

smaller, leading to lower makespan for each task

request.

Fig. 8. Impact of arrival rate variation.

4.3.7. Comparison of VMs required in different

approaches

The count of VMs required for processing the tasks

is bar charted in Fig. 9. This section shows how the

number of VMs utilized vary with respect to task

requests to meet the QoS requirements of the users and

complete them successfully. As observed, the count of

0

200

400

600

800

1000

100 200 400 600 800 1000

T
o
ta

l
C

o
st

 (
$

)

User task count

MODE SHARP

Improved Min-Min MOTS

Cost-based priority FCFS

0

50

100

150

200

250

300

350

400

Low Medum High

M
a
k

es
p

a
n

 (
se

co
n

d
s)

Variation arrival rate

MODE SHARP

0

50

100

150

200

250

300

350

400

Low High

M
a
k

es
p

a
n

 (
se

co
n

d
s)

Variation arrival rate

MODE SHARP

Table 8. Improvement percentages for MODE

according to the total cost metric.

Number of Task
Algorith

m

1000 800 600 400 200 100

51/1

3

36/5

6

44/6

7

17/3

5
8/42

1/0

9
SHARP

59/2

0

54/6

4

73/1

7

36/6

9

14/3

3

2/8

2

Improved

Min-Min

73/5

5
76/6

85/8

4

67/6

6

12/7

8

7/6

1
MOTS

40/4

1
5/34 36/6

12/6

8
7/63

0/8

9

Cost-

based

priority

64/5

7

62/0

6

77/6

2
50/6 26/6

5/7

5
FCFS

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

139

VMs applied in MODE approach remains

approximately stable in relation to task requests count.

Here, the average count of VMs applied in MODE is

approximately 20% less than that of SHARP. The reason

for this variation is that the MODE approach seeks to run

tasks by applying unutilized VMs with the assistant of

dynamic resource provisioning when lower count of

tasks are received. When more count of tasks are

received, the MODE maintains stability by allocating the

least count of VMs according to the system load. During

overloading, the servers applied by the SHARP

approach are scaled up leading to an increase in the

count of VMs up to 75. By comparing these two

algorithms, it is revealed that MODE outperforms

SHARP, because it sends tasks with higher cost and size

to the VMs with higher power, and the remaining idle

computing power is consumed to run the subsequent

tasks requests.

Fig. 9. Comparison of VMs required in various

approaches

5. CONCLUSION AND FUTURE WORKS

Dynamic scheduling of many task requests

constitutes one of the major aspects of Cloud computing.

The task scheduling algorithms should concentrate on

performing tasks and meeting the multiple quality of

service requirements, which may have conflicting

nature. Reducing makespan and deadline violation on a

large count of tasks is difficult while costs are reduced.

Optimizing these conflicting objectives and distribution

of variable user tasks is difficult due to the unspecified

execution time conditions, like elasticity. In this paper,

the most important scheduling algorithms and existing

methods are assessed, according to which, a multi-

objective approach is proposed for dynamic task

scheduling where the elasticity attribute of the cloud

resource is applied. The received request rate for 100,

200, 400, 600, 800, 1000 users per second are applied

and the tasks are allocated to each VM in the simulation.

First through the received task requests of variable rates,

the volume of received task load determines the count of

VMs. Next, VMs are sorted by considering user

requirements and tasks are sorted in a multi-objective

manner, which will be allocated and executed with the

capacity of VMs in a dynamic manner. Finally, if there

is a delay in responding to a tasks’ request, the provider

will be penalized per time unit. During execution,

according to the received task count, and applying the

elasticity attribute of the cloud, if required, the new VMs

will be leased and, if not required, they will be released.

The evaluation results reveal that this MODE approach

offers better scheduling in quality of service metrics like

makespan, mean utilization of VM, total cost and

deadline violation compared to SHARP, Improved Min-

Min, MOTS, Cost-based priority and FCFS algorithms.

In the future, attempt should be made to apply more

quality of service metrics for multi-objective tasks in

non-dominated sorting. In the resource allocation

process, VMs can be checked before tasks allocation, in

a sense that the maximum possible task space in the VM

is occupied.

REFERENCES
[1] Lin W, Liang C, Wang JZ, Buyya R. “Bandwidth‐

aware divisible task scheduling for cloud

computing”. Software: Practice and Experience. Vol.

44, No. 2, pp. 63-74, 2014.

[2] Khorsand R, Ghobaei‐Arani M, Ramezanpour M.

“FAHP approach for autonomic resource

provisioning of multitier applications in cloud

computing environments”. Software: Practice and

Experience. Vol. 48, No. 12, pp. 2147-73, 2018.

[3] Ramezani F, Lu J, Taheri J, Hussain FK.

“Evolutionary algorithm-based multi-objective

task scheduling optimization model in cloud

environments.” World Wide Web. Vol. 18, No. 6, pp.

1737-57, 2015.

[4] Zhou Z, Li F, Zhu H, Xie H, Abawajy JH, Chowdhury

MU. “An improved genetic algorithm using greedy

strategy toward task scheduling optimization in

cloud environments.” Neural Computing and

Applications. Vol. 8, pp. 1-1, 2019.

[5] Ghobaei-Arani M, Khorsand R, Ramezanpour M. “An

autonomous resource provisioning framework for

massively multiplayer online games in cloud

environment.” Journal of Network and Computer

Applications. 2019 Jun 7.

[6] Zhan ZH, Liu XF, Gong YJ, Zhang J, Chung HS, Li Y.

“Cloud computing resource scheduling and a

survey of its evolutionary approaches.” ACM

Computing Surveys (CSUR). Vol. 47, No. 4, pp. 63,

2015.

[7] Pantuza Júnior G. “A multi-objective approach to

the scheduling problem with workers allocation.”

Gestão & Produção. Vol. 23, No. 1, pp. 32-45, 2016.

[8] de Campos CP, Benavoli A. “Joint analysis of

multiple algorithms and performance measures.”

New Generation Computing. Vol. 35, No. 1, pp. 69-86,

2017.

[9] Kamesh SP, Priya S. “Security enhancement of

authenticated RFID generation.” Int. J. Appl. Eng.

0

20

40

60

80

100 200 400 600 800 1000

M
ea

n
 n

u
m

b
er

 o
f

v
m

s

User task count

MODE SHARP

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

140

Res. Vol. 9, No. 22, pp. 5968-74, 2014.

[10] Srichandan S, Kumar TA, Bibhudatta S. “Task

scheduling for cloud computing using multi-

objective hybrid bacteria foraging algorithm.”

Future Computing and Informatics Journal. Vol. 3,

No. 2, pp. 210-30, 2018.

[11] Khorsand R, Safi-Esfahani F, Nematbakhsh N,

Mohsenzade M. “Taxonomy of workflow

partitioning problems and methods in distributed

environments.” Journal of Systems and Software.

Vol. 132, pp. 253-71, 2017.

[12] Torabi S, Safi-Esfahani F. “A dynamic task

scheduling framework based on chicken swarm

and improved raven roosting optimization methods

in cloud computing.” The Journal of

Supercomputing. Vol. 74, No. 6, pp. 2581-626, 2018.

[13] Tang L, Pan JS, Hu Y, Ren P, Tian Y, Zhao H. “A

Novel Load Balance Algorithm for Cloud

Computing.” In International Conference on Genetic

and Evolutionary Computing, pp. 21-30, Springer,

Cham, 2015.

[14] Babu KR, Samuel P. “Enhanced bee colony

algorithm for efficient load balancing and

scheduling in cloud.” In Innovations in bio-inspired

computing and applications, pp. 67-78, 2016.

[15] Patel G, Mehta R, Bhoi U. “Enhanced load balanced

min-min algorithm for static meta task scheduling

in cloud computing”. Procedia Computer Science.

Vol. 57, pp. 545-53, 2015.

[16] Ali HG, Saroit IA, Kotb AM. “Grouped tasks

scheduling algorithm based on QoS in cloud

computing network.” Egyptian informatics journal.

Vol. 18, No. 1, pp. 11-9, 2017.

[17] Lakra AV, Yadav DK. “Multi-objective tasks

scheduling algorithm for cloud computing

throughput optimization.” Procedia Computer

Science. Vol. 48, pp. 107-13, 2015.

[18] Aslanpour MS, Ghobaei-Arani M, Toosi AN. “Auto-

scaling web applications in clouds: a cost-aware

approach”. Journal of Network and Computer

Applications. Vol. 95, pp. 26-41, 2017.

[19] Gabi D, Ismail AS, Zainal A, Zakaria Z, Al-

Khasawneh A. “Hybrid cat swarm optimization and

simulated annealing for dynamic task scheduling

on cloud computing environment.” Journal of ICT.

Vol. 17, No. 3, pp. 435-67, 2018.

[20] Hu B, Sun X, Li Y, Sun H. “An improved adaptive

genetic algorithm in cloud computing.” In2012 13th

International Conference on Parallel and Distributed

Computing, Applications and Technologies 2012 Dec

14 (pp. 294-297). IEEE.

[21] Ghanbari S, Othman M. “A priority based job

scheduling algorithm in cloud computing.”

Procedia Engineering. Vol. 50, No. 0, pp. 778-85,

2012.

[22] Bhoi U, Ramanuj PN. “Enhanced max-min task

scheduling algorithm in cloud computing”.

International Journal of Application or Innovation in

Engineering and Management (IJAIEM). Vol. 2, No.

4, pp. 259-64, 2013.

[23] Kaleeswaran A, Ramasamy V, Vivekanandan P. “Host

Scheduling Algorithm U sing Genetic Algorithm”

In Cloud Computing Environment. International

Journal of Advances in Engineering & Technology.

2013 Jan.

[24] Panda SK, Gupta I, Jana PK. “Task scheduling

algorithms for multi-cloud systems: allocation-

aware approach.” Information Systems Frontiers.

Vol. 21, No. 2, pp. 241-59, 2019.

[25] Islam S, Lee K, Fekete A, Liu A. “How a consumer

can measure elasticity for cloud platforms.” In

Proceedings of the 3rd ACM/SPEC International

Conference on Performance Engineering 2012 Apr 22

(pp. 85-96). ACM.

[26] Shawky DM, Ali AF. “Defining a measure of cloud

computing elasticity.” In2012 1st International

conference on systems and computer science (ICSCS)

2012 Aug 29 (pp. 1-5). IEEE.

[27] Beltrán M. BECloud: “A new approach to analyse

elasticity enablers of cloud services.” Future

Generation Computer Systems. Vol. 64, pp. 39-49,

2016.

[28] Ghobaei-Arani M, Jabbehdari S, Pourmina MA. “An

autonomic approach for resource provisioning of

cloud services.” Cluster Computing. Vol. 19, No. 3,

pp. 1017-36, 2016.

[29] Bansal N, Maurya A, Kumar T, Singh M, Bansal S.

“Cost performance of QoS Driven task scheduling

in cloud computing.” Procedia Computer Science.

Vol. 57, pp. 126-30, 2015.

[30] Banerjee S, Adhikari M, Kar S, Biswas U.

“Development and analysis of a new cloudlet

allocation strategy for QoS improvement in cloud.”

Arabian Journal for Science and Engineering. Vol. 40,

No. 5, pp. 1409-25, 2015.

[31] Gawali MB, Shinde SK. “Task scheduling and

resource allocation in cloud computing using a

heuristic approach.” Journal of Cloud Computing.

Vol. 7, No. 1, pp. 4, 2018.

[32] Zhang L, Zhang Y, Jamshidi P, Xu L, Pahl C. “Service

workload patterns for Qos-driven cloud resource

management.” Journal of Cloud Computing. Vol. 4,

No. 1, pp. 23, 2015.

[33] Sun Y, Lin F, Xu H. “Multi-objective optimization

of resource scheduling in Fog computing using an

improved NSGA-II.” Wireless Personal

Communications. Vol. 102, No. 2, pp. 1369-85, 2018.

[34] Bikas MA, Alourani A, Grechanik M. “How elasticity

property plays an important role in the cloud: a

survey.” In Advances in Computers, Elsevier, Vol.

103, pp. 1-30, 2016.

[35] Calheiros RN, Ranjan R, Beloglazov A, De Rose CA,

Buyya R. “CloudSim: a toolkit for modeling and

simulation of cloud computing environments and

evaluation of resource provisioning algorithms.”

Software: Practice and experience. Vol. 41(1), pp. 23-

50, 2011.

[36] Kamalinasab S, Safi-Esfahani F, Shahbazi M. “CRFF.

GP: cloud runtime formulation framework based

on genetic programming.” The Journal of

Supercomputing. pp. 1-35, 2019.

[37] Vecchiola C, Chu X, Mattess M, Buyya R. “Aneka—

integration of private and public clouds.” Cloud

Computing Principles and Paradigms. Hoboken, NJ,

Majlesi Journal of Electrical Engineering Vol. 14, No. 2, June 2020

141

USA: Wiley. pp. 251-74, 2011.

[38] Wu L, Garg SK, Versteeg S, Buyya R. “SLA-based

resource provisioning for hosted software-as-a-

service applications in cloud computing

environments.” IEEE Transactions on services

computing. Vol. 7, No. 3, pp. 465-85, 2013.

[39] Khorsand R, Safi-Esfahani F, Nematbakhsh N,

Mohsenzade M. “ATSDS: adaptive two-stage

deadline-constrained workflow scheduling

considering run-time circumstances in cloud

computing environments.” The Journal of

Supercomputing. Vol. 73, No. 6, pp. 2430-55, 2017.

[40] Ma L, Lu Y, Zhang F, Sun S. “Dynamic task

scheduling in cloud computing based on greedy

strategy.” In International Conference on Trustworthy

Computing and Services, Springer, Berlin, Heidelberg,

pp. 156-162, 2012.

[41] Safari M, Khorsand R. “PL-DVFS: combining

Power-aware List-based scheduling algorithm with

DVFS technique for real-time tasks in Cloud

Computing.” The Journal of Supercomputing. Vol.

74, No. 10, pp. 5578-600, 2018.

[42] Safari M, Khorsand R. “Energy-aware scheduling

algorithm for time-constrained workflow tasks in

DVFS-enabled cloud environment.” Simulation

Modelling Practice and Theory. Vol. 87, pp. 311-26,

2018.

[43] Wang G, Yu HC. “Task scheduling algorithm based

on improved Min-Min algorithm in cloud

computing environment.” InApplied Mechanics and

Materials, Trans Tech Publications, Vol. 303, pp.

2429-2432, 2013.

[44] Salot P. “A survey of various scheduling algorithm

in cloud computing environment.” International

Journal of Research in Engineering and Technology.

Vol. 2, No. 2, pp. 131-5, 2013.

[45] Komarasamy D, Muthuswamy V. “ScHeduling of

jobs and Adaptive Resource Provisioning (SHARP)

approach in cloud computing.” Cluster Computing.

Vol. 21, No. 1, pp. 163-76, 2018.

[46] Hemasian-Etefagh F, Safi-Esfahani F. “Dynamic

scheduling applying new population grouping of

whales meta-heuristic in cloud computing.” The

Journal of Supercomputing. pp. 1-65, 2019.

