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ABSTRACT: 

In recent years, Network Coding (NC) has been used to increase performance and efficiency in Wireless Sensor 

Networks (WSNs). In NC, Sensor Nodes (SNs) of network first store the received data as a packet, then process and 

combine them and eventually send them. Since the bandwidth of edges between SNs is limited, management and 

balancing bandwidth should be used for NS. In this paper, we present an optimization model for routing and balancing 

bandwidth consumption using NC and multicast flows in WSNs. This model minimizes the ratio of the total maximum 

bandwidth to the available bandwidth in network's edges and we use the dual method to solve this model. We also use 

the Karush–Kuhn–Tucker conditions (KKT) to calculate a lower bound and find the optimal solution and point in 

optimization model. For this purpose, we need to calculate the derivative of the Lagrangian function relative to its 

variables, in order to determine the condition as a multi-excited multi-equation device. But since the solution of 

equations KKT is centralized and for WSNs with a large number of SNs, it is very difficult and time consuming and 

almost impractical, we provide a distributed and repeatable algorithm for solving proposed model in which instead of 

deriving derivatives, combination Sub-gradient method and network flow separation method are used, thus allow each 

SN locally and based on the information of its neighboring nodes performs optimal routing and balances bandwidth 

consumption in the network. The effectiveness of the proposed optimization model and the proposed distributed 

algorithm with multiple runs of simulation in terms of the number of Source SNs (SSNs) and Lagrange coefficient and 

step size have been investigated. The results show that the proposed model and algorithm, due to informed routing and 

NC, can improve the parameters of the average required time to find the route optimal, the total amount of virtual flow 

in network’s edges, the average latency end-to-end of the network, the consumed bandwidth, the average lifetime of 

the network and the consumed energy, or not very weak compared to other models. The proposed algorithm also has 

great scalability, because computations are done distributed and decentralized, and there is an insignificant 

dependence between the SNs. 

 

KEYWORDS: Wireless Sensor Networks; Consumption Bandwidth; Network Coding; Virtual Multicast Flow; 

Optimization Model. 

 

1. INTRODUCTION 

The tasks of each wireless sensor node include 

collecting, processing, and storing sensed data from the 

perimeter environment of WSNs and sending processed 

data by other SNs to sinks [1]. The limitations of 

WSNs include energy resources, memory, and 

bandwidth [2]. The maximum flow of transferable in 

WSNs is equal to the maximum amount of data that can 

be sent from a SSN to a set of destination SNs. In [3], 

the theorem Max-Flow Min-Cut and the method of 

calculating the maximum flow of transferable in graph 

theory are presented, which is equal to capacity of the 

minimum of cutting between the source and destination 

SNs. In traditional routing methods, the maximum flow 

of transferable cannot be reached, because they 

consider that the flow of data within the network is 

similar to the flow of fluids in the transmission 

pipelines, but using NC, hop nodes can process and 

combine imported packets and sent them as multicast 

and they use the maximum network capacity [4]. Since 

in WSNs, wireless channels have a multicasting 

feature, NC improves network performance. The left 

side Fig. 1 shows an example of a butterfly network 

that capacity and bandwidth of each its edge are equal 

to one, so that the maximum of flow of transferable 

between the SSN, S1 and the destination nodes S6 and 

S7 is equal to two, so we can send maximum two 

packets in each unit to both destination nodes S6 and 

S7. However, using traditional routing cannot reach the 

maximum flow of two packets per unit time. For this 
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purpose, according the right side Fig. 1, the node S4 

instead of sending separately and appropriately packets 

P1 and P2, encodes and XOR them together as P1⨁P2 

and sends to the node S5 and node S5 simultaneously 

sends them to both destination nodes S6 and S7. As a 

result, the maximum flow of two packets per unit time 

can be reached, using the NC. 
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Fig. 1. A Butterfly Network  

Left: with a maximum flow of two packets per time unit from the source node S1 to the destination nodes S6 and S7 [5] 

Right: How to achieve the maximum flow of two packets per unit time using NC [6]. 

 

In this paper, we present an optimization model for 

routing and balancing in bandwidth consumption using 

NC and multicast flows in WSNs. This model 

minimizes the ratio of the total maximum bandwidth to 

the available bandwidth in network's edges and uses the 

dual method to solve this model. We also use the KKT 

conditions to calculate a lower bound and find the 

optimal solution and point in optimization model. For 

this purpose, we need to calculate the derivative of the 

Lagrangian function relative to its variables, in order to 

determine the condition as a multi-excited multi-

equation device. But since the solution of equations 

KKT is centralized and for WSNs with a large number 

of nodes, it is very difficult and time consuming and 

almost impractical, we provide a distributed and 

repeatable algorithm for solving a proposed model in 

which instead of deriving derivatives, the combination 

of Sub-gradient method and network flow separation 

method is used, thus allowing each node locally and 

based on the information of its neighboring nodes, it 

performs optimal routing and balances bandwidth 

consumption in the network. 

The rest of this article is structured as follows. 

Section 2 includes introducing and investigating NC in 

WSNs. Section 3 involves presenting an optimization 

model using NC to balance the bandwidth consumption 

and find the optimal route. In section 4, a distributed 

and repeatable algorithm is proposed to solve the 

problem of choosing the path with NC, taking into 

account bandwidth constraints in WSNs. In section 5, 

simulation, comparison and evaluation of the 

effectiveness of the proposed model and algorithm are 

discussed and finally, in section 6, conclusions are 

made and suggestions for further research are 

presented. 

 

2. RESEARCH BACKGROUND 

The reference [4] introduced the COPE architecture 

to send coded packets in WSNs, which can 

significantly increase the performance. This 

architecture uses NC between the IP and MAC 

sessions, sending multicast packets, and XORs data 

flows together, so implementation is easy. In [5], 

authors used a combination of NC and topology control 

that increased efficiency in WSNs and, in reference [6], 

authors used the combination of NC and motion control 

of sink moving, which would increase efficiency in 

WSNs. In [7], it has been shown that the use of NC 

maximizes the transmission flowing in the network. In 

[8], it is showed that to reach the maximum multicast 

flow capacity for each destination, NC should be used. 

NC reduces traffic flow and shares all the nodes in 
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sending packets, and as a result, traffic volume is 

balanced and therefore reduces energy consumption 

and increases the lifetime of WSNs. Also, because in 

NC, packets are sent from multiple paths, it increases 

reliability and security. Since the required energy to 

compute and combine packets in the middle SNs is 

much less than the required energy to send and receive 

packets, NC increases efficiency or performance and 

reduces bandwidth consumption, latency, complexity, 

and costs in the network. Fig. 2 shows a variety of 

methods NCs in WSNs [9]. 

The NC disadvantage, memory limitation, and 

buffer overflow in nodes of WSNs and increased traffic 

in the network bandwidth are due to sending packets 

from different paths. In NC, the hop nodes produce a 

series of encoded packets, and destination nodes must 

be able to detect and decode these packets by the 

Gaussian elimination method [10]. The complexity of 

the Gaussian elimination method is of degree three, and 

as the number of SSNs in the WSN is higher, NC is 

impossible and impractical. The other problem with 

Gaussian elimination method is the limited number of 

encoded packets, and if the number of encoded packets 

is less than the limited number, the number of decoded 

packets would be almost zero [11]. To overcome these 

problems and to perform optimal NC, we must use 

more nodes with more computational power or we limit 

the number of encoder hop nodes that selection of the 

minimum number of nodes with the ability NC is a NP-

hard problem [9]. 

. 

Network Coding 

Protocols

Active

Hop-by-Hop 

Routing 

[4,13,17]

Passive

Source 

Routing 

[3,5,11]

Distributed
Centralized

[1,2,7,9,12]

 
Fig. 2. Types of NC Methods in WSNs [9]. 

 

2.1. Contributions in this Article 

The most important works done in this article 

compared with previous articles are as the following: 

 The goal of proposed optimization model is to 

create balancing and reduce bandwidth consumption, 

which is the generalized Integer Linear Programming 

model (ILP) in [8, 12]. 

 The proposed model is independent of the 

density and deployment, the sending domain, and the 

energy model of the SNs, and its parameters include the 

rate of production and sending of data. 

 The proposed algorithm with appropriate 

complexity, distributed and repeatable and based on the 

information of the neighboring nodes, balances the 

bandwidth consumption in network's edges, which 

greatly increases the scalability of WSNs. 

 Investigating the effect of increasing the 

number of SSNs and Lagrange coefficient and step size 

in the proposed model and algorithm on the average 

required time to find the optimal path, the total amount 

of virtual flow in network’s edges, the average latency 

of end-to-end network, the consumed bandwidth, the 

average lifetime of the network and consumed energy. 

 

3. SYSTEM MATHEMATICAL MODEL 

In this paper, in order to simplify problem and the 

proposed optimization model, we assume that 

environment is open and flat, and radio coverage is 

completely regular, which in the future can be used in 

real-world conditions, such as inside the building or 

under hard conditions, and irregular and intermittent 

radio coverage. For the modeling of WSN, such as 

articles [8], [12], we use the model of graph 𝐺=(𝑁,𝐸) 

and supergraph 𝐺=(𝑁,𝐴), which 𝑁 is the finite set of 

nodes, 𝐸 is the finite set of edges, and 𝐴 is the set of 

superedges. An edge of a node such as 𝑖 starts and ends 

with another node, such as 𝑗, and it is displayed with 

(𝑖,). A superedge consists of a set of edges that starts 

with a node such as 𝑖 and ends with 𝒥𝑖 or a set of 

neighbors or nodes that are within the sending domain 

of the node 𝑖 represented by (𝑖,). Sending data using NC 

involves two stages of coding and routing [4]. In the 

coding step, data is stored in packets in the hop nodes, 

and then their linear combination is sent to the output 

edges [5]. In the routing stage, the best subgraph is 

selected to send coded multicast packets. Optimal 

routing without using NC for multicast flows is a Np-

hard problem [6], while using NC as an optimization 

problem [13]. In NC, there are two types of virtual and 

real flows, where virtual flow is an intermediate 

variable and is used to obtain real flow. We assume that 

(𝑖,𝑗) is the amount of virtual flow passing on the edge 

(𝑖,𝑗) and 𝑅(𝑖,𝒥𝑖) the real flow passing from node 𝑖 to its 

neighbors or 𝒥𝑖. Table 1 contains the required symbols 

and definitions for the optimization model and 

proposed algorithm. 
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Table 1. Symbols used in the optimization model and proposed algorithm. 

Symbol Definition 

𝒥𝑖 A set of neighbors or nodes that are in the sending domain of node 𝑖 

𝑎(𝑖,𝑗) The amount of cost function or required energy to send a packet on the edge (𝑖,𝑗) 

𝐵𝑀𝑎𝑥 The amount maximum of bandwidth for each edge in the network  

𝐵(𝑖,𝑗) The amount of available bandwidth on edge (𝑖,𝑗)  

𝑉(𝑖,𝑗) The amount of virtual flow on the edge (𝑖,𝑗)  

𝑅(𝑖,𝒥𝑖) The amount of real flow of the node 𝑖 on the superedge (𝑖,𝒥𝑖) 

𝛥𝑖 The amount of fixed and non-negative of supply and demand in the node 𝑖  

𝑥[𝑛] A point of the feasible space at the step 𝑛  

𝜃[𝑛] Step size at point 𝑥[𝑛]  

𝜔[𝑛] Sub-gradient of the Lagrangian function at the point 𝑥[𝑛]  

𝑥[𝑛+1] The next step  

𝑥̂[𝑛 + 1] Solution and optimal point  

 

The optimization model below shows how to send a 

multicast flow based on NC at the lowest cost in the 

network [5], [8], [12]. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  

𝑓(𝑅) =∑∑𝑅(𝑖,𝒥𝑖). 𝑎(𝑖,𝑗)
𝑗∈𝒥𝑖𝑖∈𝑁

 

∀ 𝑖, 𝑗 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖 

(1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   

𝑅(𝑖,𝒥𝑖) ≥ ∑ 𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

 

∀ 𝑖, 𝑗 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖  

(2) 

𝑉(𝑖,𝑗) ≥ 0 

∀ 𝑖, 𝑗 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸 
(3) 

𝑅(𝑖,𝑗) ≤ 𝐵(𝑖,𝑗) 

∀ 𝑖, 𝑗 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖 
(4) 

∑𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

− ∑ 𝑉(𝑗,𝑖)
𝑗∈𝒥𝑖

= {
𝛥𝑖 𝑖𝑓 𝑖 𝑖𝑠 𝑠𝑜𝑢𝑟𝑐𝑒
−𝛥𝑖  𝑖𝑓 𝑖 𝑖𝑠 𝑠𝑖𝑛𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

∀ 𝑖, 𝑗 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖 

(5) 

 

In this model, the objective function (1), minimizes 

the cost of real flows, or 𝑓(𝑅) on all network nodes, 

where 𝑎(𝑖,𝑗) is the amount of cost function or required 

energy to send a packet over the edge (𝑖,𝑗) which 

depends on the sending domain of node. Constraint (2) 

states that the real flow that passes from a node is 

always greater than the value of all the virtual flows 

passing through that node, and since the antenna of all 

nodes is oriented in a general direction, by sending a 

flow of node 𝑖, all neighbors 𝑖 or 𝒥𝑖 receive the flow. 

Constraint (3) states that real and virtual flows are 

positive. Constraint (4) states that the maximum real 

flow passing through an edge should be less than or 

equal to the bandwidth at that edge. Constraint (5) 

states the law of the survival of multicast flows as a 

single-flow, where the difference between the total 

input and output flows in the hop SNs is zero and in the 

Source Sensor Nodes (SSNs) is equal to fixed and non-

negative value supply and demand or 𝛥𝑖 and in the 

destination nodes is equal to -𝛥𝑖. 
In [14], a similar optimization model has provided 

the above constraints for sending the multicast flow 

with minimum energy consumption in a subgraph of 

WSN, for this purpose the value of the cost function 

𝑎(𝑖,𝑗) is considered equal to the square of the distance 

between the two nodes. If the sending domain of a node 

is less than the distance between two nodes, then the 

flow between two nodes will not be established. In 

[15], authors have proved that the above optimization 

model is a linear optimization model with exponential 

execution time, and solution of this model is an optimal 

value of (𝑖,𝑖). In this paper, because the bandwidth in 

network's edges is limited, in order to reduce energy 

consumption and cost, the objective function and the 

main cost of the problem are the balance of bandwidth 

consumption. If 𝐵𝑀𝑎𝑥 is the maximum bandwidth for 

each network's edge and (𝑖,) is the amount of available 
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bandwidth in the edge (𝑖,𝑗), then we consider cost 

function as 𝑎(𝑖,𝑗)=𝐵𝑀𝑎𝑥/𝐵(𝑖,𝑗). Therefore, the edges with 

freer bandwidth will have more priority to be selected 

for routing based on NC. Also, due to the use of 

multicasting in SNs, we change the constraint (4) as 

𝑅(𝑖,𝒥𝑖) ≤ ∑ 𝐵(𝑖,𝑗)𝑗∈𝒥𝑖 . In addition, in order to be able to 

replace only the value of virtual flow with the value of 

real flow in other constraints, we modify the constraint 

(2) as 𝑅(𝑖,𝒥𝑖) =max
𝑗∈𝒥𝑖

 {𝑉(𝑖,𝑗)}. However, because this 

constraint is discrete, then it should be converted into a 

continuous form. For this purpose, we use the norm 

approximation 𝑙𝑚 as following [2].  

 

𝑅(𝑖,𝒥𝑖) = max
𝑗∈𝒥𝑖

 {𝑉(𝑖,𝑗)}

= lim
𝑛→∞

(∑(𝑉(𝑖,𝑗))
𝑛

𝑗∈𝒥𝑖

)

1
𝑛⁄

≈ (∑(𝑉(𝑖,𝑗))
𝑛

𝑗∈𝒥𝑖

)

1
𝑛⁄

 

(6) 

Also, for the proposed model to be convex and in 

the form of a linear minimization problem, we place 

constraints on an unequal side. According to described 

above, the proposed convex mathematical optimization 

model for sending multicast flows based on NC and 

balancing bandwidth consumption in network’s edges 

is as follows. We call this model as an optimization 

model of generate balance in bandwidth consumption 

using NC or BNCOM. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  

𝑓(𝑅) =∑∑𝑅(𝑖,𝒥𝑖).
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

𝑗∈𝒥𝑖𝑖∈𝑁

 

∀ 𝑖, 𝑗 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖 

(7) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑅(𝑖,𝒥𝑖) = (∑(𝑉(𝑖,𝑗))
𝑛

𝑗∈𝒥𝑖

)

1
𝑛⁄

 

∀ 𝑖 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖 

(8) 

−𝑉(𝑖,𝑗) ≤ 0 

∀ 𝑖, 𝑗 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸 
(9) 

𝑅(𝑖,𝒥𝑖) − ∑𝐵(𝑖,𝑗)
𝑗∈𝒥𝑖

≤ 0 

∀ 𝑖, 𝑗 ∈ 𝑁, 𝑗 ∈ 𝒥𝑖 

(10) 

∑𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

− ∑ 𝑉(𝑗,𝑖)
𝑗∈𝒥𝑖

− 𝛥𝑖 = 0 

∀ 𝑖, 𝑗 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐸, 𝑗 ∈ 𝒥𝑖 

(11) 

 

3.1. Dual Model 

Linear minimization problems are subclasses of 

convex optimization problems and there are several 

ways to solve them [16]. One of the methods for 

solving mathematical optimization problems is using a 

dual model [17]. For this purpose, and calculating a 

lower bound for the model, the Lagrangian convex 

function is required and a coefficient for each 

constraint [18]. Since the variable (𝑖,𝑖) is in terms of the 

auxiliary variable 𝑉(𝑖,𝑗), it can be replaced in the 

objective function and an optimization model with a 

objective function in terms of the variable 𝑉(𝑖,𝑗) can be 

obtained. The Lagrangian function for the objective 

function and the constraints of the above model is as 

follows, where 𝑉 is the variable of virtual flow 

optimization in the network and 𝛼, 𝛽, 𝛾 and 𝛿 are 

Lagrange coefficients in terms of variables 𝑖 and 𝑗 for 

constraints. 

 

𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿) =∑∑𝑅(𝑖,𝒥𝑖).
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

𝑗∈𝒥𝑖𝑖∈𝑁

+∑𝛼𝑖 . (∑(𝑉(𝑖,𝑗))
𝑛

𝑗∈𝒥𝑖

)

1
𝑛⁄

𝑖∈𝑁

+∑𝛽𝑖 . (𝑅(𝑖,𝒥𝑖)
𝑖∈𝑁

− ∑𝐵(𝑖,𝑗)
𝑗∈𝒥𝑖

) + 

∑∑𝛾(𝑖,𝑗). (−𝑉(𝑖,𝑗))

𝑗∈𝒥𝑖𝑖∈𝑁

+∑∑𝛿(𝑖,𝑗). (𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖𝑖∈𝑁

− 𝑉(𝑗,𝑖) − 𝛥𝑖) 

(12) 

Since the objective function and the conditions of 

the proposed optimization model are convex and 

separable, the dual of this model is also convex and has 

a unique solution. As a result, the proposed model 

above is defined as follows. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)  

Subject to 

∀ 𝑖∈𝑁, 𝑗∈𝒥𝑖, 𝛼𝑖≥0, 𝛽𝑖≥0, 𝛾(𝑖,𝑗)≥0, 𝛿(𝑖,𝑗)≥0 

(13) 

If 𝛹̂ is the optimal value of the proposed model and 

𝑉̂ is the optimal value of the variable 𝑉, then 𝛹̂ ≤

𝐿(𝑉̂, 𝛼, 𝛽, 𝛾, 𝛿). Also, if 𝛷̂ is the duality optimal value 

of the proposed model, then 𝛷̂ = 𝐿(𝑉̂, 𝛼̂, 𝛽̂, 𝛾, 𝛿̂), 

where 𝛼̂, 𝛽̂, 𝛾 and 𝛿̂ are the optimal values of the 

Lagrangian coefficients 𝛼, 𝛽, 𝛾 and 𝛿. The difference 

between 𝛹̂ and 𝛷̂ is the dual distance [20]. In general, 

for convex and non-convex problems, 𝛹̂ ≤ 𝛷̂, but if 

the convex optimization problem is achievable with at 

least one point, then 𝛹̂ = 𝛷̂, which in this case is 

known as the strong duality or slater conditions [21]. In 

this paper, because we want to find the best optimal 

point for the problem, slater conditions or strong 

duality must be met. That is, the solution and the 

optimal point of the proposed optimization model and 

the dual model of the model should be the same. For 

this purpose, we use the Karush-Kuhn-Tucker 

conditions (KKT). 

 

3.2. Karush-Kuhn-Tucker Conditions (KKT) 

The KKT conditions are used to find the optimal 

solution and optimal point in the optimization model. 

For this purpose, it is necessary to first calculate the 

derivative of the Lagrangian function relative to its 

variables and coefficients, in order to obtain the 

condition as a multi-excited multi-equation device, 

solving this device leads to finding the optimal solution 

and point for the variable 𝑉 or the amount of virtual 

flow in the network. The derivative of the Lagrangian 

function relative to its variables and coefficients is as 

follows: 

 
𝜕𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)

𝜕𝑉(𝑖,𝑗)

=
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

.
𝜕𝑅(𝑖,𝒥𝑖)

𝜕𝑉(𝑖,𝑗)

+ 𝛼𝑖 .
𝜕 ((∑ (𝑉(𝑖,𝑗))

𝑛
∀𝑗∈𝒥𝑖 )

1
𝑛⁄
)

𝜕𝑉(𝑖,𝑗)
+ 

𝛽𝑖 .
𝜕(𝑅(𝑖,𝒥𝑖) − ∑ 𝐵(𝑖,𝑗)𝑗∈𝒥𝑖 )

𝜕𝑉(𝑖,𝑗)
+ 𝛾(𝑖,𝑗).

𝜕(−𝑉(𝑖,𝑗))

𝜕𝑉(𝑖,𝑗)

+ 𝛿(𝑖,𝑗).
𝜕(𝑉(𝑖,𝑗) − 𝑉(𝑗,𝑖) − 𝛥𝑖)

𝜕𝑉(𝑖,𝑗)
 ⇒ 

 

𝜕𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)

𝜕𝑉(𝑖,𝑗)

=
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

.
𝜕𝑅(𝑖,𝒥𝑖)

𝜕𝑉(𝑖,𝑗)

+ 𝛼𝑖 .
1

𝑛
. (𝑉(𝑖,𝑗))

𝑛−1
. (∑(𝑉(𝑖,𝑗))

𝑛

𝑗∈𝒥𝑖

)

(1 𝑛⁄ )−1

+ 

𝛽𝑖 .
𝜕𝑅(𝑖,𝒥𝑖)

𝜕𝑉(𝑖,𝑗)
− 𝛾(𝑖,𝑗) + 𝛿(𝑖,𝑗) 

(14) 

𝜕𝑅(𝑖,𝒥𝑖)

𝜕𝑉(𝑖,𝑗)

=
1

𝑛
. (𝑉(𝑖,𝑗))

𝑛−1
. (∑(𝑉(𝑖,𝑗))

𝑛

𝑗∈𝒥𝑖

)

(1 𝑛⁄ )−1

 

(15) 

𝜕𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)

𝜕𝛼𝑖
= (∑(𝑉(𝑖,𝑗))

𝑛

𝑗∈𝒥𝑖

)

1
𝑛⁄

 (16) 

𝜕𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)

𝜕𝛽𝑖
= 𝑅(𝑖,𝒥𝑖) − ∑𝐵(𝑖,𝑗)

𝑗∈𝒥𝑖

 (17) 

𝜕𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)

𝜕𝛾(𝑖,𝑗)
= −𝑉(𝑖,𝑗) (18) 

𝜕𝐿(𝑉, 𝛼, 𝛽, 𝛾, 𝛿)

𝜕𝛿(𝑖,𝑗)
= 𝑉(𝑖,𝑗) − 𝑉(𝑗,𝑖) − 𝛥𝑖 (19) 

The multi-excited multi-equation device of this 

model is as follows. Since the proposed model is 

convex, there is an optimal and minimal solution for 

the variable 𝑉 according to the Lagrange coefficients 𝛼, 

𝛽, 𝛾 and 𝛿, which must satisfy the following conditions. 

 

𝛼̂𝑖
𝑛
. (𝑉̂(𝑖,𝑗))

𝑛−1
. (∑(𝑉̂(𝑖,𝑗))

𝑛

𝑗∈𝒥𝑖

)

(1 𝑛⁄ )−1

+ (𝛽̂𝑖 +
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

) − 𝛾(𝑖,𝑗)

+ (𝛿̂(𝑖,𝑗) − 𝛿̂(𝑗,𝑖)) = 0 

(20) 

𝛼̂𝑖 . ((∑(𝑉̂(𝑖,𝑗))
𝑛

𝑗∈𝒥𝑖

)

1
𝑛⁄

− ∑𝐵(𝑖,𝑗)
𝑗∈𝒥𝑖

) = 0 (21) 

−𝑉̂(𝑖,𝑗) ≤ 0 (22) 

𝛾(𝑖,𝑗). 𝑉̂(𝑖,𝑗) = 0 (23) 
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∑ 𝑉̂(𝑖,𝑗)
𝑗∈𝒥𝑖

− ∑ 𝑉̂(𝑗,𝑖)
𝑗∈𝒥𝑖

− 𝛥̂𝑖 = 0 (24) 

𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0, 𝛾(𝑖,𝑗) ≥ 0, 𝛿(𝑖,𝑗) ≥ 0 (25) 

 

4. DISTRIBUTED ALGORITHM FOR SOLVING 

OPTIMIZATION MODEL 

In the previous section, we presented an 

optimization model for routing and balancing in 

bandwidth consumption using NC and multicast flows 

in WSNs. This model minimizes the ratio of the total 

maximum bandwidth to the available bandwidth in 

network's edges and uses the dual method to solve this 

model. We also used the KKT conditions to calculate a 

lower bound and find the optimal solution and point. 

For this purpose, we need to calculate the derivative of 

the Lagrangian function relative to its variables and 

coefficients, so that conditions are considered as a 

multi-excited multi-equation device. Solving this 

device leads to finding the optimal solution for the 

variable 𝑉 or the amount of virtual flow in the network. 

The solution of the KKT conditions for the WSNs with 

a large number of nodes is very difficult and time 

consuming and almost impractical because it requires 

the data of all nodes gathered at a central node and the 

calculations performed, and then sending the answer of 

these equations to other nodes. In this section, to solve 

this problem, we provide a distributed and repeatable 

algorithm for solving a proposed model in which 

instead of derivatives, the combination of sub-gradient 

method and method of separation of network flows is 

used. Then each node is calculated locally and based on 

the information of its neighboring nodes and these 

equations and the optimal routing is made and then it is 

decided which packets pass on what paths to balance 

bandwidth consumption in the SNs. 

Sub-gradient method is similar to the depth search 

algorithm, and it searches directly to find the optimal 

solution of problem in the area of the response, and 

generating a convergent sequence whose limit point is a 

local minimum. Sub-gradient method is used in 

nonlinear optimization models [19]. In the sub-gradient 

method, the value of the objective function does not 

always decrease, but it may increase. Any point that is 

generated during the run of the search algorithm is 

achievable and can be used as an intermediate solution. 

If the problem-solving process is stopped before it 

reaches the solution, then the final point is an 

achievable solution and is probably the best solution for 

the main problem. The convergence rate of the Newton 

method is more than the Sub-gradient method, but 

since the Sub-gradient method is simpler and less 

computational than the Newton method, often is used 

for wireless SNs with low-power [22]. In mathematics, 

Sub-gradient method is a concept that generalizes the 

derivative for irrelevant functions. The Sub-gradient 

value of a point such as 𝑥0 of an open convex set is 

equal to the vector 𝑣, which for every point 𝑥 holds the 

relation 𝑓(𝑥)-𝑓(𝑥0)≥𝑣⨂(𝑥-𝑥0), where 𝑓 is a convex 

function on an convex open set and is not necessarily 

indeterminate at all points, and the operator ⨂ 

represents the interior multiplication. The set of all 

Sub-gradients 𝑥0 for a convex function is called Sub-

gradient in 𝑥0 and is represented with ∂(𝑥0), which is a 

non-null, closed, and convex set. The value of the Sub-

gradient ∂(𝑥0) is in the closed interval and non-null 

[𝑎,𝑏], where 𝑎 = lim
𝑥→𝑥0

−

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
 and 𝑏 =

lim
𝑥→𝑥0

+

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
 [23]. 

The proposed optimization model in section 3 of 

this paper is a convex model. If we assume that 𝑋 is a 

set of optimal points and solutions, then the set 𝑋 must 

be closed, convex and non-null. Assuming there is an 

optimal point for the proposed model, this proposed 

model can be solved using Sub-gradient method. In the 

Sub-gradient method, in step 𝑛, if 𝑥[𝑛]∈𝑋 be an point 

of achievable space and 𝜃[𝑛] be the step size, and 𝜔[𝑛] 

be the Sub-gradient of the Lagrangian function at 𝑥[𝑛], 

then 𝑥[𝑛+1]∈𝑋 is the next step point and 𝑥̂[𝑛 + 1] will 

be the solution and optimal point. As a result, we 

consider nearest point to 𝑥̂[𝑛 + 1] as the point [𝑛+1] 

using the mapping function 𝑃𝑋, whose relations are as 

follows. Therefore, at each stage of the Sub-gradient, in 

the negative direction of Sub-gradient, the value of the 

function is reduced. 

 

𝑥̂[𝑛 + 1] = 𝑥[𝑛]-𝜃[𝑛].𝜔[𝑛] (26) 

𝑃𝑋(𝑥̂) = 𝑎𝑟𝑔𝑚𝑖𝑛{‖𝑥-𝑥̂‖: 𝑥∈𝑋}  (27) 

𝑥[𝑛+1] = 𝑃𝑋(𝑥̂[𝑛+1]) (28) 

The Lagrange optimization model presented in 

section 3 of this article for each SN such as 𝑖 is as 

follows. 

𝐿𝑖(𝑉, 𝛿)𝑖 = 𝑅(𝑖,𝒥𝑖).
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

+ 𝛿𝑖. (∑ 𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

− ∑ 𝑉(𝑗,𝑖)
𝑗∈𝒥𝑖

− 𝛥𝑖) 

= 𝑅(𝑖,𝒥𝑖).
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

+∑ 𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

. (𝛿𝑖[𝑛] − 𝛿𝑗[𝑛])

− 𝛿𝑖. 𝛥𝑖 

(29) 

The sum of the above Lagrangian functions for all 
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SNs is equal to the Lagrangian function of the 

optimization model. 

 

𝐿(𝑉, 𝛿) = ∑𝐿𝑖(𝑉, 𝛿)𝑖
𝑖∈𝑁

=∑𝑅(𝑖,𝒥𝑖).
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

𝑖∈𝑁

+∑

(

 
 
(∑ 𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

. (𝛿𝑖[𝑛]

𝑖∈𝑁

− 𝛿𝑗[𝑛])) − 𝛿𝑖 . 𝛥𝑖

)

 
 

 

(30) 

But the value of the objective function may not be 

reduced at some times, or the value 𝑥̂[𝑛 + 1] does not 

belong to 𝑋. Therefore, it is necessary that the best 

value [𝑛] be stored in the variable 𝑥̂ and the 

corresponding value of the Lagrangian function at this 

point and for that value is stored at the upper limit or 

𝑈𝐵 as follows. 

 

𝑈𝐵𝑖 = 𝐿𝑖(𝑉[𝑛], 𝛿[𝑛])𝑖

= 𝑅(𝑖,𝒥𝑖).
𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

+ ∑ 𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

(𝛿𝑖[𝑛] − 𝛿𝑗[𝑛])

− 𝛿𝑖[𝑛]. 𝛥𝑖 

(31) 

At this stage, the Lagrangian function is 

decomposed and discrete into several smaller functions, 

and each function is assigned to a node. The calculation 

of each function in each node is performed 

simultaneously, and at each step, each SN must 

calculate and maintain both the value of virtual flow 

between the two nodes 𝑖 and 𝑗 in the step 𝑛 or (𝑖,𝑗)[𝑛] 

and the Lagrangian coefficient of the problem at 𝑛 or 

𝛿𝑖[𝑛] and then each SN exchanges the value of these 

variables with its neighbors and eventually is updated 

to improve the total of Lagrange functions. For this 

purpose, once we assume that value of variable 𝑉(𝑖,𝑗)[𝑛] 
is constant, then we calculate and update the value of 

variable 𝛿𝑖[𝑛+1] and once we assume the value of 

variable 𝛿𝑖[𝑛] is constant, and then we calculate and 

update the value of variable 𝑉(𝑖,𝑗)[𝑛+1]. In the first case, 

assuming that the value of variable (𝑖,)[𝑛] be constant, 

the value of variable 𝛿𝑖[𝑛+1] is calculated and updated 

with the Sub-gradient method as following: 

(𝜔𝛿)𝑖[𝑛] =
𝜕𝐿𝑖(𝑉, 𝛿)𝑖

𝜕𝛿𝑖

= ∑ 𝑉(𝑖,𝑗)
𝑗∈𝒥𝑖

[𝑛]

− ∑ 𝑉(𝑗,𝑖)
𝑗∈𝒥𝑖

[𝑛] − 𝛥𝑖 

(32) 

𝛿𝑖[𝑛 + 1] = (𝛿𝑖[𝑛] + 𝜃𝑛[𝑛](𝜔𝛿)𝑖[𝑛])
+ (33) 

Which, 𝜃𝛿[𝑛] is step size and (𝜔𝛿)𝑖[𝑛] is Sub-

gradient or derivative of the Lagrangian function 

relative to the variable 𝛿𝑖 in 𝑥[𝑛], and ()+ is the mapping 

function that calculated the nearest nonnegative point 

as (𝑎)+ = {
𝑎 𝑖𝑓 𝑎 > 0
0 𝑖𝑓 𝑎 ≤ 0

 [4].  

In the second case, if the value of variable [𝑛] be 

constant, the value of variable 𝑉(𝑖,𝑗)[𝑛+1] independently 

and separately is calculated and updated by each SN 

such as 𝑖 for each edge (𝑖,𝑗) as follows,  

 

𝑉(𝑖,𝑗)[𝑛 + 1]

= 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑥≤𝐶𝑖

{
 
 

 
 𝐵𝑀𝑎𝑥
𝐵(𝑖,𝑗)

. (∑((𝑉(𝑖,𝑡)[𝑛])
𝑛
+ 𝑥𝑛)

𝑡∈𝒥𝑖

)

1
𝑛⁄

+𝑥. (𝛿𝑖[𝑛] − 𝛿𝑗[𝑛]) }
 
 

 
 

 

(34

) 

Where, variable 𝑥 is the decision variable, and 

𝑎𝑟𝑔𝑚𝑖𝑛 means to find the minimum value for the 

decision variable 𝑥 and the values of variables 𝛿𝑖[𝑛] 

and 𝑉(𝑖,𝑡)[𝑛] are constant, where variable 𝑉(𝑖,𝑡) is similar 

to variable 𝑉(𝑖,𝑗) except that the value of virtual flow 

from the node 𝑖 to the receiver or destination is 

different, such as node 𝑡. This equation is a convex 

single-valued problem where has low computational 

complexity for each SN. 

Because the proposed algorithm randomly selects 

Sub-gradient of the function or (𝜔𝛿)[𝑛], the condition 

of algorithm termination may never occur even with the 

optimal point 𝑥̂[𝑛] and the algorithm does not 

converge. For the convergence of the proposed 

algorithm, we must establish the relation 

lim
𝑛→∞

‖𝑉[𝑛+1]−𝑉[𝑛]‖

‖𝑉[𝑛+1]‖
= 0. The convergence of the Sub-

gradient algorithm depends on the choice of step size or 

𝜃. If the step size decreases in each step, the 

convergence of the algorithm increases, so that we first 

select the step size as an average value, and gradually 

reduce its value, approaching the optimal solution of 

the problem. It is proved that if the step size has the 

three conditions 𝜃[𝑛] > 0 (𝑖), ∑ 𝜃[𝑛] =𝑛∈𝑁 ∞ (𝑖𝑖),
lim
𝑛→∞

𝜃[𝑛]2 = 0 (𝑖𝑖𝑖), the algorithm ends either at the 

optimal point or after a limited number of steps [23], 

the value of 𝑈𝐵𝑖 will be close to 𝐿𝑖(𝑉̂,𝛿̂)𝑖. The condition 

(𝑖) ensures that the step size must be positive and the 
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condition (𝑖𝑖) ensures that the amount of step size or [𝑛] 

does not decrease very quickly, and the repetitions 

number is not very low, and condition (𝑖𝑖𝑖) ensures that 

increasing the repetitions number increases the 

reaching probability to the optimal solution and the step 

size can be reduced to zero. For example, if the step 

size be as 𝜃[𝑛] =
𝑙

𝑘+𝑛
 with 𝑙 and 𝑘 positive, then the 

series will be divergent, and the larger value of 𝑙, the 

step size will be larger and the larger value of 𝑘, the 

step size will be smaller [24]. Fig. 3 shows the 

flowchart of the proposed distributed and repeatable 

algorithm based on NC for routing and balancing the 

bandwidth consumption in network's edges. Fig. 4 also 

shows the proposed algorithm, which is a distributed 

algorithm based on NC and to balance the bandwidth 

consumption in the network. We call this algorithm 

BNCDA. This algorithm is executed by each SN and at 

each stage generates a string of points for routing the 

encoded data, and each point is calculated based on 

previous points. As the number of steps to reach the 

optimal solution is less, the convergence of the 

proposed algorithm BNCDA will be better. 

 

 

Fig. 3. Flowchart of Proposed Distributed Algorithm BNCDA. 

 

Algorithm BNCDA 

Begin 

n⃪1; 

Select an initial point and  

Select the current point as the optimal point; 

∀ (𝑖,𝑗)∈𝐸 :  𝑉̂(𝑖,𝑗) = 𝑉(𝑖,𝑗)[1] = 0; 

∀ 𝑖∈𝑁 :   𝛿̂𝑖 = 𝛿𝑖[1] = 0; 
Calculating the upper bound of  

start 

end 

Calculating the upper bound 
of the objective function or 

𝑈𝐵𝑖 using equation (31) 

Select the current point as the 

optimal point 

∀ (𝑖,)∈𝐸 : 𝑉̂(𝑖,𝑗) = 𝑉(𝑖,𝑗)[1]=0 

∀ 𝑖∈ : 𝛿̂𝑖 = 𝛿𝑖[1]=0 

n++ 

Each node 𝑖 calculates values 

of variables (𝑖,𝑗)[𝑛] and 𝛿𝑖[𝑛] 

and (𝜔𝛿)𝑖[𝑛] using equations 
(32,33,34) and sends to the all 

its output edges 

Each node 𝑖 calculates value 

of variables (𝑖,𝑗)[𝑛+1] and 

𝛿𝑖[𝑛+1] and 𝑅(𝑖,𝒥𝑖)[𝑛+1] using 

equations (33, 34, 6) 

yes 

yes 

No 

No 

 𝐿(𝑉[𝑛+1],𝛿[𝑛+1])𝑖<𝑈𝐵𝑖 

 
∀ 𝑖∈𝑁 

‖(𝜔𝛿)𝑖[𝑛]‖=0 

 
Step one: 𝑛=1 

Select an initial point 

 

The value of 𝑉̂(𝑖,𝑗) is 

the optimal solution 

and the minimum 
solution of the problem 

𝑈𝐵𝑖= 𝐿𝑖(𝑉[𝑛 + 1], 𝛿[𝑛 + 1])𝑖 

𝛿̂𝑖 = 𝛿𝑖[𝑛 + 1] 

𝑉̂(𝑖,𝑗) = 𝑉(𝑖,𝑗)[𝑛 + 1] 
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the objective function or 𝑈𝐵𝑖 using equation (31);  
while ∀ 𝑖∈𝑁 ||(𝜔𝛿)𝑖[𝑛]|| != 0 

 Begin 

Each node calculates the values of  

variables 𝑉(𝑖,𝑗)[𝑛] and 𝛿𝑖[𝑛] and (𝜔𝛿)𝑖[𝑛]  
using equations (32) and (33) and (34) and  

Sends its output to all the network's edges; 

𝑛++; 

Each node calculates the value of  

The variables (𝑖,)[𝑛+1] and 𝛿𝑖[𝑛+1] and 𝑅(𝑖,𝒥𝑖)[𝑛+1]  

using equations (33) and (34) and (6); 

if 𝐿𝑖(𝑉[𝑛+1], 𝛿[𝑛+1])𝑖 < 𝑈𝐵𝑖, then  

 Begin 

update the optimal values of 𝑉̂(𝑖,𝑗) and 𝛿̂𝑖 and 𝑈𝐵𝑖  as  

𝑉̂(𝑖,𝑗) = 𝑉(𝑖,𝑗)[𝑛 + 1]; 

𝛿̂𝑖 = 𝛿𝑖[𝑛 + 1]; 
𝑈𝐵𝑖 = 𝐿𝑖(𝑉[𝑛 + 1], 𝛿[𝑛 + 1])𝑖; 
End if 

End while 

return the value of 𝑉̂(𝑖,𝑗) as the optimal and minimum 

solution value;  

End.  

Fig. 4. The pseudo code of the proposed distributed 

algorithm BNCDA. 

 

5. SIMULATION AND PERFORMANCE 

EVALUATION 

In this section, we evaluate the efficiency and 

performance of the proposed model BNCOM in section 

3 and the proposed distributed algorithm BNCDA, in 

section 4 of this article in terms of bandwidth 

consumption and the total amount of virtual flow in 

network’s edges or 𝑉 based on parameters of step size 

or 𝜃, Lagrange coefficient or 𝛿 in different stages and 

then we compare them with optimization models 

SIPNec [8] and OPT [12]. The model SIPNec uses NC 

and to send encoded data uses hop and mule nodes, but 

does not take into account the bandwidth balancing. 

The model OPT, before sending encoded data, 

performs data routing based on sending domain of SNs 

in a conscious and uniform manner and only is based 

on optimal routing and does not use NC and bandwidth 

balancing. The problem of this model is that if one SN 

does not sense the event on the path, the entire path will 

be lost. The above optimization models are obtained 

through a MILP model which have the best 

performance in their objective function and their main 

parameters are properly set. 

Simulations in the MATLAB environment have 

been run on a computer with a 5-core processor 2.5 

GHz Intel and 6 Gigabytes of RAM, and we use AMPL 

software to model optimization models and use the 

CPLEX software and the Pulp Library to solve 

optimization models. Also, to solve the model 

BNCOM, we can solve the equations KKT conditions. 

To implement and run the algorithm BNCDA, we use 

the Python language and we use the same software 

MATLAB to solve the equations and display the 

graphs. The measured values are resulted from an 

average of 20 runs and simulations, or repeat the 

simulation so that energy of the first SN is terminated, 

and therefore the results are 95% confident and 5% 

accurate. 

We assume in the network simulation model that 

each SN has maximum four neighbors, and the SNs are 

synchronous, and how transferred and accessed of SNs 

to the bandwidth is without interference, and the 

location of occurrence of events is random and 

uniform, and the starting point for moving sinks is at 

the network center and the channel is ideal and the 

transmission between the SNs is coordinated and 

controlled from the media access control layer or MAC 

and any collisions or data errors do not occur. Also, in 

the simulation of this paper, like resources [6, 8, 12], 

we assume that 50 SNs are randomly located on a 

100×100 square meters as grid and the initial energy of 

each SN is 𝑒0=10 Jules and sending domain of each SN 

equal to 𝑟=10 meters and the maximum initial 

bandwidth of each edge is 𝐵𝑀𝑎𝑥=10 KB and the size of 

each packet is 10 B and the buffer size of each SN is 

100 KB and the production rate of packet at each SN is 

10 packets per second. Fig. 5 shows the both of rate 

available bandwidth and consumed bandwidth in Bytes 

on the network during dynamic implementation of the 

algorithm BNCDA. 

 

 
Fig. 6. The rate available bandwidth and consumed 

bandwidth of network during run of the proposed 

distributed algorithm BNCDA 

 

5.1. Evaluation and Investigation of Effect of Step 
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Network’s Edges or 𝑉 in the Proposed Distributed 

Algorithm BNCDA  

As discussed in section 4, convergence of the Sub-

gradient algorithm depends on step size selection. If 

step size at each step is reduced, then convergence of 

the algorithm BNCDA increases, so that we first select 

the step size as an average value and gradually decrease 

the amount of it approaching the optimal problem. If 

the step size is too large, the algorithm BNCDA is 

diverted from the optimal point and the series diverges 

as consistent and leads to imbalance in bandwidth 

consumption. Also, if the step size is too small, it will 

get stuck at the local optimal points and will imbalance 

in bandwidth consumption before the end of the 

network life too, because the number of repetitions 

decreases and the probability of reaching the main 

optimal solution decreases. 

Fig. 6 shows the effect of increasing step size on the 

main variable of the problem or 𝑉 or the total amount 

of virtual flow in network’s edges, in the algorithm 

BNCDA for the four sets of SNs. These four sets of 

SNs are in terms of primary energy or 𝑒0, the sending 

domain or 𝑟, the Lagrangian coefficient or 𝛿, and the 

step size or 𝜃. The points shown represent the optimal 

step size for each set, which is calculated from 

equations (26 and 33) using MATLAB software. As we 

can see, increasing the step size from the initial value to 

the points shown, the total amount of virtual flow in 

network's edges has increased, indicating the 

compatibility between the theoretical formulas and 

experimental results. However, after the points shown, 

the total amount of virtual flow in network's edges can 

still increase, but is not always guaranteed, as 

theoretical shown in section 4 of this paper. 

 

 
Fig. 6. Effect of step size or 𝜃 on the total amount of 

virtual flow in network's edges or 𝑉 in the proposed 

distributed algorithm BNCDA and step size points for 4 

different sets of SNs. 

 

5.2. Evaluation and Investigation of the Effect of 

Lagrangian Coefficient 𝛿 on the Total Amount of 

Virtual Flow in Network’s Edges or 𝑉 in the 

Proposed Distributed Algorithm BNCDA 

Fig. 7 shows the effect of the Lagrangian coefficient 

𝛿 on the total amount of virtual flow in network's edges 

or 𝑉 in the algorithm BNCDA for four different sets of 

SNs. It has been observed that with increasing the 

Lagrangian coefficient 𝛿 at each stage, due to the 

higher balance in bandwidth consumption, the total 

amount of virtual flow in network’s edges increases to 

one point, but after that point, the total amount of 

virtual flow in network’s edges decreases. The reason 

is that since the position of the SNs is constant, the 

larger the Lagrange coefficient 𝛿, the greater the 

number of SNs can distribute its encoded data in the 

network, and thus the amount of virtual flow in 

network's edges decreases. Eventually, with the excess 

increase of the Lagrange coefficient 𝛿, the total amount 

of virtual flow in network's edges reaches zero in the 

algorithm BNCDA. Theoretically, finding the optimal 

value of the Lagrange coefficient 𝛿 requires a lot of 

calculations. 

 

 
Fig. 7. The effect of the Lagrangian coefficient 𝛿 on the 

total amount of virtual flow in network's edges or 𝑉 in 

the proposed distributed algorithm BNCDA for four 

different sets of SNs 

 

5.3. Evaluation and Investigation of the Total 

Consumed Bandwidth in the Network 

Figs 8 and 9 show the results of the evaluation and 

investigation of the effect of the number of sensor 

source nodes or SSNs on the network bandwidth 
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consumption in bytes, respectively, for sending domain 

of SNs 10 and 20 meters. In the 4 SSNs state, four 

source sensor nodes are located at the four corners of 

the network and produce sent data, and other hop nodes 

code the data. The 5 SSNs state, like the 4 SSNs state, 

except that the fifth SSN is located at the center of the 

network. The number of neighboring nodes of a SSN 

with a sending domain 10 meters, between 2 and 4 and 

with sending domain 20 meters, is between 5 and 12. It 

is observed that increasing number of SSNs, more data 

is generated and more bandwidth is consumed. Using 

NC reduces the number of sending and data traffic and, 

as a result, reduces bandwidth consumption in the 

network. In the model BNCOM, since routing the 

encoded data is the edge with more free bandwidth, so 

the least bandwidth is consumed in the network. It has 

also been observed that with increasing the number of 

SSNs, the difference between model OPT and other 

optimization models is further determined. Increasing 

the sending domain of SSNs, the number of neighbor 

nodes of an SSN increases and bandwidth consumption 

increases on the network. However, with the increase in 

the number of neighbors, the opportunity NC increased 

in the network, and as a result, in the models BNCOM 

and SIPNec and the algorithm BNCDA that use NC, it 

reduces bandwidth consumption in the network than 

model OPT that does not have NC.  

 

 
Fig. 8. Effect of the number SSNs on total consumed 

bandwidth in the network in Byte with sending domain 

of 10 m. 

 
Fig. 9. Effect of the number SSNs on total consumed 

bandwidth in the network in Byte with sending domain 

of 20 m. 

 

5.4. Evaluation and Investigation of the Total 

Consumed Energy in the Network 

Figs. 10 and 11 show the results of the evaluation 

and investigation of effect of SSNs on the total 

consumed energy in milli-joule, respectively, for 

sending domain 10 and 20-meter SNs. The smaller the 

number of SSNs, the less data is generated and the less 

energy is consumed, and with the increase in the 

number of SSNs, more data is generated and more 

energy is consumed, but more NC can be used, which 

reduces the number of sending and data traffic and 

consequently reducing energy consumption in the 

network. Increasing the sending domain of SNs, the 

number of neighbors increases and energy consumption 

increases, but with the increase in the number of 

neighbors, the opportunity NC is increased and, as a 

result, reduces energy consumption in the algorithm 

BNCDA than un-NC methods. It has also been 

observed that increasing the number of SSNs, the 

differences between optimization models that use NC 

are further characterized than to model OPT that does 

not have NC. The model SIPNec also does not take into 

account the balance in bandwidth consumption, but has 

a weaker performance than the model BNCOM. 
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Fig. 10. Effect of the number of SSNs on total energy 

consumed in the network in Bytes with sending domain 

of 10 meters. 

 

 
Fig. 11. Effect of the number of SSNs on total energy 

consumed in the network in Bytes with sending domain 

of 20 m. 

 

5.5. Evaluation and Investigation of Network 

Lifetime 

One of the most important goals in WSNs is the 

longer network lifetime. In this paper, like resources 

[8], [12], we define network lifetime since the 

deployment of SNs leads to depletion energy of the 

first SN. Because the energy consumption to send 

packets in SNs is very greater than the energy 

consumption to encode packets in SNs, thus lifetime of 

SNs has a reverse ratio to the rate of generate packet by 

the SNs. Fig. 12 shows the effect of increasing the 

number of SSNs over network lifetime in seconds. It 

has been observed that since all optimization models 

use optimal paths, they have almost the same trend, and 

with the increase in the number of SSNs, the amount of 

sent data increases, resulting in increased energy 

consumption, and also decrease of the network lifetime. 

It is also observed that because the model BNCOM 

only serves to balance the bandwidth in network's 

edges and send packets from edges that have more free 

bandwidth, the chance of NC in this model is less than 

the model SIPNec and lifetime of the model SIPNec is 

more than the model BNCOM. Also, because the 

algorithm BNCDA performs the routing of encoded 

packets between SNs in each step in a continuous and 

distributed manner, it has shorter lifetime than 

optimization models. Since the model OPT, only pays 

to determine optimal path for data transmission and 

does not use NC, due to the short packet paths, it has a 

longer lifetime than other models.  

 

  
Fig. 12. Impact of the number SSNs on average of 

network lifetime in second. 

 

5.6. Evaluation and Investigation of the Average 

End-to-end Latency 

The end-to-end latency parameter is very important 

for real-time applications in the network, depending on 

the number of SSNs and the rate of generate data and 

the traffic load. Fig. 13 shows the results of the 

evaluation and investigation of effect of the number of 

SSNs on the average end-to-end latency in seconds. It 

has been observed that with increasing the number of 

SSNs, the amount of data at network is increased and 

the delay rate for sending encoded data increases. 

However, since the model BNCOM and the algorithm 

BNCDA use NC and balancing on the bandwidth 

consumption in network's edges, it reduces encoded 
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packets and interferes and collapses data in the physical 

layer, resulting to have less latency than models 

SIPNec and OPT. Also, because the algorithm BNCDA 

is a repeating algorithm and requires several steps for 

packet routing, its delay is more than the model 

BNCOM. 

 

 
Fig. 13. Effect of the number SSNs on the average 

latency of end-to-end of network in seconds. 

 

5.7. Evaluation and Investigation of the Time 

Complexity to Achieve Optimal Solution 

Other factors in delay creation are the time 

complexity to solve the model and achieve optimal 

solution. The required energy to perform calculations in 

SNs is much less than the required energy to send 

packets. Although SNs calculates poorly and cannot 

perform complex calculations. Therefore, the less 

complexity of calculations, the efficiency of packet 

routing will be better. Fig. 14 shows the results of the 

evaluation and investigation of the number SSNs on the 

average required time to find the optimal path in 

seconds. It has been observed that the required time to 

find the optimal path in the algorithm BNCDA is far 

less than the optimization models BNCOM, SIPNec 

and OPT. Since this algorithm is distributed and does 

not require the collection of total network information 

at a central point and has simple computations, SNs can 

simultaneously and comfortably execute this algorithm. 

Therefore, this algorithm can be applied and is scalable 

in WSNs with a large number of nodes. Of course, the 

number of replications of the algorithm BNCDA 

depends on the speed of convergence. However, since 

the optimization models of BNCOM, SIPNec and OPT 

are centrally solved, the information of all the nodes is 

gathered in a central node, and then the optimization 

models are solved and the calculations are performed 

and then the computation result is sent to the other 

nodes. Therefore, the method of centralized solution for 

WSNs with a large number of nodes is very difficult 

and time consuming and almost impractical. 

 

 
Fig. 14. Effect of the number of SSNs on the average 

required time to find the optimal route in seconds. 

 

5.8. Evaluation and Investigation of the Total 

Amount of Virtual Flow in Network’s Edges or 𝑉 

The total amount of virtual flow in network’s edges 

has a reverse ratio to the distance between the SNs and 

the longer the distance between SNs, the more virtual 

flow will be in network's edges. Fig. 15 shows the 

results of the evaluation and investigation of effect of 

the number of SSNs on the total amount of virtual flow 

in network’s edges in Byte until the 20th minute. It has 

been observed that with increasing the number of 

SSNs, the total amount of virtual flow in network’s 

edges or 𝑉 increases in all models and the algorithm 

BNCDA. Because the models BNCOM, SIPNec and 

OPT are focused and use aware routing of encoded data 

in the network, they reduce the routing length between 

SNs and reduce the total amount of virtual flow in 

network’s edges. The number of SSNs is less, the 

length of the data transmission path is increased, which 

reduces the total amount of virtual flow in network’s 

edges. However, with the increase in the number of 

SSNs, the deployment of the SSNs in the center is 

increased and the routing length of encoded data is 

reduced and the total amount of virtual flow increases 

in network’s edges. It is also observed that the total 

amount of virtual flow in network's edges in the 

algorithm BNCDA is more than optimization models. 

So, if the number of SSNs is 4, the distance between 

the algorithm BNCDA with two models BNCOM and 

SIPNec is about 1 KB and with model OPT is 
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approximately 2 KB. If the number of SSNs is 35, the 

distance between the algorithm BNCDA and the two 

models BNCOM and SIPNec are almost unchanged, 

but the distance between the algorithm BNCDA and 

model OPT is much higher (15 times). That is the 

reason of lack of use of NC and balancing in bandwidth 

consumption in the model OPT. 

 

 
Fig. 15. Effect of the number of SSNs on the total 

amount of virtual flow in network’s edges or 𝑉 in 

Bytes. 

 

6. CONCLUSION 

One of the limitations in WSNs is the amount of 

available bandwidth on the network. The problem of 

finding the optimal route for data transmission and 

balancing in network bandwidth consumption is a NP-

hard problem. In this paper, an optimization model was 

proposed to determine the optimal route for data 

transmission and balancing bandwidth consumption 

using NC in WSNs. In order to solve the optimization 

model, the information must be sent to a central node, a 

distributed and repeatable algorithm is proposed in 

WSN to solve this problem. The proposed algorithm is 

based on the Sub-gradient method and method of 

separation of network flows that dynamically and 

continuously determines the optimal path for sending 

encoded data, based on the bandwidth of the SNs. The 

effectiveness of the proposed optimization model and 

the proposed distributed algorithm with several 

simulations performed in terms of the number of SSNs 

and Lagrangian coefficient and step size have been 

investigated. The results show that the proposed model 

and algorithm can improve parameters of the average 

of required time to find the optimal route, the total 

amount of virtual flow in network's edges, the average 

latency end-to-end of network, the consumed 

bandwidth, the average of network lifetime and the 

consumed energy, due to aware routing and NC and do 

not work very poorly on other models. Also, the 

proposed algorithm has great scalability, since 

computations are distributed and decentralized and 

there is a small dependency between nodes. In the 

optimization model and in this article, to simplify the 

problem, we assume that the environment is open and 

flat, and the radio coverage is completely regular, 

which the future works can be used in real-world 

conditions, such as inside building or under strict 

conditions, and irregular radio coverage with 

interference. In the simulation, it is assumed that SNs 

are simultaneously and transmitting and accessing of 

SNs to bandwidth is not interference that in the future 

works, we can simulate in more realistic conditions.  
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