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ABSTRACT: 

Today, infrared sensors or depth sensors are widely used to control applications, games, information acquisition, 

dynamic and static 3D scenes. Despite the widespread use of these images, their quality is limited to low-quality images, 

as the infrared sensor does not have high resolution and the images produced by it have noise. Therefore, given the 

problems and the importance of using 3-D images, the quality of these images should be improved in order to provide 

accurate images from depth cameras. In this paper, the noise reduction of depth images using convolutional neural 

networks is considered. A convolutional neural network with a depth of 20 and three layers and a pre-trained neural 

network is used. We developed the system and tested its performance for two datasets of depth and color images, 

Middlebury and EURECOM Kinect Face. Results show that for EURECOM Kinect Face images, PSNR improvement 

is approximately 8 to 15 dB and for Middlebury images the PSNR improvement is about 5 to 14 dB. 
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1. INTRODUCTION 

    Depth cameras consist of a standard color camera and 

an infrared camera. The color camera captures a color 

image, as the name implies, from the environment and 

scene, which is used in subsequent processing to 

improve the depth of field images, and the depth camera 

estimates the depth by reflecting infrared light. In these 

cameras, a light source transmits infrared light with a dot 

pattern, then the sensors, which are the heart of the 

camera, take a recursive pattern and estimate the 

distance based on the length of sweet time of the light. 

Fig. 1 shows how to estimate the depth. 

 

Fig. 1. How to estimate depth in depth cameras. 

      Three-dimensional information from a scene 

includes position information (depth information) and 

texture information. While texture information is easily 

captured by color cameras, it is not easy to obtain depth 

information. In addition, the obtained depth information 

require pre-processing to be used for subsequent 

processing, (Improvements), since, the depth maps 

recorded by the depth cameras have very low resolution 

compared to the color image. These depth maps also 

suffer from various damages such as low sampling, loss 

of structure along the depth discontinuities, and 

accidental loss in smooth areas, which make these 

images noisy with lack of sharpness and ultimately their 

quality would be reduced. Such destructions have 

hampered their practical application. Depth cameras 

have errors when shooting objects with special features 

such as sharp edges, and their error increases in very 

bright environments. These problems are caused by 

changes in ambient brightness, scene geometry, ambient 

heat, and elevated sensor temperatures over time, so 

given the current problems and the wide usage of 

infrared sensors to control application and games and 

obtain information from dynamic and 3-D scenes, the 

image quality of these cameras has to be improved. 

Despite the widespread use of these images, their quality 

is limited to low-quality and noisy images, because the 

infrared sensor does not have high resolution and the 
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images produced by it have noise. Therefore, due to the 

existing problems and the importance of using depth 

images, the quality of these images should be improved 

in order to provide accurate images using depth cameras 

[2]. 

     In the last few years, due to the widespread use of 

these cameras, a great deal of research has been done to 

improve the depth images quality, all of which try to 

improve the images both in terms of noise reduction and 

sharpness. However, at first, attempts to improve depth 

images have used only laser sensors or only the camera, 

and combining these two methods is a relatively new 

topic. In this paper, we try to reduce the noise of depth 

images by using depth estimation method by neural 

network model. 

 

2. LITERATURE REVIEW 

     Noise reduction due to its importance and 

applications in various fields is still one of the hot topics 

in the field of machine vision. The main idea of noise 

reduction is to extract the clear image of x from the noise 

image of y which is as y= x + v. The common 

assumption in this case is that they assume that v  is the 

cumulative noise by Gaussian distribution with the 

standard deviation of    [3]. Different models for the 

original image have been used in papers. In [4–8], they 

used a self-similarity model for the original image to 

estimate the original image through different algorithms, 

and their evaluation criterion is the mean square error 

between the resulting image and the original image. In 

these articles, the authors present a Non-local Self-

Similarity (NSS) algorithm and try to minimize the 

estimated image error and the original image, thereby 

reducing or eliminating noise from the image. They use 

pixel-sized neighborhood windows of different sizes for 

this averaging. These methods, although have 

reasonable result, but have two major disadvantages: 

first, they deal with sophisticated optimization 

calculations that lead to time-consuming and prolonged 

execution and, on the other hand, they do not perform 

well without solving the optimization problem.  In 

addition, their second disadvantage is their non-

convexity, which makes their performance dependent on 

the selection of their parameters. Therefore, in order to 

overcome these two flaws, discriminative learning 

methods have been introduced [9]. This learning method 

is used instead of solving the optimization problem to 

reduce image noise. Although they are able to 

compensate for the gap between computational burden 

and noise removal quality, the method itself was also 

dependent on the initial model of the image, which does 

not seem desirable. 

     Based on the above difficulties, recently researchers 

are using Convolutional Neural Networks (CNNs) 

instead of realistic modeling learn from the original 

image. There are three main reasons for using these 

types of networks: 

• Convolutional neural networks with deep architecture 

have the capability and flexibility to describe image 

properties [10]. 

• Another notable advantage of these types of networks 

is their learning methods, which include Rectifier Linear 

Unit (ReLU) [11], batch normalization [12], and residual 

learning [13]. In these papers, this type of learning is 

introduced for classification and recognition tasks, but 

can also be used as a future research area to reduce noise 

and speed up the learning process of the network. 

• Convolutional neural networks using parallel 

computing are well compatible with modern, powerful 

GPUs, which can be used to reduce their running time. 

        The most important reason for using CNN to reduce 

image noise is that it does not require to estimate original 

image, and the noise is estimated directly. This is done 

by the difference between the noisy image and the clear 

noise. It should be noted that this paper uses color 

information-based estimators because if only depth 

sensors are used, the depth results depend on how they 

are navigated and for these results to be accurate and 

produce high quality images, very good navigation 

should be performed on them [14, 15].  Also, if a depth 

sensor is used multiple times instead of using multiple 

depth sensors, if the environment changes during the use 

of the sensor, the fusion of the results would become 

problematic [16, 17]. To overcome these problems, a 

color camera that produces a high-quality color image 

can be used to improve the quality of the low-quality 

depth image produced by the depth sensor. In fact, a 

color image is used to take advantage of adjacent of the 

dots in the color image and the associated depth image, 

increasing their ability to measure local similarities, 

turning them from piecewise into patches and having 

less processing complexity than other methods.  

 

3. RESEARCH METHODOLOGY 

     In terms of network architecture design, our proposed 

method is a modified VGG network [10].  VGG can be 

used to reduce image noise. In the proposed method the 

depth of network is adjusted based on patch sizes. In 

terms of model learning, the residual learning 

formulation has also been selected and combined with 

patch normalization to accelerate training and improve 

noise reduction performance. Similar to the method used 

in Reference [10], in this paper, the size of the 

convolutional filters is assumed 3 3 , except that all 

pooling layers are removed. In the proposed 

convolutional neural network architecture, the observed 

noisy image of y x v   is the input the network where 

x is the original image and υ is the additive noise. The 

image can have any dimension, or it can even be gray or 

colored. In [18], noise removal models are considered as 
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the function of ( )F y x  and by using this function, they 

can predict and estimate the clear and noise-free image. 

However, in our proposed convolutional neural network 

approach, the residual learning formulation is used to 

train a residual mapping like ( )R y v  . In other words, 

unlike other articles that estimate the clear and noise-free 

image, we estimate noise that is assumed to be of an 

unknown nature. Then, with the estimated noise, we can 

easily obtain a clear, noise-free image through 

( )x y R y  . For this purpose, the mean square error 

criterion is used, but it should be noted here that the error 

refers to the difference between the desired image and 

the estimated image and has the following relation (1): 

 
2
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( ) ( , ) ( )

2

N

i i
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l R y y x
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                                        (1) 

      This function can be used as a target function to learn 

the training parameters of  available in convolutional 

neural networks. Here,  
1

( )
N

i i i
y x


 represents N 

images of the noisy and clear training which together, 

they make a pair of patches. This function is used to train 

residual mapping of ( )R y v  and then, ( )x y R y   

can be easily extracted. According to the mean square 

theory, the error between the desired residual images and 

the estimated image of the noisy input can be used as an 

error function to learn the parameters of  , and 

therefore  v that is unknown can be estimated. Fig. 2 

shows the proposed neural network architecture for 

learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Proposed convolutional neural network architecture. 

       

      As can be seen from Fig. 2, the noisy image from the 

left enters the system, and on the right, the residual 

image is obtained. It is evident from the figure that there 

are three layers in the convolutional neural network that 

are shown in different colors. These three layers are as 

follows: 

1. Conv + ReLU: This layer is the first layer of 

convolutional neural network shown in yellow. 

This layer contains 64 filters with a size of 

3 3 c  , whose task is to create 64 feature 

mappings; and there are also 64 rectifier linear 

units (ReLU) that provide nonlinearity. The 

parameter c  represents the image type or number 

of channels of the image, so if 1c  , the image is 

gray and if 3c  , the image is colored. 

2. Conv + BN + ReLU: These layers are in the 

second layer to the 1D   layer and are shown in 

blue. In this layer, 64 filters with a size of 

3 3 64   are used, as well as patch normalization 

introduced in Reference [12] between 

convolution and ReLU. 

3. Conv: This is the last layer in orange (Fig. 2). It 

has a number of c  filters with a size of 3 3 64   

used to form the output. 

      There is something about the size of the input and 

output image that needs to be mentioned here. In many 

low-level machine vision applications, the output image 

and the input image need to be equal in size. Some 

references in the final stage consider a process to reduce 

the size of the image and make it as the size of input 

image [18]. In the proposed method, before the image 

reaches the final layer or the convolution layer, it is 

ensured by using a condition that the output image and 

the input image are equal and the work of equalizing 

them is done in the convolution layer. 

 

4. RESULTS AND DISCUSSION 

     The proposed method has been applied to different 

images with different noise levels. For this purpose, two 

types of datasets are considered, which are introduced 

below: 

1- EURECOM Kinect Face dataset: This dataset is about 

the faces of different people who were photographed 

using a Kinect camera. In this dataset, 52 people are 

photographed at 9 different angles and their depth and 
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color image are collected. [19]. An example of noisy 

images of the EURECOM Kinect Face dataset is 

shown in Fig. 3. 

 

Fig. 3. An example of the EURECOM Kinect 

Face dataset. 

 

2-The second dataset is known as Middlebury, in 

which the collection contains images of various sights 

and scenes. This dataset was compiled in 2001, 2003, 

2005, 2006 and 2014 [20-23]. An example of noisy 

images of the Middlebury dataset is shown in Fig. 4. 

 

 
Fig. 4. An example of noisy images of the Middlebury 

dataset. 

 

     In this simulation, a pre-trained convolutional neural 

network with 400 images and the learning method 

mentioned in the reference [24] are used for training, all 

images have dimensions of 180*180. The noise level is 

assumed to be unknown and belongs to the range of

 0,55  . In this case, the size of the used patches is 

assumed to be 50*50, so that the total number of 

128*3000 patches were used to train the noise removal 

model. The number of network depths is 20 and the loss 

function is (1) selected to learn the network. The weights 

of the network were calculated by the method used in the 

reference [25] and the gradient descent method with a 

weight delay of 0.0001. In addition, network training 

over 50 iPOCs has been able to build noise removal 

models. 

      It should be noted that the MatConvNet [26] library 

has been used for network training. The simulations are 

performed in MATLAB software. After running, a 

convolutional network with 33 layers is created which 

each layer's information is stored in a structure. This 

information includes layer type, layer weights, weight 

delay, learning rate, and so on. 

     Middlebury dataset results: Art image of Middlebury 

dataset with 5, 10, 15, 20, 25, 30, 35, 40 noise levels was 

impregnated with Gaussian noise as inputs into the 

convolutional neural network and the noise eliminated 

image exits the network. Three examples of this are 

shown in Fig. 5 to Fig.7.  

 

 
Fig. 5. Art image from Middlebury dataset: Left: Noisy 

image with 5  . Right: Network output image. 

 

 
Fig. 6. Art image from Middlebury dataset: Left: Noisy 

image with 25  . Right: Network output image. 

 

 
Fig. 7. Art image from Middlebury dataset: Left: Noisy 

image with 40  . Right: Network output image. 
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     EURECOM Kinect Face Datasheet Results: For this 

datasheet, an image with the above noise levels was 

impregnated with the Gaussian noise and enters the 

convolutional neural network as an input, and the noise 

eliminated image exits from the network, as shown in 

Fig. 8 to Fig. 10. 

 

 
Fig. 8. A sample image of the EURECOM Kinect Face 

dataset: Left: Noisy image with 5  . Right: Network 

output image. 

 

 
Fig. 9. A sample image of the EURECOM Kinect Face 

dataset: Left: Noisy image with 25  . Right: 

Network output image. 

 

 
Fig. 10. A sample image of the EURECOM Kinect 

Face dataset: Left: Noisy image with 40  . Right: 

Network output image. 

 

     In Table 1, the result of the PSNR calculations of the 

noisy input depth image and the PSNR of depth image 

obtained from the network corresponding to the image 

sample of the two datasets for the noise levels of 5, 10, 

15, 20, 25, 30, 35, 40, 45, 50 is provided. 

 

Table 1. Results of PSNR calculations of noisy input 

depth image and PSNR depth image obtained from the 

network. 

dataset Middlebury dataset 

EURECOM Kinect 

Face 

σ 

PSNR  

output 

PSNR 

input 

PSNR  

output 

PSNR  

input 

391201 341626 420918 346913 5   

383803 280911 413961 293063 10   

361287 245918 392579 261889 15   

341708 221095 370331 238089 20   

326872 201593 358703 221449 25   

319675 186401 346694 206064 30   

310778 176367 340378 193841 35   

296686 162719 333708 183850 40   

292933 153514 327613 173678 45   

284860 145071 315957 165459 50   

 

5. CONCLUSION 

    In this paper, a noise removal model for depth images 

is presented with the use of convolutional neural 

networks and information obtained from color and depth 

image. The proposed model is applied to two 

Middlebury and EURECOM Kinect Face datasets with 

different noise levels and it was shown that the output 

PSNR has higher values than the input and has 

improved.  It is assumed in this study that there are 

Gaussian noise in deep images and only the Gaussian 

noise is eliminated, while other types of noise can be 

investigated. In addition, the created convolutional 

neural network can be expanded so that it can eliminate 

other types of noise as well. 

 

 REFERENCES 
[1] S. Foix, G. Alenya, and C. Torras, "Lock-in time-

of-flight (ToF) cameras: A survey," IEEE Sensors 

Journal, Vol. 11, No. 9, pp. 1917-1926, 2011. 

[2] D. Csetverikov, I. Eichhardt, and Z. Jankó, "A brief 

survey of image-based depth upsampling," 2015. 

[3] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, 

"Beyond a gaussian denoiser: Residual learning 

of deep cnn for image denoising," IEEE 

Transactions on Image Processing, Vol. 26, No. 7, 

pp. 3142-3155, 2017. 

[4] A. Buades, B. Coll, and J.-M. Morel, "A non-local 

algorithm for image denoising," in Computer 

Vision and Pattern Recognition, 2005. CVPR 2005. 

IEEE Computer Society Conference on, 2005, Vol. 2, 

pp. 60-65: IEEE. 

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, 

"Image denoising by sparse 3-D transform-

domain collaborative filtering," IEEE 

Transactions on image processing, Vol. 16, No. 8, 

pp. 2080-2095, 2007. 

[6] A. Buades, B. Coll, and J.-M. Morel, "Nonlocal 

image and movie denoising," International journal 



Majlesi Journal of Electrical Engineering                                                      Vol. 14, No. 3, September 2020 

 

100 

 

of computer vision, Vol. 76, No. 2 ,pp. 123-139, 

2008. 

[7] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. 

Zisserman, "Non-local sparse models for image 

restoration," in Computer Vision, 2009 IEEE 12th 

International Conference on, 2009, pp. 2272-2279: 

IEEE. 

[8] J. Xu, L. Zhang, W. Zuo, D. Zhang, and X. Feng, 

"Patch group based nonlocal self-similarity prior 

learning for image denoising," in Proceedings of 

the IEEE international conference on computer 

vision, pp. 244-252, 2015. 

[9] U. Schmidt and S. Roth, "Shrinkage fields for 

effective image restoration," in Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 2774-2781, 2014. 

[10] K. Simonyan and A. Zisserman, "Very deep 

convolutional networks for large-scale image 

recognition," arXiv preprint arXiv:1409.1556 2014. 

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

"Imagenet classification with deep convolutional 

neural networks," in Advances in neural 

information processing systems, pp. 1097-1105, 

2012. 

[12] S. Ioffe and C. Szegedy, "Batch normalization: 

Accelerating deep network training by reducing 

internal covariate shift," arXiv preprint 

arXiv:1502.03167, 2015. 

[13] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual 

learning for image recognition," in Proceedings of 

the IEEE conference on computer vision and pattern 

recognition, pp. 770-778, 2016. 

[14] S. A. Gudmundsson, H. Aanaes, and R. Larsen, 

"Fusion of stereo vision and time-of-flight 

imaging for improved 3d estimation," 

International Journal of Intelligent Systems 

Technologies and Applications, Vol. 5, No. 3-4, pp. 

425-433, 2008. 

[15] J. Zhu, L. Wang, R. Yang, and J. E. Davis, 

"Reliability fusion of time-of-flight depth and 

stereo geometry for high quality depth maps," 
IEEE transactions on pattern analysis and machine 

intelligence, Vol. 33, No. 7 ,pp. 1400-1414, 2011. 

[16] B.-S. Lin, W.-R. Chou, C. Yu, P.-H. Cheng, P.-J. 

Tseng, and S.-J. Chen, "An effective spatial-

temporal denoising approach for depth images," 
in 2015 IEEE International Conference on Digital 

Signal Processing (DSP), 2015, pp. 64-67, IEEE. 

[17] S. MJ, "Temporal and Spatial Denoising of Depth 

Maps," Sensors (Basel). 2015 Jul 29, No. 8, 2015. 

[18] H. C. Burger, C. J. Schuler, and S. Harmeling, 

"Image denoising: Can plain neural networks 

compete with BM3D?," in Computer Vision and 

Pattern Recognition (CVPR), 2012 IEEE Conference 

on, 2012, pp. 2392-2399: IEEE. 

[19] R. Min, N. Kose, and J.-L. Dugelay, "Kinectfacedb: 

A kinect database for face recognition," IEEE 

Transactions on Systems, Man, and Cybernetics: 

Systems, Vol. 44, No. 11 ,pp. 1534-1548, 2014. 

[20] D. Scharstein and R. Szeliski, "A taxonomy and 

evaluation of dense two-frame stereo 

correspondence algorithms," International journal 

of computer vision, Vol. 47, No. 1-3, pp. 7-42, 2002. 

[21] D. Scharstein and R. Szeliski, "High-accuracy 

stereo depth maps using structured light," in 

Computer Vision and Pattern Recognition, 2003. 

Proceedings. 2003 IEEE Computer Society 

Conference on, 2003, Vol. 1, pp. I-I: IEEE. 

[22] D. Scharstein and C. Pal, "Learning conditional 

random fields for stereo," in Computer Vision and 

Pattern Recognition, 2007. CVPR'07. IEEE 

Conference on, 2007, pp. 1-8: IEEE. 

[23] H. Hirschmuller and D. Scharstein, "Evaluation of 

cost functions for stereo matching," in Computer 

Vision and Pattern Recognition, 2007 .CVPR'07. 

IEEE Conference on, 2007, pp. 1-8: IEEE. 

[24] Y. Chen and T. Pock, "Trainable nonlinear 

reaction diffusion: A flexible framework for fast 

and effective image restoration," IEEE 

transactions on pattern analysis and machine 

intelligence, Vol. 39, No. 6, pp. 1256-1272, 2017. 

[25] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep 

into rectifiers: Surpassing human-level 

performance on imagenet classification," in 

Proceedings of the IEEE international conference on 

computer vision, 2015, pp. 1026-1034. 

[26] A. Vedaldi and K. Lenc, "Matconvnet: 

Convolutional neural networks for matlab," in 

Proceedings of the 23rd ACM international 

conference on Multimedia, 2015, pp. 689-692: ACM. 

 

 

 

 

 

 

 


