[1] P. Charith, P. Prem and C. Peter, “MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices,” in Processing of the 47th Hawaii International Conference on System Sciences (HICSS), Kona, Hawaii, USA, 2015.
[2] K. Paridel, E. Bainomugisha, Y. Vanrompay, Y. Berbers and W.D. Meuter, “Middleware for the Internet of Things, design goals and challenges,” Electronic Communication, vol. 28, 2010.
[3] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of Things: A vision, architectural elements, and future directions,” Future Generation of Computer System, vol 29, No 7, pp. 1645–1660, 2013.
[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey” Computer Network, vol 54, No 15, pp. 2787–2805, 2010.
[5] D. Le-Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, and C. Morbidoni, "Rapid prototyping of semantic mashups through semantic web pipes,” In proceeding of 18th International Conference on World Wide Web, pp. 581– 590, 2009.
[6] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, "The Internet of Things for ambient assisted living," In proceeding of 7th International Conference of Information Technology, New Generation (ITNG), 2010, pp. 804–809,
[7] J. I. Bangash, A. H. Abdullah, M. H. Anisi, and A. W. Khan, “A survey of routing protocols in wireless body sensor networks,” Sensors, vol. 14, no. 1, pp. 1322–1357, 2014.
[8] N. Bradai, L. C. Fourati, and L. Kamoun, “WBAN data scheduling and aggregation under WBAN/WLAN healthcare network,” Ad Hoc Netw., vol. 25, Part A, pp. 251–262, 2015.
[9] Lee, Changmin, and Jaiyong Lee. "Harvesting and Energy aware Adaptive Sampling Algorithm for guaranteeing self-sustainability in Wireless Sensor Networks." Information Networking (ICOIN), 2017 International Conference on.IEEE, 2017.
[10] Yoon, Ikjune, et al. "Adaptive sensing and compression rate selection scheme for energy-harvesting wireless sensor networks." International Journal of Distributed Sensor Networks 13.6 (2017): 1550147717713627.
[11] Zhu, Xing, et al. "A self-adaptive data acquisition technique and its application in landslide monitoring." Workshop on World Landslide Forum.Springer, Cham, 2017.
[12] Lu, Ting, et al. "Distributed sampling rate allocation for data quality maximization in rechargeable sensor networks." Journal of Network and Computer Applications 80 (2017): 1-9.
[13] Silva, João Marco C., et al. "LiteSense: An adaptive sensing scheme for WSNs." Computers and Communications (ISCC), 2017 IEEE Symposium on.IEEE, 2017.
[14] Fathy, Yasmin, PayamBarnaghi, and Rahim Tafazolli. "An Adaptive Method for Data Reduction in the Internet of Things." Proceedings of IEEE 4th World Forum on Internet of Things.IEEE, 2018.
[15]Diwakaran, S., Perumal, B., & Devi, K. V. (2018).A cluster prediction model-based data collection for energy efficient wireless sensor network. The Journal of Supercomputing, 1-15.
[16]Amarlingam, M., Mishra, P. K., Rajalakshmi, P., Giluka, M. K., &Tamma, B. R. (2018, February). Energy efficient wireless sensor networks utilizing adaptive dictionary in compressed sensing. In Internet of Things (WF-IoT), 2018 IEEE 4th World Forum on (pp. 383-388). IEEE.
[17]Papatsimpa, C., &Linnartz, J. P. (2018). Energy efficient communication in smart building WSN running distributed hidden Markov chain presence detection algorithm. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT 2018): Smart Cites and Nations. Institute of Electrical and Electronics Engineers (IEEE).
[18]Harb, H., &Makhoul, A. (2017).Energy Efficient Sensor Data Collection Approach for Industrial Process Monitoring.IEEE Transactions on Industrial Informatics.
[19] G. K. Ragesh and K. Baskaran, “A survey on futuristic health care system: WBAN,” Procedia Eng., vol. 30, pp. 889–896, 2012.
[20] National Early Warning Score (NEWS), Royal College of Physicians, London, U.K., May 2015. [Online]. Available: http://www.rcplondon. ac.uk/resources/national-early-warning-score-news
[21] Rault, Tifenn, et al. "A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications." Pervasive and Mobile Computing 37 (2017): 23-44.
[22] S. Elghers, A. Makhoul, and D. Laiymani, “Local emergency detection approach for saving energy in wireless body sensor networks,” in Proc. IEEE 10th Int. Conf. Wireless Mobile Comput., Netw. Commun., Oct. 2014, pp. 585–591.
[23] Habib, Carol, et al. "Self-adaptive data collection and fusion for health monitoring based on body sensor networks." IEEE transactions on Industrial Informatics 12.6 (2016): 2342-2352.
[24] A. Makhoul, H. Harb, and D. Laiymani, “Residual energy-based adaptive data collection approach for periodic sensor networks,” Ad Hoc Netw., vol. 35, pp. 149–160, 2015
[25] Y. Yin, C. Zhang, and Y. Li, “A twostage data fusion model for wireless sensor networks,” Int. J. Sensor Netw., vol. 15, no. 3, pp. 163–170, 2014.
[26] G. Li and Y. Wang, “Automatic ARIMA modeling-based data aggregation scheme in wireless sensor networks,” EURASIP J. Wireless Commun. Netw., vol. 2013, no. 1, pp. 1–13, 2013.
[27] J. Yang, T. S. Rosing, and S. S. Tilak, “Leveraging application context for efficient sensing,” in Proc. IEEE 9th Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process., 2014, pp. 1–6.