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ABSTRACT:  
Control of the force exerted on an object is important for boosting system performance in robotics manipulators. Any 

undesired applied force may leave remarkable effects on the system, with the potential to damage the object. In addition, 

measuring external force is another challenge associated with such cases. Proposing an appropriate force estimation 

algorithm is a solution to overcome this deficiency. In this research, a control strategy is proposed to control the external 

force applied on the n-dof robotics. To eliminate force measurement in the controller, a force estimation strategy based 

on a disturbance observer is employed. Subsequently, a sliding-mode based control is implemented to cope with the 

force estimation error. The closed-loop stability of the system in the presence of estimated force is analytically 

considered. The proposed algorithm was implemented on piezoelectric actuators as the experimental setup. The 

experimental results confirm that by employing the proposed control scheme, precise force control is achievable. The 

force estimation algorithm can also suitably estimate external force. 

 

KEYWORDS: Robotic Systems, Force Control, Sliding Mode Control, Force Estimation. 

 

1.  INTRODUCTION  

The capability to manipulate the physical collision 

between a robotic device and environment is a basic 

necessity to do manipulation task properly. Unavailable 

error associated with modeling and presence of 

parameter uncertainties likely cause an increase of the 

contact external force and pure motion control would not 

be adequate for the system, eventually it causes an 

unstable behavior when the interaction is occurring, 

especially in the collision with the rigid environments. 

 

2.  LITERATURE REVIEW 

Force reflection and force control becomes set to 

obtain a robust and flexible behavior of a robotic 

manipulator system in poorly structured external 

environments as well as safe and dependable 

applications in the presence of operators [1-4]. Several 

control structures have been suggested for free 

positioning as open as well as closed-loop approaches. 

Impedance control schemes, sliding mode as well as 

robust control which have been coupled with adaptive 

strategies have been used in such cases [5-9]. The 

significant drawback of the above presented control 

schemes is the elimination of any contact force. External 

forces can affect the control performance in applications 

such as micro assembly and cell characterization [10]. In 

addition, any undesired applied forces can also degrade 

efficiency or seriously damage the object. Subsequently, 

an efficient force control scheme can be developed to 

control the exerted external force. 

A well-known force control approach was proposed 

considering a known dynamic model and impedance 

parameters of the environment [11]. The necessity for an 

exact and correct dynamic model of the external 

environment with its recognized impedance parameters 

is a really conservative assumption in the proposed 

approach. An alternative force control scheme is the 

hybrid position/force control [12]. In this method, the 

desired impedance is induced to the dynamic system to 

guarantee external force control. However, these 

proposed approaches require external force 

measurement. The use of force sensors poses a serious 

restriction on such applications. Alternatively, an 

accurate external force estimation approach could 

eliminate the necessity to measure force.  

An unknown input observer was utilized as an 
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external force estimator for a manipulator [13]. 

Nevertheless, the proposed observer conditions were too 

restricted. A new force estimation strategy to estimate 

the effects of system uncertainties have also been 

developed [14], [15]. The above presented approaches 

do not consider any error dynamic for the designed 

observers. Therefore, the stability of the closed-loop 

system by using estimated external force could not be 

proved analytically. To solve this problem, a sliding- 

mode based disturbance observer in the presence of the 

dynamic error was investigated [16]. Nonetheless, 

observer sliding nature could degrade the observer 

performance. In other investigations, simultaneous force 

estimation and control approaches have also been 

designed. A sliding mode control scheme with external 

force estimation was proposed for robotics manipulators 

[17]. The switching behavior of the controller may 

reduce the controller’s efficiency. Observer-based force 

control was proposed as another alternative [18]. 

However, the stability analysis of the designed 

controllers in the presence of an estimated state has not 

been investigated.  

In [19-21], external force was estimated correctly 

and imported into control strategy, however in [19], a 

velocity/force observer was proposed which is based on 

the Generalized Proportional Integral (GPI) method. In 

this research, joint velocities as well as contact forces are 

estimated just employing position measurements and 

then utilized in a force/position control scheme, but it 

was not proved that force control has been done 

analytically. In [20], an online stiffness estimation 

technique for robotic tasks based only on force was 

proposed. It could identify the stiffness of environment 

to some extent employing this technique, but force 

control was not demonstrated clearly. [21] described the 

interaction torque control of the Rehab-Exos, in 

addition, an upper-limb robotic exoskeleton with direct 

torque joint sensors for interaction in Virtual 

Environments and rehabilitation. The presented control 

scheme included a centralized torque control as well as 

separated optimal torque observers for every joint of the 

exoskeleton data, therefore, not requiring contact 

position information. The centralized torque control 

scheme is usually based on a full dynamics model of the 

presented exoskeleton, it correctly calculates the 

kinematics and dynamics of the robotic system and 

estimates the feed-forward contribution in order to 

compensate the dynamic loads measured using joint 

torque sensors, however it has not been demonstrated 

that force control occurred properly. 

In the current work, an inner-outer external force 

control approach is designed. Considering the limitation 

caused by the existence of force sensors in such robotics 

tasks, an appropriate force observer is proposed. A 

challenging issue is force estimation error; as a result, a 

force control structure which is based on the sliding-

mode control scheme which properly guarantees 

robustness to external force estimation error is derived 

to satisfy the desired force exertion. The stability of the 

whole system in the presence of estimated force is 

analytically achieved. A piezoelectric actuator is 

modeled and considered as an experimental setup. The 

experimental results demonstrate that the external force 

is controlled properly employing proposed force control 

algorithm. In addition, estimated force tracks the real 

one with appropriate accuracy. 

 

3.  MATERIAL AND METHOD 

In this section, the system dynamic model of robotic 

system is defined. Then, a force control strategy for 

robotic system is proposed. A force estimation approach 

is proposed to cope with direct measuring of external 

forces. Consequently, proposed control strategy is 

implemented on the experimental setup.     

 

3.1.  General Nonlinear Dynamics Modeling 

A general n degrees of freedom nonlinear dynamic 

system in the collision with the environment would be 

as: 

 

(1) 𝑀(𝑋)𝑋̈ + 𝐶(𝑋, 𝑋̇)𝑋̇ + 𝐺(𝑋) = 𝑢 − 𝐹𝑒 

 

Where, X = [x1x2 … xn]T is the n generalized 

coordinates vector; M(X) shows the symmetric as well 

as positive-definite inertia matrix; C(X, Ẋ) and G(X) are 

the Coriolis and centrifugal matrices, respectively; and u 

and Fe are the input control and external force, 

respectively. 

 

3.2.  Inner-Outer Loop Control Design 

The main goal is to control external force accurately 

in terms of absent external force sensors. Basically, the 

external force should be precisely observed and then 

properly controlled. In addition, a conservative 

assumption related to the known external environment 

should be released. 

In this section, an inner-outer loop control approach 

is designed for appropriate external force control of a 

general nonlinear dynamic system (1). Taking into 

account the nonlinear behavior of general mechanical 

systems, the inner loop controller (2) is proposed to 

make linear system. 

 

(2) u =  C(X, Ẋ)Ẋ + G(X)+Fe + M(X)u1 

 

 Therefore, the system dynamic is transformed into 

decoupled double integrators (3) as follows. 

 

(3) Ẍ = u1 
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In such a case, the dynamic of every individual 

degree of freedom could be represented as (4). 

 

Ẍi = u1i (4) 

 

In order to simplify the control design, index i is 

removed for further equations.  

Control input 𝑢1 should be designed in such a way 

that the desired system impedance is achievable. 

Accordingly, the external force control can be 

implemented. 

 

Theorem 1: By assuming the external force 

measurement, the outer loop control input (5) is 

achieved to produce the desired impedance for the 

system. 

 

u1 =
1

Mc

[−Ccẋ + Fd − Fe] 
(5) 

 

The closed-loop system dynamic assures system 

external force control that is in collision with an external 

unknown environment. 

 

Proof: the closed-loop dynamics would be as follows 

by substituting the control algorithm (5) into the 

dynamic system (4): 

 

Mcẍ + Ccẋ = Fd − Fe (6) 

 

Therefore, the desired impedance Zr(s) (7) is 

achieved for the dynamic system. 

 

Zr(s)ẋ = Fd − Fe 

Zr(s)=Mcs + Cc 

(7) 

 

Where, s and Zr(s) show the Laplace variable and 

desired system impedance, respectively. As a necessary 

condition, the desired proposed impedance should not 

include any gravity-like impedance. The equivalent 

electrical description associated with the closed-loop 

system could be observed in Fig. 1. 

 

 

Fig.1. Force control system in equivalent 

electrical description. 

Ze(s) shows the environment impedance. In 

addition, a conventional mass-damper-spring dynamic 

(8) is considered for the dynamic model of environment. 

Consequently, impedances would be absolutely 

unknown. 

 

Fe =  Ze(s)ẋ 

Ze(s)=mes + ce +
ke

s
 

(8) 

 

Based on Fig. 1, the force relation is resulted as 

follows: 

 
Fe(s)

Fd(s)
=

Ze(s)

Zr(s) + Ze(s)
 

(9) 

 

As a result, the error function is obtained as: 

 
𝐸(𝑠)

𝐹𝑑(𝑠)
=

𝑍𝑟(𝑠)

𝑍𝑟(𝑠) + 𝑍𝑒(𝑠)
 

(10) 

 

      Taking into account the defined impedance of the 

closed-loop system and the environment, the steady state 

error is eliminated (11) and the external force control is 

occurred. 

 

𝒆𝒔𝒔 = 𝐥𝐢𝐦
𝒔→𝟎

𝒔𝑬(𝒔) =
𝒁𝒓(𝟎)

𝒁𝒓(𝟎) + 𝒁𝒆(𝟎)
= 𝟎   

→   𝑭𝒆 → 𝑭𝒅 

(11) 

 

The designed control approach can guarantee proper 

force control. However, the main limitation is the 

external force measurement. The placement of force 

sensors is not possible in many applications. Their high 

cost and probably noisy output may restrict their use as 

well. Consequently, a force estimation algorithm might 

be applicable to solve the issue. 

 
3.3.  External Force Estimation 

With regards to general nonlinear dynamic systems 

(1), the proposed observer [22] is utilized as an external 

force estimation observer. The structure is represented 

as: 

 

𝐹̇̂𝑒 = −𝐿𝐹̂𝑒 + 𝐿[𝑢 − (𝑀(𝑋)𝑋̈ + 𝐶(𝑋, 𝑋̇)𝑋̇

+ 𝐺(𝑋))] 

(12) 

Where, F̂e  and L are defined as estimated external 

force and the diagonal positive definite gain matrix, 

respectively: 

 

𝜆𝑚𝑖𝑛(𝐿) ≤ 𝐿 ≤ 𝜆𝑚𝑎𝑥(𝐿) (13) 

 

 λmin(.) and λmax(.) are defined as the minimum and 

maximum Eigenvalues of the presented gain matrix.    
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The stability of the proposed method should be 

investigated. The closed-loop dynamic of the estimator 

can be denoted as: 

 

𝐹̇̃𝑒 + 𝐿𝐹̃𝑒 = 𝐹̇𝑒 

𝐹̃𝑒 = 𝐹𝑒 − 𝐹̂𝑒 

(14) 

 

By using the positive definite Lyapunov 

function V =
1

2
F̃e

T
F̃e, the time derivative is: 

 

𝑉̇ = 𝐹̃𝑒
𝑇

𝐹̇̃𝑒 = −𝐹̃𝑒
𝑇

𝐿𝐹̃𝑒 + 𝐹̃𝑒
𝑇

𝐹̇𝑒 (15) 

 

In this condition, it has been assumed that the rate of 

external forces is remarkably bounded because of the 

lack of present information on the rate of external force, 

such that: 

 

∃𝛿𝑚 > 0                𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡             ‖𝐹̇𝑒‖

< 𝛿        , ∀𝑡 > 0 

(16) 

Therefore: 

𝑉̇ ≤ −𝐹̃𝑒
𝑇

𝐿𝐹̃𝑒+𝛿‖𝐹̃𝑒‖
2

≤ −𝜆𝑚𝑖𝑛(𝐿) ‖𝐹̇̃𝑒‖
2

2

+

𝛿‖𝐹̃𝑒‖
2
=−𝜆𝑚𝑖𝑛(𝐿)(1 − 𝜃)‖𝐹̃𝑒‖

2

2
−

𝜆𝑚𝑖𝑛(𝐿)𝜃‖𝐹̃𝑒‖
2

2
+ 𝛿‖𝐹̃𝑒‖

2
 

(17) 

 

Where, θ ∈ (0,1). Therefore, the following is 

concluded: 

 

𝑉̇ ≤ −𝜆𝑚𝑖𝑛(𝐿)(1 − 𝜃)‖𝐹̃𝑒‖
2

2
 , ∀‖𝐹̃𝑒‖

2
≥

𝛿

𝜆𝑚𝑖𝑛(𝐿)𝜃
 

(18) 

 

Based on the Definition 4.2 in [23] and since the 

presented Lyapunov function (V) is differentiable 

continuously in addition to positive-definite and defined 

radially unbounded, therefore there are class K∞ 

functions α1(. ) and α2(. ) such that α1(F̃e) ≤ V(F̃e) ≤
α2(F̃e). Employing Theorem 4.18 in [23], it is proved 

that the tracking error would be globally uniformly 

ultimately bounded regarding the ultimate bound 

specified by α1
−1(α2(

δm
λmin(L)θ⁄ )). Consequently, 

there exists T > 0, therefore  the following equation 

occurs: 

 

|𝐹̃𝑒| ≤ 𝛼1
−1 (𝛼2 (

𝛿𝑚

𝜆𝑚𝑖𝑛(𝐿)𝜃
))  

for  ∀𝐹̃𝑒(0) 𝑎𝑛𝑑 ∀𝑡 ≥ 𝑇 

(19) 

 

Remark 1: The proposed observer strategy contains 

acceleration terms and could degrade the controller’s 

performance. Thus, a new auxiliary variable z is stated 

as z = F̂e − p. 

      Therefore, the modified observer structure is derived 

as follows: 

 

𝑧̇ = −𝐿𝑧 + 𝐿 [𝑢 + 𝑝 − (𝐶(𝑋, 𝑋̇)𝑋̇ + 𝐺(𝑋))] 

𝑧 = 𝐹̂𝑒 − 𝑝 

𝑝̇ = −𝐿𝑀(𝑋)𝑋̈ 

(20) 

 

3.4.  Sliding Mode Control Scheme for a System 

The designed control algorithm includes position and 

velocity signals plus estimated external force along with 

desired impedances. Due to the force estimation error, 

the control performance may deteriorate. Therefore, a 

robust control scheme can be employed by proposing a 

sliding-mode control scheme such that a precise and 

desired model is achieved. The control input is: 

 

𝑢 =  𝐶(𝑋, 𝑋̇)𝑋̇ + 𝐺(𝑋)+𝐹̂𝑒 + 𝑀(𝑋)𝑢1 −

𝐾𝑠𝑔𝑛(𝑠) 

(21) 

 

Where, F̂e, Kand s are the estimated external force, 

nonlinear gain and sliding surface, respectively. In 

addition: 

 

𝑢1 =
1

𝑀𝑐

[−𝐶𝑐𝑥̇ + 𝐹𝑑 − 𝐹̂𝑒] 
(22) 

 

The closed-loop system dynamic is achieved by 

substituting (21) in (1) and having F̃e = F̂e − Fe: 

 

𝑀(𝑋)𝑋̈ = 𝐹̃𝑒 + 𝑀(𝑋)𝑢1 − 𝐾𝑠𝑔𝑛(𝑠) (23) 

 

      Now the proper sliding surface is introduced as: 

 

𝑠 = ∫ 𝐼(𝑡)𝑑𝑡
𝑡

0

 
(24) 

 

Where, 𝐼 is defined as: 

 

𝐼 = 𝑀(𝑋)𝑋̈ − 𝑀(𝑋)𝑢1 (25) 

 

By rewriting the closed-loop dynamic as well as to 

express it in terms of s gives: 

 

𝑠̇ − 𝐹̃𝑒 + 𝐾𝑠𝑔𝑛(𝑠) = 0 (26) 

 

Considering the Lyapunov function as V =
1

2
sTs, the 

time derivative is: 

 

𝑉̇ = −𝑠𝑇(𝐹̃𝑒 − 𝐾𝑠𝑔𝑛(𝑠)) (27) 

The system desired trajectory would converge 

properly towards the sliding surface, if the presented 

sliding conditionsTṡ ≤ η|s| is satisfied. Regarding (26) 

and to satisfy the sliding condition, the nonlinear gain K 

should be: 
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𝐾 ≥  𝜂 + |𝐹̃𝑒| (28) 

 

To demonstrate the boundedness of |F̃e| in the 

previous section, the appropriate magnitude of K can be 

reached. While the system is in the desired sliding mode 

control scheme, the sliding surface satisfies ṡ → 0 [24]. 

As a result, the desired model is achieved when I = 0: 

 

𝑀(𝑋)𝑋̈ = 𝑀(𝑋)𝑢1 (29) 

 

Remark2: to eliminate the present undesired 

chattering behavior during operation caused by 

switching-based controller, it should be transformed into 

the sign function (sgn(s)) because of its continuous 

form as a saturation function (sat(
s

ϕ
)), where ϕ is the 

boundary layer thickness. It could be derived that the 

steady state error dynamic is bounded by ϕ. Thus, the 

controller structure would be: 

 

𝑢 =  𝐶(𝑋, 𝑋̇)𝑋̇ + 𝐺(𝑋)+𝐹̂𝑒 + 𝑀(𝑋)𝑢1 −

𝐾𝑠𝑎𝑡(
𝑠

𝜙
) 

(30) 

 

Remark3: Noted that by deriving ṡ1(t), it is required 

to measure acceleration signal directly. To avoid direct 

measuring of the acceleration signal, it is presented an 

auxiliary variable as follows: 

 

𝑞 = 𝑠(𝑡) − 𝑟(𝑋̇) (31) 

𝑑𝑟(𝑋̇)

𝑑𝑡
= 𝑀𝑋̈ 

 

 

Thus, it is not necessary to measure acceleration 

signal directly in the modified sliding surface: 

 

𝑞̇ = −𝑀𝑢1 

𝑠 = 𝑞 + 𝑟(𝑋̇) 

(32) 

 
Theorem 2: The modified control algorithms (21) 

and (22) could guarantee external force control. 

Proof: By substituting (21) and (22), the final 

closed-loop system would be as follows: 

 

𝑀𝑐𝑥̈ + 𝐶𝑐𝑥̇ = 𝐹𝑑 − 𝐹̂𝑒 (33) 

 

Regarding the observer structure, any estimated 

external force could be defined in the s-domain as: 

 

𝐹̂𝑒 =
𝐿𝐹𝑒

𝑠 + 𝐿
 

(34) 

 

Employing the s-domain description of estimated 

force gives the closed-loop dynamic model in the s-

domain as: 

 

𝑀𝑐𝑥̈ + 𝐶𝑐𝑥̇ = 𝑍𝑟(𝑠)𝑥̇ = 𝐹𝑑(𝑠) −
𝐿𝐹𝑒(𝑠)

𝑠+𝐿
 (35) 

 

The closed-loop dynamic model can be rearranged in 

the following form: 

 

𝑍𝑟(𝑠)𝑥̇ = 𝐹𝑑(𝑠) − 𝐹′
𝑒(𝑠) 

𝐹′
𝑒(𝑠)=

𝐿𝐹𝑒(𝑠)

𝑠+𝐿
 

(36) 

 

Essentially, the desired impedance of the system 

contacts the new environment impedances as Ze
′ (s), 

which is defined as: 

 

𝐹′
𝑒=𝑍𝑒

′ (𝑠)𝑥̇ 

𝑍𝑒
, (𝑠) = 𝐹(𝑠)𝑍𝑒(𝑠) 

F(s)=
𝐿

𝑠+𝐿
 

(37) 

 

The equivalent electrical description of the closed-

loop system is: 

 
Fig. 2. Equivalent electrical description of the 

observer-based force control. 

 

Regarding the equivalent electrical model and 

impedance of the new external force, the convergence of 

steady-state error could be: 

 
𝐸(𝑠)

𝐹𝑑(𝑠)
=

𝑍𝑟(𝑠)

𝑍𝑟(𝑠) + 𝑍𝑒
, (𝑠)

 

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝐸(𝑠) =
𝑍𝑟(0)

𝑍𝑟(0) + 𝑍𝑒
, (0)

= 0   

→   𝐹𝑒 → 𝐹𝑑 

(38) 

 

Finally, the proposed control scheme is as follows: 
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Fig. 3. The proposed controller structure. 

 

4.  EXPERIMENTAL RESULTS 

The designed control scheme was experimentally 

implemented, and the utilized setup has been presented 

in Fig. 4. The mentioned setup embraces a P-615 Nano-

Cube piezoelectric actuator with maximum 

displacement 420 μmin the X and Y directions. To 

capture required data, a DS1104 dSPACE data 

acquisition and a controller board have been used. 

Matlab/Simulink software has been applied to 

implement control strategy. Note that dynamic model of 

utilized piezoelectric actuator has been presented in [25].  

 

 
Fig. 4. Experimental Setup. 

 

4.1.  Control Performance Analysis 

The proposed control structure was run with the 

experimental setup. By adjusting the controller 

parameters, the actuator’s external force control was 

investigated for m = 0.005,C = 900 (Fig 5). 

 

 
Fig. 5. External Force Control for m=0.005, C=900. 

 

It is clear that the estimated force tracks the desired 

external force properly. To verify the force estimation 

process, Fig. 6 depicts the force observation results. 

 

 
Fig. 6. External Force Estimation for m=0.005, 

C=900. 

 

Similarly, the controller performance is evaluated as 

displayed in Fig. 7 by another tuning as m = 0.004, C =
1200, m = 0.006, C = 1200. 

 

 
(a) 

 
(b) 

Fig. 7. (a)External Force Control for m=0.004, 

C=1200, (b) External Force Estimation for m=0.004, 

C=1200. 
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(a) 

 
(b) 

Fig. 8. (a)External Force Control for m=0.006, 

C=1200, (b) External Force Estimation for m=0.006, 

C=1200. 

 

It can be claimed that the estimated force is able to 

control environment force accurately. 

 

 
(a) 

 
(b) 

Fig. 9. (a)External Force Control for m=0.006, 

C=900, (b) External Force Estimation for m=0.006, 

C=900. 

 

In Fig. 9, it is shown that proposed force control 

algorithm is proper for time varying force as well. In 

addition, it is observed that estimated force converges to 

external force appropriately. 

  

4.2.  Force Control Analysis by Closed-Loop Gains 

Closed-loop system performance is analyzed in this 

section. The main parameter is damping gain of the 

closed-loop force controller. As previously mentioned, 

the closed-loop force control can be assumed to be a 

system with position state. As a result, there are two 

poles: one at the origin and another depending on the 

damping gain. Changing damping with the following 

equation could effectively change the position of closed-

loop poles. 

 
1

𝑠(𝑀𝑐𝑠 + 𝐶𝑐)
 

(39) 

 

Obviously, increasing the gain brings the dominate 

pole closer to the origin. As a result, the system’s 

behavior would strongly depend on the first pole, 

causing a slower response. 

The force control process is shown in Fig. 10 for 

different damping gains. The results confirm the 

previous analysis as well. 

 

 
Fig. 10. Simulated External Force Control for 

different Gains. 

 

In investigating the above fact, controller 

performance is reviewed for two different gains. The 

external force behaviors for these gains are compared in 

Fig. 11. 

 

 
Fig. 11. External Force Response.  
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As mentioned before, increasing the damping gain 

could effectively decrease response time. The reduction 

is evident in estimated force gain, as seen in Fig. 12. 

 

 

 
Fig. 12. Estimated External Force Response. 

 

5.  CONCLUSION 

In this research, a sliding mode control approach was 

designed with a force estimation strategy to control 

external force exerted during a robotic manipulation. 

The force estimation approach was designed for time-

variant external force. It was then proved that the 

external force estimation error would be bounded. Due 

to the force estimation error, a sliding-mode based 

control approach was proposed to satisfy the correct 

desired model. The inner loop control liberalizes the 

general nonlinear dynamic system and the outer loop 

control induces the desired impedance to achieve proper 

control by the estimated external force. An analytical 

investigation and the experimental results signify that 

decreasing the closed-loop damping impedance could 

increase the external force convergence to the desired 

value. Consequently, the experimental results verify the 

precise estimated signal’s external force control 

performance and they demonstrate that the desired 

external forces are controlled properly either the desired 

forces are constant or time-variant.   
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