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ABSTRACT: 

This paper is treated with optimum energy management in a DC/AC Microgrid (MG) containing hybrid power sources 

to supply the load within cost minimization. In this hybrid electrical networks, energy sources are exploited as DC and 

AC manner, in which the Independent System Operator (ISO) should provide a practical coordination between them in 

order to procure the demand load optimally. This paper presents a framework that all available resources are 

formulated mathematically in hybrid microgrid with full constraints along with Demand Response (DR) programs 

implementation. The network under consideration can operate both in grid-tied and autonomous modes to manage 

power exchanging. Uncertainty and intermittent of Photovoltaic (PV) with Maximum Power Point Tracker (MPPT) 

equipped, Wind Turbine (WT), Energy Storage Systems (ESS) and DR programs are also considered to achieve the 

optimal control and operation. The ESSs are capable to connect both DC and AC links and the State of Charge (SOC) 

is maintained within permissible range. The proposed DG control framework and operation scheduling has facilitated 

the energy management of renewables using dynamic programing approach. A 24-hour time horizon simulation and 

discussion through three scenarios verified on a IEEE 33 bus distribution network, is done to represent the 

effectiveness of proposed energy management strategy to keep the whole hybrid grid stable. 

 

KEYWORDS: Distributed Generation, Energy Management, Hybrid Micro-Grid, Optimization. 

  

1.  INTRODUCTION 

Nowadays, due to the completion of fossil fuels and 

the struggle to reduce the use of these resources, the 

attention of countries is focused on the use of 

Renewable Energy Sources (RESs). A typical (MG) is 

such a conventional electrical network in which 

renewable sources have been used to supply the load 

[1], as shown in Fig. 1. The MG, consisting of a set of 

small and medium-sized products in low and medium 

voltage systems, includes a set of energy sources such 

as Distributed Generation (DG), renewable sources of 

energy like wind, Photovoltaic (PV) and Energy 

Storage Systems (ESS). 

The MGs are utilized to provide energy for 

consumers such as households, industrial and 

agricultural, and their cost estimation is based on 

pricing policies on the electricity market. Due to the 

use of new technologies such as wind turbines and 

photovoltaic in the microgrid, the stochastic nature of 

RESs such as wind and sun, optimal management and 

operation of these platforms has become one of the 

research priorities of researchers in this regard. 

Predicting the behavior of these resources and the 

optimal use of them will increase the efficiency of the 

system in the optimum operation with different targets 

such as economic, environmental and reducing 

pollutions [2-5]. 

 

 
Fig. 1. A typical MG with DGs and islanded mode 

capability. 
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In [6], a study has been carried out in which with 

the aim of lowering environmental viability, 

photovoltaic and wind turbine blades are used as main 

sources of energy supply and beside them DGs are 

modeled as backup generators. In [7], to solve the 

problem of Unit Commitment (UC) and Economic 

Load Dispatch (ELD) for the next 24 hours within 5 

minute intervals from local marginal prices, the 

optimization is conducted out and resulting model is 

examined on a medium sized system. In [8], a MG with 

the existence of RES, Fuel Cell (FC) and a battery is 

exploited by the multi-objective algorithm called 

(AMPSO) and used in the formulation of the nonlinear 

model, in which the target consists the cost and 

emissions of greenhouse gases reduction at the same 

time. In [9], the solution of the unit commitment 

problem in the microgrid, which includes controllable 

loads, is developed by the improved Genetic Algorithm 

(GA) by adopting Simulated Annealing (SA) method to 

accelerate the convergence. Objective functions defined 

at the simulation level and desired results include 

reducing the operation cost of the MG in an 

independent state and the revenue maximization when 

connected to the upstream power grid.  

The economic benefits of DR programs and the 

development of various methods to reduce the cost of 

customers have been investigated in many studies [10-

26]. Many of these researches have provided 

optimization methods for economically exploiting 

smart home appliances by implementing a cost-based 

DR program. Another important advantage of 

deploying DR programs is the benefit of their ancillary 

services [10-12]. Due to the development of smart 

communication infrastructure, DR applications play a 

significant role in improving the efficiency of future 

smart networks by providing different demand side 

services. Likewise, with the increasing development of 

renewable energy source technologies, it is anticipated 

that the level of penetration of these generation 

resources into future power grids is far greater than it is 

today [13]. In situations where uncertain resources 

account for a high volume of network power 

generation, responsive loads play an important role in 

power balancing. This is of great importance due to the 

limitations of Energy Storage System (ESS) as well as 

the low efficiency and high cost of their operations 

[14]. Therefore, many researches have been conducted 

and reported on the capability of DR programs as the 

sources of system capacity building. Among these 

studies, some authors have examined the impact of the 

DR program on the provision of ancillary services in 

standalone micro-networks that utilize renewable 

resources such as wind and solar units to supply 

noteworthy recharge [15-17]. Increasing the penetration 

of renewables due to a mistake in predicting their 

production capacity has a significant impact on the 

reliability and safe operation of independent micro-

networks [18]. In these circumstances, implementation 

of DR programs plays a significant role in energy 

planning and storage. Because with demand-side 

partnerships, DR procedures increase/decrease their 

consumption if production is reduced or increased. 

However, precise determination of the amount of spin 

and non-spin reserve required for the safety of 

standalone MG in the face of uncertainties arising from 

renewable resources and DR is vital. In [19-21], an 

energy management system is proposed for an islanded 

MG with capability of estimating system rotation 

storage under uncertainties caused by renewable 

resources and demand loads. However, in the proposed 

model, the impact of the response of DR on spinning 

reserve allocation for the system is not considered. In 

[22-26], the other probabilistic models for simultaneous 

scheduling of energy resources and storage of a 

microcontroller are presented. In these researches, 

uncertainties arising from load demand, renewable 

energy production capacity, and electricity market price 

uncertainties are considered. But the role of Demand-

Side Management (DSM) in system and ESS allocation 

have been overlooked.  

As the traditional power systems require some 

deregulations such as flexibility, altering the regulatory 

and financial situations, this paper presents a 

framework to optimize the operation scheduling in a 

MG in which all DC and AC power sources supply the 

loads, together. DR programs are also designed to 

further increase the efficiency and flexibility of the MG 

to compensate the probable power shortage at peak 

load intervals or at high electricity tariff periods. 

Modeling of all the DGs used in this framework is 

presented mathematically with high precision 

constraints that can be used as a complete reference for 

operating a mixture MG. The PV is considered to be 

capable to connect to the MG or be disconnected 

according to the low market price or protection 

procedures. 

The SOC of ESSs is then kept in 20% to 80% of 

their nominal power. Briefly the paper novelties can be 

written in bullets: 

 A complete framework in hybrid MG 

optimization considering several DG types. 

 The grid-tied of autonomous operation modes 

effects on energy management, since the 

uncertainty in wind and solar generation is 

modeled by Monte Carlo approach. 

 The high-reliability capability of proposed 

method on different case studies. 

 Low Expected Energy Not Supplied (EENS) 

and Loss of Energy (LOE) in all scenarios. 

This paper is structured as follows: Section 2 

describes the problem concepts and statement, the 
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hybrid MG and the DGs formulations. The 

optimization algorithm using Dynamic Programing 

(DP) is presented in Section 3. Confirmation of the 

performance of the proposed approach based on IEEE 

33 bus system simulations and real-time verifications 

are presented in Section 4. Discussions and conclusion 

are stated in Sections 5 and 6, respectively. 

 

2.  PROBLEM FORMULATION & STATEMENT 

In a hybrid micro-grid, in order to minimize the 

whole operation cost, both DC constraints and AC 

constraints must be considered. Therefore, the objective 

function formed to be optimized is expressed in (1). 

The decision vector, input vector and, active power 

vector and price vectors have also been investigated in 

(1). 

min∑

{
 
 
 
 
 

 
 
 
 
 

𝜋𝑔𝑟𝑖𝑑(𝑡). 𝑃𝑔𝑟𝑖𝑑(𝑡)

+∑[𝐶𝐸𝐷𝐺(𝑗, 𝑡) + 𝐶𝑆𝐷𝐺(𝑗, 𝑡) + 𝐶𝑅𝐷𝐺(𝑗, 𝑡)]

𝑁𝐷𝐺

𝑗=1

+∑[𝐶𝐸𝐿(𝑘, 𝑡) + 𝐶𝑅𝐿(𝑘, 𝑡)]

𝑁𝐿

𝑘=1

+∑[𝐶𝐸𝐷𝑅(𝑑, 𝑡) + 𝐶𝑅𝐷𝑅(𝑑, 𝑡)]

𝑁𝐷𝑅

𝑑=1 }
 
 
 
 
 

 
 
 
 
 

𝑇

𝑡=1

 

decision vector:  𝑋 = [𝑃𝑔𝑟𝑖𝑑   𝑃𝐷𝐺𝑠  𝑃𝐷𝑅]
𝑇
 

input vector:  𝑈 = [𝜋𝑔𝑟𝑖𝑑   𝜋𝐷𝐺𝑠  𝜋𝐷𝑅]
𝑇
 

𝑃𝐷𝐺𝑠 = [𝑃𝑊𝑇   𝑃𝑃𝑉   𝑃𝑐ℎ   𝑃𝑑𝑖𝑠𝑐ℎ   𝑃𝑐𝑜𝑛𝑣] 

𝜋𝐷𝐺𝑠 = [𝜋𝑊𝑇   𝜋𝑃𝑉   𝜋𝑐ℎ   𝜋𝑑𝑖𝑠𝑐ℎ   𝜋𝑐𝑜𝑛𝑣] 

𝑃𝐷𝑅 = [𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑎𝑏𝑎𝑙 𝐿𝑜𝑎𝑑    𝑃𝑙𝑜𝑎𝑑] 

𝜋𝐷𝑅 = [𝜋𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑎𝑏𝑎𝑙 𝐿𝑜𝑎𝑑    𝜋𝑙𝑜𝑎𝑑] 

(1) 

Where, 𝑃𝑔𝑟𝑖𝑑(𝑡) represents the power purchased 

from upstream network regarding 𝜋𝑔𝑟𝑖𝑑(𝑡)price, 

𝐶𝐸𝐷𝐺(𝑗, 𝑡) shows the AC operating cost of DGs at the 

time 𝑡, 𝐶𝑅𝐷𝐺(𝑗, 𝑡) represents the cost of scheduled 

reserve capacity reduction of DGs at the time 𝑡, 
𝐶𝐸𝐿(𝑘, 𝑡) and 𝐶𝑅𝐿(𝑘, 𝑡) are the load shedding cost and 

reserve decreasing cost, respectively, 𝐶𝐸𝐷𝑅(𝑑, 𝑡) is 

load reduction in DR scheduling and 𝐶𝑅𝐷𝑅(𝑑, 𝑡) shows 

the DR reserve programing. Here in AC areas of MG, 

there are some constraints which should be considered 

to ensure the best power balance in active and reactive 

generation. These power balances are discussed in (2) 

and (3) [27]. The authors in [27] only discuss about the 

complete formulation precisely and investigate the 

voltage profile, however they did not show the 

effectiveness of this energy management framework 

properly, that will be completed in this manuscript. 

∑

{
 
 

 
 
𝑃𝑔𝑟𝑖𝑑(𝑘, 𝑡) + 𝑃𝐷𝐺(𝑘, 𝑡) + 𝑃𝑊𝑇(𝑘, 𝑡)

+𝑃𝑃𝑉(𝑘, 𝑡) + 𝑃𝑐ℎ(𝑘, 𝑡) − 𝑃𝑑𝑖𝑠𝑐ℎ(𝑘, 𝑡)

+𝑃𝐷𝑅(𝑘, 𝑡) + 𝑃𝐿(𝑘, 𝑡) − 𝑃𝐷(𝑘, 𝑡)

+𝑃𝐷𝐶−𝐴𝐶(𝑘, 𝑡). 𝜂𝐷𝐶−𝐴𝐶
}
 
 

 
 𝑁𝑏𝑢𝑠

𝑘=1

= ∑{𝑉𝑘(𝑡). 𝑉𝑗(𝑡). 𝑌𝑏𝑢𝑠(𝑘, 𝑗). cos(𝛿𝑘(𝑡) − 𝛿𝑗(𝑡)

𝑁𝑏𝑢𝑠

𝑗=1

+ 𝜃𝑘𝑗)} + 𝑃𝐴𝐶−𝐷𝐶(𝑡) 

(2) 

∑ 𝑃𝑔𝑟𝑖𝑑(𝑘, 𝑡) − 𝑃𝐷(𝑘, 𝑡)

𝑁𝑏𝑢𝑠

𝑘=1  

   

=  ∑{𝑉𝑘(𝑡). 𝑉𝑗(𝑡). 𝑌𝑏𝑢𝑠(𝑘, 𝑗). 𝑠𝑖𝑛(𝛿𝑘(𝑡) − 𝛿𝑗(𝑡)

𝑁𝑏𝑢𝑠

𝑗=1

+ 𝜃𝑘𝑗)}    

(3) 

Where, 𝑃𝐷𝐶−𝐴𝐶(𝑘, 𝑡) is the active power sold to the 

AC grid from DC parts with 𝜂𝐷𝐶−𝐴𝐶  efficiency of DC-

AC inverters. 𝑃𝐴𝐶−𝐷𝐶(𝑡) represents the injected active 

power from AC sides to DC grids. Indices 𝑘 and 𝑡 are 

the bus numbers and 24 hours of operation, 

respectively. 

Similarly, in DC areas, there are some constrains 

written in (4) to (19). The total operation costs and DC 

power balance, are formulated in (4) and (5), 

respectively. 

𝑂𝑝𝐶𝑜𝑠𝑡𝐷𝐶 =∑∑𝐶𝐷𝐺

𝑁𝐷𝐺

𝑘=1

(𝑘, 𝑡). 𝑃𝐷𝐺(𝑘, 𝑡)

𝑇

𝑡=1

 (4) 

𝑃𝐴𝐶−𝐷𝐶(𝑡). 𝜂𝐴𝐶−𝐷𝐶 + 𝑃𝐷𝐺(𝑡) + 𝑃𝑃𝑉(𝑡) 

+𝑃𝑤𝑖𝑛𝑑(𝑡). 𝜂𝐴𝐶−𝐷𝐶 + 𝑃𝑑𝑖𝑠𝑐ℎ(𝑡) 

= 𝑃𝑙𝑜𝑎𝑑
𝐷𝑅 (𝑡) + 𝑃𝑐ℎ(𝑡) + 𝑃𝐷𝐶−𝐴𝐶(𝑡) 

(5) 

The DR constrains are written in (6) to (8) as below. 

𝑃𝑙𝑜𝑎𝑑
𝐷𝑅 (𝑡) = 𝑃𝑙𝑜𝑎𝑑

 (𝑡) + 𝐷𝑅(𝑡) (6) 

−𝐷𝑅𝑚𝑎𝑥. 𝑃𝑙𝑜𝑎𝑑
 (𝑡) ≤ 𝐷𝑅(𝑡) ≤ 𝐷𝑅𝑚𝑎𝑥. 𝑃𝑙𝑜𝑎𝑑

 (𝑡) (7) 

∑𝐷𝑅(𝑡)

𝑇

𝑡=1

= 0 (8) 

The battery charging and discharging constrains are 

formulated in (9) to (13) mathematically. 

𝑃𝑐ℎ
𝐷𝐶(𝑡) ≤ 𝑋𝑐ℎ

𝐷𝐶(𝑡). 𝑃𝑐ℎ
𝐷𝐶𝑚𝑎𝑥  (9) 

𝑃𝑑𝑖𝑠𝑐ℎ
𝐷𝐶 (𝑡) ≤ 𝑋𝑑𝑖𝑠𝑐ℎ

𝐷𝐶 (𝑡). 𝑃𝑑𝑖𝑠𝑐ℎ
𝐷𝐶𝑚𝑎𝑥  (10) 
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𝑋𝑐ℎ
𝐷𝐶(𝑡) + 𝑋𝑑𝑖𝑠𝑐ℎ

𝐷𝐶 (𝑡) ≤ 1 (11) 

𝑆𝑂𝐶𝐷𝐶(𝑡) = 𝑆𝑂𝐶𝐷𝐶(𝑡 − 1) + 𝑃𝑐ℎ
𝐷𝐶(𝑡). 𝜂𝑐ℎ

𝐷𝐶

−
𝑃𝑑𝑖𝑠𝑐ℎ(𝑡)

𝜂𝑑𝑖𝑠𝑐ℎ
𝐷𝐶  (12) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (13) 

The DG power generation limitations are 

represented in (14) and (15). 

𝑃𝐷𝐺
𝐷𝐶(𝑡) ≤ 𝑃𝐷𝐺

𝐷𝐶𝑚𝑎𝑥 . 𝑢𝐷𝐺
𝐷𝐶(𝑡) (14) 

𝑃𝐷𝐺
𝐷𝐶𝑚𝑖𝑛 . 𝑢𝐷𝐺

𝐷𝐶(𝑡) ≤ 𝑃𝐷𝐺
𝐷𝐶(𝑡) (15) 

The wind turbine power generation constrains are 

shown in (16) and (17). 

𝑃𝑤𝑖𝑛𝑑
𝐷𝐶 (𝑡) =

=

{
 

 
0   ;    0 < 𝑣 < 𝑣𝑚𝑖𝑛    𝑜𝑟      𝑣 > 𝑣𝑙𝑖𝑚𝑖𝑡

𝑃𝑟𝑎𝑡𝑒𝑑 .
(𝑣 − 𝑣𝑚𝑖𝑛)

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
     ;     𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥

𝑃𝑟𝑎𝑡𝑒𝑑        ;         𝑣𝑚𝑎𝑥 < 𝑣 < 𝑣𝑙𝑖𝑚𝑖𝑡  

 (16) 

𝑃𝑤𝑖𝑛𝑑
𝐷𝐶 (𝑡) ≤ 𝑃𝑤𝑖𝑛𝑑

𝐷𝐶,𝑚𝑎𝑥(𝑡) (17) 

For PV operation scheduling, the power generation 

limitations are described in (18) and (19). 

𝑃𝑃𝑉
𝐷𝐶,𝑚𝑎𝑥(𝑡)

=
𝐺𝑎(𝑡)

𝐺𝑎0
[
 
 
 
 

𝑃𝑚𝑎𝑥,0
𝑀

+𝜇𝑃𝑚𝑎𝑥 (

𝑇𝑎(𝑡)

+
𝐺𝑎(𝑡)(𝑁𝑂𝐶𝑇 − 20)

800
− 𝑇𝑀0

)

]
 
 
 
 

 (18) 

𝑃𝑃𝑉
𝐷𝐶(𝑡) ≤ 𝑃𝑃𝑉

𝐷𝐶,𝑚𝑎𝑥(𝑡) (19) 

The converter modeling and power exchange 

platform are discussed in (20)-(22). 

𝑃𝐷𝐶−𝐴𝐶(𝑡) ≤ 𝑋𝐷𝐶−𝐴𝐶(𝑡). 𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥(𝑡) (20) 

𝑃𝐴𝐶−𝐷𝐶(𝑡) ≤ 𝑋𝐴𝐶−𝐷𝐶(𝑡). 𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥(𝑡) (21) 

𝑋𝐷𝐶−𝐴𝐶(𝑡) + 𝑋𝐴𝐶−𝐷𝐶(𝑡) ≤ 1 (22) 

Where, 𝑋 is a binary variable to determine the 

power exchange between AC and DC networks. The 

maximum power conversion is shown with 𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥(𝑡) to 

represent the capacity of power electronics interfaces. 

All the system constrains including DR rating, AC grid, 

equipment capacities, DG sizing and etc., are described 

in (23) to (55) mathematically. The voltage and current 

flowing the lines constrains are written in (23)-(26). 

𝐼(𝑘, 𝑗, 𝑡) ≤ 𝐼𝑚𝑎𝑥(𝑘, 𝑗, 𝑡) (23) 

𝑉𝑚𝑖𝑛(𝑡) ≤ 𝑉(𝑡) ≤ 𝑉𝑚𝑎𝑥(𝑡) (24) 

𝑉(𝑛, 𝑡) = 1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , 𝑛 = 𝑠𝑢𝑏𝑠, 𝑏𝑢𝑠 (25) 

𝐼(𝑘, 𝑗, 𝑡) ≤ 𝐼𝑚𝑎𝑥
𝑠𝑢𝑏 = 1 ,     𝑛 = 𝑠𝑢𝑏𝑠, 𝑏𝑢𝑠 (26) 

The DR program and capacity constraints are: 

𝑅𝐿(𝑘, 𝑡) + 𝑅𝐷𝑅(𝑘, 𝑡) + 𝑅𝐷𝐺(𝑘, 𝑡) 

= 0.02 𝑃𝑊𝑇(𝑘, 𝑡) + 0.1 𝑃𝐷(𝑘, 𝑡) 
(27) 

𝑂min  
𝑑 ≤ 𝑜1

𝑑 ≤ 𝑂1
𝑑 (28) 

0 ≤ 𝑜𝑘
𝑑 ≤ (𝑂𝑘+1

𝑑 − 𝑂𝑘
𝑑) (29) 

𝑃𝐷𝑅(𝑑, 𝑡) =∑𝑂𝑘
𝑑

𝑘

 (30) 

𝐶𝐸𝐷𝑅(𝑑, 𝑡) =∑𝑜𝑘
𝑑

𝑘

. 𝜋𝑘
𝑑 (31) 

𝑃𝐷𝑅(𝑑, 𝑡) + 𝑅𝐷𝑅(𝑑, 𝑡) ≤ 𝑃𝐷𝑅
𝑀𝑎𝑥(𝑑, 𝑡) (32) 

𝐶𝑅𝐷𝑅(𝑑, 𝑡) = 𝑅𝐷𝑅(𝑑, 𝑡). 𝐾𝑅𝐷𝑅(𝑑, 𝑡) (33) 

Where, 𝑅𝐿(𝑘, 𝑡) is the scheduled reserve capacity of 

L category and 𝑂min  
𝑑 is the minimum amount of load 

reduction offered by DRPs. The reserve constrains are 

shown in (34)-(36). 

𝑃𝐿(𝑘, 𝑡) + 𝑅𝐿(𝑘, 𝑡) ≤ 𝑃𝐿
𝑀𝑎𝑥(𝑘, 𝑡) (34) 

𝐶𝐸𝐿(𝑑, 𝑡) = 𝑃𝐿(𝑑, 𝑡). 𝐾𝐸𝐿(𝑑, 𝑡) (35) 

𝐶𝑅𝐿(𝑑, 𝑡) = 𝑅𝐿(𝑑, 𝑡). 𝐾. 𝑅𝐿(𝑑, 𝑡) (36) 

The other DG and renewable resources constrains 

are represented in (37) to (55), briefly [27]. 

𝑃𝑤𝑖𝑛𝑑(𝑡)
𝑚𝑖𝑛 ≤ 𝑃𝑤𝑖𝑛𝑑(𝑡) ≤ 𝑃𝑤𝑖𝑛𝑑(𝑡)

𝑚𝑎𝑥  (37) 

𝑃𝑤𝑖𝑛𝑑(𝑡) ≤ 𝑃𝑊(𝑣𝑐𝑢𝑡(𝑡))  (38) 

𝐵𝑆𝐶(𝑏, 𝑡) + 𝐵𝑆𝐷(𝑏, 𝑡) ≤ 1  ;   

 𝐵𝑆𝐶(𝑏, 𝑡), 𝐵𝑆𝐷(𝑏, 𝑡)𝜖{0 , 1}  
(39) 

𝑆𝑂𝐶(𝑏, 𝑡) = 𝑆𝑂𝐶(𝑏, 𝑡 − 1) + 𝜂𝐶 . 𝑃𝑆𝐶(𝑏, 𝑡)

− 𝜂𝐷 . 𝑃𝑆𝐷(𝑏, 𝑡) 
(40) 

𝑆𝑂𝐶𝑚𝑖𝑛(𝑏) ≤ 𝑆𝑂𝐶(𝑏, 𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥(𝑏) (41) 

0 < 𝑃𝑆𝐶(𝑏, 𝑡) ≤ 𝑃𝑆𝐶(𝑏, 𝑡)
𝑀𝑎𝑥 . 𝐵𝑆𝐶(𝑏, 𝑡) (42) 

0 < 𝑃𝑆𝐷(𝑏, 𝑡) ≤ 𝑃𝑆𝐷(𝑏, 𝑡)
𝑀𝑎𝑥 . 𝐵𝑆𝐷(𝑏, 𝑡) (43) 
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𝐶𝐸𝐷𝐺(𝑘, 𝑡) = 𝑎𝑘. 𝑢(𝑘, 𝑡) + 𝑏𝑘𝑃𝐷𝐺(𝑘, 𝑡)
+ 𝑐𝑘𝑃𝐷𝐺

2 (𝑘, 𝑡) (44) 

𝐶𝑆𝐷𝐺(𝑘, 𝑡) = 𝑆𝑈𝐶(𝑘). (𝑢(𝑘, 𝑡) − 𝑢(𝑘, 𝑡 − 1))  (45) 

𝐶𝑆𝐷𝐺(𝑘, 𝑡) ≥ 0 (46) 

𝐶𝑅𝐷𝐺(𝑘, 𝑡)
= 𝐾𝑅𝐷𝐺 . (𝑏𝑘 + 2 𝑐𝑘𝑃𝐷𝐺(𝑘, 𝑡)

𝑚𝑎𝑥). 𝑅𝐷𝐺(𝑘, 𝑡)  
(47) 

𝑃𝐷𝐺(𝑘, 𝑡)
𝑚𝑖𝑛 . 𝑢(𝑘, 𝑡) ≤ 𝑃𝐷𝐺(𝑘, 𝑡)

 

≤ 𝑃𝐷𝐺(𝑘, 𝑡)
𝑚𝑎𝑥 . 𝑢(𝑘, 𝑡) (48) 

𝑃𝐷𝐺(𝑘, 𝑡) + 𝑅𝐷𝐺(𝑘, 𝑡) ≤ 𝑃𝐷𝐺(𝑘, 𝑡)
𝑚𝑎𝑥 . 𝑢(𝑘, 𝑡) (49) 

𝑃𝐷𝐺(𝑘, 𝑡)
 − 𝑃𝐷𝐺(𝑘, 𝑡 − 1)

   

≤ 𝑃𝐷𝐺(𝑘, 𝑡)
𝑚𝑖𝑛 . 𝛾(𝑘, 𝑡) + 𝑈𝑅(𝑘). (1 − 𝛾(𝑘, 𝑡)) 

(50) 

𝑃𝐷𝐺(𝑘, 𝑡 − 1)
 − 𝑃𝐷𝐺(𝑘, 𝑡)

  

≤ 𝐷𝑅(𝑘). (1 − 𝜁(𝑘, 𝑡)) + 𝑃𝐷𝐺(𝑘, 𝑡)
𝑚𝑖𝑛 . 𝜁(𝑘, 𝑡) 

(51) 

∑ (1 − 𝑢(𝑘, ℎ)) ≥

𝑡+𝐷𝑇(𝑗)−1 

ℎ=𝑡

𝐷𝑇(𝑘). 𝜁(𝑘, 𝑡) (52) 

∑ 𝑢(𝑘, ℎ) ≥

𝑡+𝑈𝑇(𝑗)−1 

ℎ=𝑡

𝑈𝑇(𝑘). 𝛾(𝑘, 𝑡) (53) 

𝛾(𝑘, 𝑡) − 𝜁(𝑘, 𝑡) = 𝑢(𝑘, 𝑡) − 𝑢(𝑘, 𝑡 − 1)  (54) 

𝛾(𝑘, 𝑡) + 𝜁(𝑘, 𝑡) ≤ 1 (55) 

3.  OPTIMIZATION ALGORITHM 

Hybrid Micro-Grid System (HMGS) offers an 

optimal, reliable, and cost-effective solution for 

utilizing localized renewable energy resources over 

individual DC or AC micro grid. Generally, production, 

distribution, and demand subsystems are joined 

together to form an HMGS, that vary greatly depending 

on availability of renewable resources, desired services 

to provide, and demand subsystem parameters. These 

parameters together have a high impact on decision 

taking, reduction of the cost and reliability 

improvement of the system. The Multi-Stage Decision 

Based Dynamic Programing (MSD-DP) optimization 

approach is used to minimize the operation costs of the 

proposed MG. In this method, for each decision stage, 

there are numerous system states determining the 

current cost. Thus, the outputs of current stage, will be 

input states of next stage as shown in Fig. 2.  

A set of MSD formulation with the equality and 

non-equality constrains are formulated as below: 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘)   ; 

𝑥𝑘𝜖𝑋    ;     𝑢𝑘𝜖𝑈    ;     𝑘𝜖{0, 1, … , 𝑁 − 1} 
(56) 

𝑉𝑁(𝑥𝑁) = min {𝑔𝑁(𝑥𝑁) + ∑𝑔𝑘(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘=0

} (57) 

Where, 𝑘 donates the number of time intervals, 𝑥𝑘 

is the state vector at stage 𝑘, 𝑢𝑘 represents the decision 

vector at stage 𝑘, 𝑓𝑘 is the state transition functions.  

 

 
Fig. 2. The MSD problem tree. 

 

𝑔𝑘 is the cost function of the state and decision 

variables at stage 𝑘 and 𝑉𝑁 shows the summation of 

costs of all 𝑁 stages. At stage 𝑘, the objective function 

and constraints are written in (58) and (59). 

𝑉𝑘(𝑥𝑘) = min{𝑔𝑘(𝑥𝑘, 𝑢𝑘) + 𝑉𝑘−1(𝑥𝑘−1)} (58) 

𝑢𝑚𝑖𝑛
𝑘−1 < 𝑢 

𝑘−1 < 𝑢𝑚𝑎𝑥
𝑘−1  

𝑥𝑚𝑖𝑛
𝑘 < 𝑥 

𝑘 < 𝑥𝑚𝑎𝑥
𝑘  

𝑥𝑘 = 𝑓𝑘−1(𝑥𝑘−1, 𝑢𝑘−1) 

(59) 

Where 𝑢𝑚𝑖𝑛
𝑘−1 and 𝑢𝑚𝑎𝑥

𝑘−1  are decision variables 

possible range, and states limitation are represented by 

𝑥𝑚𝑖𝑛
𝑘  and 𝑥𝑚𝑎𝑥

𝑘 . The MSD problem could not be solved 

by itself, therefore the DP approach described in [28-

29] is used to minimize the problem formulations. So, 

let 𝑋𝑖 considered as a state vector including the power 

exchanged of DGs, DR and upstream network, and 𝑈𝑖 
be an input vector determining the real time price for 

operation. Briefly, the objective functions considered to 

be minimized in (1), are simplified as (60)-(61). 

𝑍 = min {∑ 𝑓𝑘(𝑋𝑘  , 𝑈𝑘)

𝑁−1

𝑘=1

+ 𝑓𝑁(𝑋𝑁)} 

decision vector:  𝑋 = [𝑃𝑔𝑟𝑖𝑑   𝑃𝐷𝐺𝑠  𝑃𝐷𝑅]
𝑇
   

(60) 
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input vector:  𝑈 = [𝜋𝑔𝑟𝑖𝑑   𝜋𝐷𝐺𝑠  𝜋𝐷𝑅]
𝑇
 

Subject to: 

Iterative problem solving principle:  

𝑥𝑘+1 = 𝑔𝑘(𝑥𝑘 , 𝑢𝑘) 

Equality constraints: ℎ𝑘(𝑥𝑘 , 𝑢𝑘) = 0 

Non-equality constraints: 𝑔𝑘(𝑥𝑘 , 𝑢𝑘) < 0 

(61) 

The eq. (61) implies on the all equality and non-

equality relations written in (2)-(55). 

 

4.  SIMULATION AND DISCUSSION 

The MG under study is considered as IEEE 33 bus 

distribution system, shown in Fig. 3. This power 

network is capable to operate both in grid connected 

and islanded modes. The DERs described in previous 

sections are located in several buses of this power 

network to supply the load. The Time of Use (TOU) 

electricity tariff represented in Fig. 4 is applied to the 

MG energy management. This implies on instantaneous 

DG unit commitment regarding the total operation 

costs is minimized. Table 1 represents the DGs power 

rating. The simulation results are obtained under three 

different case studies as listed below: 

1. Operating MG without ESS in grid-tied mode; 

2. Operating MG with all DGs in autonomous mode; 

3. Operating MG with all capacity of minimizing 

costs; 

 
Fig. 3. IEEE 33 bus system. 

 

Table 1. DGs power rating. 

DG Power rating 

PV 60 × 2 kW 

ESS 20 × 6 kW 

Wind 60 × 2 kW 

Converter 130 × 4 kW 

DR Up to 20 % of total load 

 
Fig. 4. TOU electricity tariff. 

 

4.1.  Scenario 1 

The first case study outputs are shown in Figs. 5 

and 6. In this simulation platform, it is assumed that 

customers are divided into 10 groups (H1 to H10) with 

different power level and the demand power of each 

group with the adjacent group can vary due to their 

different user, shown in Fig. 5. These changes in power 

and categorization are due to the variety of commercial, 

domestic and industrial loads in the micro-grid. The 

sum of all these required loads now constitutes the 

same dimensional load profile that must be provided by 

the DG resources presented in the framework. In this 

scenario, the wind power supplies the load at high-wind 

power existing periods, resulting in decrease of the 

other DG generation power pressure. The converter 

loss is also being negligible, while the PV generates the 

electrical power in high-irradiance power received. The 

ESS is not contributed at the MG energy management 

as it is supposed to be charged in cheap hours and 

discharged in high electricity tariff especially in peak 

hours (16:00 to 19:00). The remained load power is 

considered to be supplied by the upstream network as 

plotted in Fig. 6 in dash style. The total operation costs 

in this scenario are calculated as 75608.12 $.  

 

 
Fig. 5. Electrical demand by the 10 categorized 

consumers. 
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Fig. 6. Power exchange between DERs and upstream 

network in scenario 1. 

 

These DGs unit commitments are directly 

subordinated to the electricity tariff shown in Fig. 4. 

The DR resources play an important role in supplying 

loads at low power hours, significantly. 

 

4.2.  Scenario 2 

This scenario investigates the operating MG with all 

DGs in autonomous mode. Likewise, the previous 

scenario, first the DERs power exchange is shown in 

Fig. 7. As in the scenario 2, the distributed generation 

resources do not exchange any power with the 

upstream network, thus the network is in autonomous 

mode and all requested loads are supplied by the 

network's own resources. In this case, ESS plays the 

most important role in providing power, especially in 

periods where the wind turbines and the solar powers 

are off. Fig. 8 illustrates the battery charge and 

discharge power diagram, and Fig. 3 also shows the 

battery SOC, which is kept at least 20% constant. The 

total loss is calculated as 7.41 kW and the mean voltage 

profile of all buses are 0.986 pu. Totally the operation 

costs of autonomous hybrid MG is calculated as 

68452.95 $, which is lower that the first case study. 

 
Fig. 7. Power exchange of DERs in scenario 2. 

 
Fig. 8. ESS charging and discharging in scenario 2. 

 

 
Fig. 9. The SOC of ESS in scenario 2. 

 

4.3.  Scenario 3 

In this case study, all DERs and upstream network 

participate to supply the load in case of cost 

minimization. The total operation costs are 62562.89 $ 

which implies that this is the lower price in all 

scenarios. By the way, the active power loss is 

calculated as 5.12 kW which approximately is 31% 

lower that case study 2. The voltage profiles are also 

improved with 1.007 pu as mean amount. The ESS 

variation is considered to be limited rather than the 

scenario 2 to (20 % , 72 %), due to the power injected 

to the MG from upstream network. 

The output results of second and third scenarios are 

gathered in table 2 briefly. As it is observed, the DGs 

generated power are decreased in grid connected mode 

regarding in much power injected to the MG at low 

electricity price in upstream network. In this case, the 

reliability is increased and the Expected Energy Not 

Supplied (EENS) in this simulation time horizon is 

decreased, correspondingly.  

𝐸𝐸𝑁𝑆 = ∑ 𝐸[𝐿𝑂𝐸(𝑗)]

𝑁𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑖𝑒𝑠

𝑗=1

 

𝐿𝑂𝐸 =∑𝑄𝑟 . 𝑃(𝑡)

𝑟

 

(62) 

Where, 𝑄𝑟  is the amount of lost load in position r.  
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Table 2. Output results of grid connected and islanded modes of operation states. 

Operation modes Grid connected mode Islanded mode 

DGs and parameters 

Mean 

output 

power 

Mean time 

off 

Converter 

loss 

Mean 

output 

power 

Mean time 

off 

Converter 

loss 

PV 5.2 kW 11 hours 0.21 kW 10.6 kW 7 hours 0.35 kW 

ESS 7.6 kW  6 hours 0.32 kW 11.4 kW  3 hours 0.52 kW 

Converter 29.3 kW 0 2.2 kW 32.5 kW 0 3.13 kW 

Wind 9.3 kW 13 hours 0.47 kW 11.9 kW 13 hours 0.76 kW 

Upstream network 7.7 kW 8 hours 0 0 0 0 

EENS 6.53 % 9.36 % 

Mean voltage profile 1.007 pu 0.986 pu 

Total loss 5.12 kW 7.41 kW 

SOC (min, max) (20 % , 95 %) (20 % , 72 %) 

Operation costs 62562.89 $ 68452.95 $ 

 

5.  CONCLUSION 

In this paper, the framework formulation of DC and 

AC kinds of DERs is expressed in a hybrid MG and the 

optimized simultaneous operation of DGs were carried 

out. The simulation results of the models and the 

proposed method show that the micro grid is stable in 

all case studies and the voltage profile is improved, 

consequently. The use of DR applications under the 

TOU electricity tariff will smooth the load profile, 

which significantly reduces the power generation 

pressure of the electricity distribution companies. 

Evaluation and assessment of different case studies 

have shown that hybrid networks, whether in grid-

connected or islanded mode, will optimally perform 

power exchange between loads and DERs, and reduce 

operating costs. In this paper, the losses of AC-DC and 

DC-AC converters are also considered, which increases 

the accuracy of the output responses. The comparisons 

show that the DP optimization algorithm is capable of 

improving the performance of the MG and will also 

increase battery life. 

 

 

Table 3. The parameters used in this paper. 

Parameter  Definition  

𝜋𝑔𝑟𝑖𝑑 Grid price 

𝑃𝑔𝑟𝑖𝑑 Grid power 

𝐶𝐸𝐷𝐺 AC operating cost of DGs 

𝐶𝑅𝐷𝐺 Cost of scheduled reserve capacity reduction of DGs 

𝐶𝐸𝐿 Load shedding cost 

𝐶𝑅𝐿 Reserve decreasing cost 

𝐶𝐸𝐷𝑅 Load reduction in DR scheduling 

𝐶𝑅𝐷𝑅 DR reserve programing 

𝑋 = [𝑃𝑔𝑟𝑖𝑑   𝑃𝐷𝐺𝑠   𝑃𝐷𝑅]
𝑇
 Decision vector 

𝑈 = [𝜋𝑔𝑟𝑖𝑑   𝜋𝐷𝐺𝑠  𝜋𝐷𝑅]
𝑇
 Input vector 

𝑃𝐷𝐺𝑠 = [𝑃𝑊𝑇   𝑃𝑃𝑉   𝑃𝑐ℎ   𝑃𝑑𝑖𝑠𝑐ℎ   𝑃𝑐𝑜𝑛𝑣] DGs powers 
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𝜋𝐷𝐺𝑠 = [𝜋𝑊𝑇  𝜋𝑃𝑉  𝜋𝑐ℎ   𝜋𝑑𝑖𝑠𝑐ℎ   𝜋𝑐𝑜𝑛𝑣] DGs prices 

𝑃𝐷𝑅 = [𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑎𝑏𝑎𝑙 𝐿𝑜𝑎𝑑    𝑃𝑙𝑜𝑎𝑑] DR powers 

𝜋𝐷𝑅 = [𝜋𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑎𝑏𝑎𝑙 𝐿𝑜𝑎𝑑    𝜋𝑙𝑜𝑎𝑑] DR prices 

𝑉𝑘 Voltage of node k 

𝑌𝑏𝑢𝑠 Admittance matrix  

𝛿𝑘 Phase angle of voltage at node k 

𝜃𝑘𝑗 Phase angle of each admittance matrix arrays 

𝑃𝑐ℎ
𝐷𝐶  Charging power 

𝑃𝑐ℎ
𝐷𝐶𝑚𝑎𝑥 Discharging power 

𝑆𝑂𝐶𝐷𝐶 State of charge 

𝑢, 𝛾, 𝜁 Binary variables 

𝑃𝑤𝑖𝑛𝑑
𝐷𝐶  Wind power  

𝑣 Wind speed 

𝑃𝑟𝑎𝑡𝑒𝑑  Nominal power of wind 

𝐺𝑎(𝑡) Ambient irradiation for PV 

𝜇𝑃𝑚𝑎𝑥 PV efficiency at maximum power 

𝑁𝑂𝐶𝑇 Normal operating cell  

𝑇𝑀0 Ambient temperature  

𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥  Maximum power transmitted by the converter  

𝐼 Branch current 

𝑂𝑘
𝑑  Amount of load reduction by DR 

𝐵𝑆𝐶  , 𝐵𝑆𝐷  Binary variable for charging/discharging of the battery 

𝜂 Efficiency  
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