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ABSTRACT: 

Wireless Sensor Networks (WSNs) are a special class of wireless ad-hoc networks where their performance is affected 

by different factors. Congestion is of paramount importance in WSNs. It badly affects channel quality, loss rate, link 

utilization, throughput, network life time, traffic flow, the number of retransmissions, energy, and delay. In this paper, 

congestion control schemes are classified as classic or soft computing-based schemes. The soft computing-based 

congestion control schemes are classified as fuzzy logic-based, game theory-based, swarm intelligence-based, learning 

automata-based, and neural network-based congestion control schemes. Thereafter, a comprehensive review of 

different soft computing-based congestion control schemes in wireless sensor networks is presented. Furthermore, 

these schemes are compared using different performance metrics. Finally, specific directives are used to design and 

develop novel soft computing-based congestion control schemes in wireless sensor networks. 

 

KEYWORDS: Congestion Control, Fuzzy Logic, Game Theory, Learning Automata, Neural Network, Soft 

Computing, Swarm Intelligence, Wireless Sensor Networks (WSNs). 

 

1. INTRODUCTION 

A WSN is a collection of sensor nodes which is 

distributed in a network to estimate the monitored 

system state. WSNs gather the required information by 

smart environments as home, buildings, industrial 

sites, and utilities. In WSNs, there exist one or more 

sinks and many sensors which are deployed on a 

physical area. The unique characteristics in WSNs can 

be listed as resource limitations, special traffic 

characteristics and the multi-hop tree topology 

utilization [1].  

Congestion is an important problem in WSNs. It 

occurs in case the input load exceeds the available 

capacity ending in node buffer overflow, or wireless 

channel is shared by multiple nodes ending in 

collision, or in case the link bandwidth reduction 

occurs due to fading channels [2]. Three types of 

congestion in WSNs are shown in Fig. 1. 

Congestion renders loss rate rise, channel quality 

degradation, unfair traffic flow, increased delay and 

wasted energy. It also ends in retransmission increase, 

and throughput and network life time decrease. So, it 

is necessary to mitigate congestion in WSNs.  

In soft computing techniques, the effectiveness of 

wireless sensor networks is enhanced in different 

aspects as design, deployment, network challenges and 

power consumption. These techniques are used in 

different applications in wireless sensor networks. 

 

Sensor nodes 

Cluster head Relay node Sink

Congestion due to input 

load exceeding the 

available capacity

Congestion due to sharing the 

same wireless channel by 

several nodes

Congestion due to link bandwidth 

reduction because of fading 

channels

Fading channel

 
Fig. 1. Congestion appearance in WSNs [2]. 

 

Some significant survey studies regarding 

congestion control are presented in [3]-[10], however, 

presenting a novel classification on WSNs, 

introducing new ideas on soft computing-based 

congestion control schemes, using classifications, 

comparing the schemes, recommending future 

directions and discussion are rare. 
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In this paper, congestion control schemes are 

classified as classic or soft computing-based schemes. 

Thereafter, soft computing-based congestion control 

schemes in WSNs are classified and reviewed. 

Furthermore, these schemes are compared using 

different performance metrics. Finally, specific 

directives are used to design and develop novel soft 

computing-based congestion control schemes in 

wireless sensor networks. 

The organization of this paper is as follows: 

Section 2 presents an overview of congestion 

mitigation in wireless sensor networks, followed by 

the soft computing-based congestion control protocols 

in section 3 and comparison of these schemes in 

section 4. Finally, the paper is concluded and the 

future directions are presented. 

 

2. CONGESTION MITIGATION 

Congestion mitigation schemes take reactive 

actions in case that the congestion occurs in WSNs 

and aims to control it. MAC, network, and transport 

layer operations are used in the aforementioned 

schemes. Congestion mitigation algorithms are 

classified according to the way congestion is detected, 

the way other nodes are notified for this incident, and 

the way congestion is faced [10]. Fig.2 shows the 

congestion mitigation in WSNs. 

 

 
Fig. 2.Congestion mitigation in WSNs [10]. 

 

2.1. Congestion Detection 

In WSNs, congestion detection is accomplished by 

one or more nodes towards the sink. There exist 

different metrics to detect congestion, i.e., packet loss, 

queue size, queue size and channel load, packet 

service time, packet service time and queue size, 

channel busyness ratio and throughput measurement, 

delay, scheduling time, reliability parameters and 

application fidelity [11]-[12].  

 

2.2. Congestion Notification 

Congestion notification is assessed after it is 

detected. In order to notify congestion, congestion 

information is transmitted in different ways. It can be 

notified either implicitly or explicitly across the WSN. 

In implicit method, by overhearing the sent data 

packets, congestion information is transmitted in the 

packet header. However, in explicit method, congested 

nodes broadcast separate control packets to notify 

their congestion status. For congestion notification, 

implicit congestion notification is suggested to prevent 

extra load in the congested network [10].  

 

2.3. Congestion Control 

In this paper, congestion control algorithms are 

listed under two categories, i.e. classic or soft 

computing-based schemes. The classic congestion 

control schemes are listed under 12 categories, i.e. 

traffic control, resource control, traffic and resource 

control, fairness-based, priority-aware, E-2-E or H-by-

H, energy efficient, reliability-based, queue-assisted, 

centralized or distributed, generic or cross layer and 

content-aware congestion control schemes. However, 

soft computing-based congestion control schemes are 

listed as fuzzy logic-based, game theory-based, swarm 

intelligence-based, learning automata-based, and 

neural network-based congestion control schemes. 

Fig. 3 shows the congestion control classification on 

WSNs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Congestion control in WSNs. 

 

3. SOFT COMPUTING-BASED CONGESTION 

CONTROL SCHEMES IN WSNs 

In this section, soft computing-based congestion 

control schemes are listed as fuzzy logic-based, game 

theory-based, swarm intelligence-based, learning 
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automata-based, and neural network-based congestion 

control schemes. 

 

3.1. Fuzzy Logic-based Congestion Control 

Schemes in WSNs 

Network traffic in different layers is constantly 

monitored by network operators. Several techniques 

are presented to overcome network congestion. One 

such method is fuzzy logic which is actively utilized 

in wireless sensor networks for different applications  

[13]. Fuzzy logic is close to natural language 

comparing with the traditional logical systems which 

can capture the approximate real-world nature. The 

Fuzzy Inference System (FIS) includes the 

Fuzzification, the Rule Base, the Inference Mechanism 

and the Defuzzification interface module [13]. Fuzzy 

logic-based congestion control can be considered as 

one of the latest approaches to control congestion. 

Some well-known fuzzy logic- based congestion 

control schemes are summarized as follows [14]-[28], 

[43], [57]: 

 

3.1.1. Fuzzy Rate Control in WSNs (FRC)  

In [14], a hop-by-hop (HbyH) fuzzy rate control 

scheme is presented. In this protocol, the node queue 

size is continuously monitored. Thereafter, the 

admissible upstream node rate is calculated using a 

fuzzy inference system where the sensor nodes 

constraints are considered. In FRC, congestion 

detection is accomplished based on queue size and 

implicit congestion notification is used. The protocol 

is energy-efficient and fair. Also, it is simple and can 

adapt to network conditions. The results show that 

FRC renders superior performance in comparison with 

IEEE 802.11 on the basis of utilization, delay and 

throughput. 

 

3.1.2. Congestion Control Based on Node 

Trustworthiness Using Fuzzy Logic (CCTF) 

In [15], congestion control using fuzzy logic is 

accomplished based on node trustworthiness. In 

CCTF, the behavior of neighbors is investigated by the 

nodes. In this protocol, the malfunctioning nodes are 

isolated and valueless packets are blocked which ends 

in overhead ratio reduction. In this scheme, the buffer 

capacity is increased which renders congestion 

reduction. In CCTF, the traffic ratio overhead resulted 

from corrupted node packets are removed. The results 

show that CCTF ends in delivery ratio increase. 

 

3.1.3. Fuzzy Logic-based Congestion Estimation 

Scheme (FLCE) 

FLCE [16] presents a model for fuzzy logic-based 

congestion estimation in a QoS architecture. The 

architecture includes QoS management and control 

module which is implemented at the sink and node 

level. In FLCE, traffic is classified based on different 

application classes by a queuing model in the node 

buffer. In this scheme, fuzzy logic is used for 

congestion estimation. The protocol is energy-

efficient; however, it is not fair. The results show that 

in FLCE, the packet generation rate is increased and 

packet loss is minimized. 

 

3.1.4. Hierarchical Tree-Based Congestion Control 

Using Fuzzy Logic (HTCCFL) 

In HTCCFL [17], the topology control algorithm is 

utilized to construct a hierarchical tree in hierarchical 

tree construction phase. In this protocol, congestion 

detection is accomplished using a fuzzy logic 

technique.  Moreover, a priority-based rate adjustment 

scheme is used to control congestion. In this protocol, 

energy efficiency and packet delivery ratio are 

improved, however, excessive jitter is obtained. 

 

3.1.5. Fuzzy Priority-based Congestion Control 

(FPCC) 

In [18], congestion is indicated by a technique 

which is similar to Random Early Detection (RED) 

Active Queue Management (AQM). In the fuzzy 

system used in FPCC, the node congestion level is 

estimated using the maximum drop probability of 

RED algorithm and the minimum and maximum 

thresholds. The parent node sending rate is adjusted 

with a fuzzy logical controller. The results show that 

FPCC renders superior performance in comparison 

with PHTCCP and PCCP on the basis of end to end 

(E2E) delay, loss ratio, and energy. 

 

3.1.6. Optimized Fuzzy Logic-based Congestion 

Control Scheme with Exponential Smoothing 

Prediction (OFES) 

In [19], a path determination architecture is 

presented for wireless sensor networks considering the 

congestion issue. The architecture comprises initial 

path construction in a hierarchical structure, path 

derivation with energy-aware assisted routing, and 

congestion prediction using exponential smoothing. In 

this scheme, the buffer occupancy is predicted by 

adopting exponential smoothing. Also, proper weights 

are determined to determine paths by applying FLS, 

and finally, the membership functions are tuned by 

FLS optimization using bat algorithm. The protocol is 

energy-efficient; however, it is not fair. The results 

show that the protocol renders superior performance in 

comparison with HTAP, DAIPaS, and CCEbH on the 

basis of energy efficiency, throughput, network 

lifetime, and loss ratio. 

 

3.1.7. AQM Based Fuzzy Congestion Control 

(AFCC) 
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In [20], an AQM is presented to determine packet 

loss probability which integrates RED and Fuzzy 

Proportional Integral Derivative (FuzzyPID) schemes. 

FuzzyPID controls the desired buffer queue and 

adjusts the node sending rate. In [20], congestion 

detection is accomplished based on buffer occupancy 

and node rate and implicit congestion notification is 

used. The protocol is energy-efficient; however, it is 

not fair. The results show that AFCC renders superior 

performance in comparison with PCCP, CCF and 

OCMP on the basis of E2E delay and loss rate. 

 

3.1.8. Fuzzy Sliding Mode Congestion Control 

(FSMC)  

In [21], a congestion control model is presented 

between MAC and the transmission layer. Afterwards, 

fuzzy control and sliding mode control are combined. 

The resultant controller adaptively regulates the buffer 

queue size in the congested nodes and reduces the 

uncertain disturbance impact. The results show that 

FSMC renders superior performance on the basis of 

convergence, throughput, loss ratio, and delay. 

 

3.1.9. Congestion Control Scheme Based on Fuzzy 

Logic (CCSFL) 

In [22], a fuzzy logic-based congestion control is 

presented which considers buffer occupancy and 

congestion index to detect congestion. In CCSFL, the 

buffer occupancy changes are considered as the 

congestion index. In this protocol, implicit congestion 

notification is used. Moreover, fuzzy logic is used to 

calculate the congestion degree in CCSFL and rate 

adjustment is accomplished using the congestion 

degree. CCSFL is able to adapt to network status 

which prevents packet loss. The results demonstrate 

that CCSFL renders superior performance in 

comparison with SenTCP on the basis of delay, packet 

loss and throughput. 

 

3.1.10. Network Status Aware Congestion Control 

(NSACC)  

In [23], the congestion severity is predicted and the 

sending rate is regulated based on the congestion 

level. There exist two modules in NSACC algorithm, 

namely, the congestion identification and the rate 

regulation module. The congestion level severity is 

estimated using the fuzzy logic inputs as the buffer 

occupancy, priority, packet arrival rate and fuzzy rule-

base. Afterwards, congestion is mitigated by 

regulating the sending rate which is accomplished by 

the rate regulation module. The results show that 

NSACC algorithm renders superior performance in 

comparison with PCCP on the basis of packet loss, 

retransmission number and throughput.  

 

3.1.11. Fuzzy Control-based Congestion Detection 

and Control (IFCCDC) 

In IFCCDC [24], congestion detection is 

accomplished based on the ratio between packet inter 

arrival time and service time which is defined as the 

congestion degree. In IFCCDC, congestion is 

implicitly notified and rate adjustment technique is 

used for congestion control where fuzzy logic is 

applied to implement the congestion controller. The 

results show that IFCCDC renders superior 

performance in comparison with CODA in terms of 

packet delivery ratio. 

 

3.1.12. CONtrol of SEnsor Queues (CONSEQ) 

In CONSEQ [25], a lightweight distributed 

congestion control scheme integrated with load 

balancing is presented for WSNs. Congestion 

detection is accomplished based on the queue length 

and channel conditions. In this protocol, each node 

observes its one-hop neighbors to detect congestion. 

Moreover, fuzzy control is used for dynamic rate 

adjustment to control congestion. The results show 

that CONSEQ renders superior performance in 

comparison with PCCP on the basis of E2E delivery 

ratio, energy consumption and E2E delay. 

 

3.1.13. Fuzzy Congestion Controller in WSNs 

(FCC) 

In [26], congestion is controlled using ad hoc fuzzy 

rules base and membership functions. In FCC, 

congestion detection is accomplished based on queue 

length and channel load which are considered as FCC 

input. However, the FCC output is obtained from 

Fuzzy Rule Base and Fuzzy Inference Engine. In this 

protocol, congestion is implicitly notified and rate 

adjustment technique is used for congestion control. 

The results confirm the superior performance of FCC 

on the basis of energy efficiency, E2E delay, 

throughput and packet loss.  

 

3.1.14. Fuzzy-based Adaptive Congestion Control 

(FBACC) 

In FBACC [27], fuzzy logic is used for congestion 

estimation which adapts to the traffic rate changes 

with minimum packet loss. In this protocol, 

congestion detection is accomplished based on the 

traffic rate, buffer occupancy and participants. Also, 

implicit congestion notification is used. The protocol 

is energy-efficient; however, it is not fair. The results 

show that FBACC renders superior performance in 

comparison with ESRT, FLCE, CCSFL on the basis of 

energy efficiency, E2E delay and packet loss. 

 

3.1.15. FLC With Exponential Weight Priority-

Based Rate Control (FEWPBRC) 
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In [28], the sink output transmission rate is 

estimated by Fuzzy Logical Controller (FLC) where 

the FLC is associated with the Exponential Weight 

(EW) algorithm to select the proper weight parameter. 

Afterwards, the transmission rate is assigned 

according to the priority of child nodes. The results 

show that FEWPBRC renders superior performance in 

comparison with PBRC in terms of transmission rate, 

transmission delay and loss probability. Moreover, in 

FEWPBRC the system QoS requirements are met 

since it can efficiently control different types of the 

transmission data. 

 

3.2. Game Theory-based Congestion Control 

Schemes in WSNs 

Game theory is becoming more important in WSNs 

specifically for congestion control. Game theory is 

based on the player’s behavior. It can be either 

cooperative or non-cooperative where in the former, 

players cooperate and form group decisions, however, 

in the latter, players act independently. Moreover, 

Game theory offers benefits to networking with 

respect to different layers [29]. Some well-known 

Game theory- based congestion control schemes are 

summarized as follows [30]-[34]: 

 

3.2.1. Evolutionary Game Theoretical Resource 

Control (EGRC) 

In [31], an evolutionary game theoretical resource 

control scheme is presented for wireless sensor 

networks. In EGRC, a non-cooperative game is 

developed to alleviate congestion in WSNs by 

controlling the radio transmission power and using the 

available resources. In EGRC, the transmission power 

is adjusted in accordance to the node congestion level 

and the energy capacity. The results confirm that in 

EGRC, throughput and energy saving are improved 

and packet drop is decreased. 

 

3.2.2.  Game Theory-based Congestion Control 

(GTCC)  

In GTCC [32], the congestion problem is 

addressed among parent and child nodes in RPL-

enabled networks with low power and resource 

constraint devices. In this protocol, congestion 

detection is accomplished using net packet flow rate. 

Afterwards, nodes in the congestion area perform 

parent-change procedure to find better parents using 

the game theory technique. The results confirm that in 

comparison with ContikiRPL implementation, GTCC 

ends in throughput enhancement and packet loss 

reduction. 

 

3.2.3. Stochastic Differential Game Approach for 

Optimal Data Transmission 

In [33], health care based wireless sensor networks 

are studied. In this scheme, four kinds of transmission 

costs are considered, namely, the pure transmission 

cost, the transmission cost, the penalized cost for data 

unreliability and the congestion cost. Also, game 

theory is used to minimize the transmission cost. In 

[33], three kinds of game models, namely, 

cooperative, partial cooperative and non-cooperative 

models are constructed to minimize the transmission 

cost. Also, the optimal transmission strategies under 

different game modes are gained for health care based 

wireless sensor networks. The techniques are 

compared and the validity of methods is verified. 

 

3.2.4. A Game Theoretic Approach to Control 

Congestion  

In [30], Diminishing Weight Schedulers (DWS) is 

presented as a class of service disciplines where the 

congestion avoiding users are rewarded and the 

misbehaving ones are punished. Also, a sample 

service discipline from the DWS scheduler class is 

presented. In this scheme, the max-min fair rates 

constitute a unique Nash and Stackelberg Equilibrium. 

The results confirm that in a WSN with DWS 

scheduling, the max-min fair rate can be properly 

estimated irrespective of the round-trip times. 

Moreover, the excessive congestion problem is 

rectified. 

 

3.2.5. Evolutionary Game Approach to Control 

Congestion (EGCC) 

In [34], evolutionary games are applied to non-

cooperative networks with individual non-cooperative 

sensors. In EGCC, the congestion control evolution is 

investigated and it is shown that the wireless channel 

affects the congestion control evolution and the 

Evolutionary Stable Strategies (ESS). In EGCC, a 

framework is provided to investigate the protocol in a 

competition between aggressive and peaceful 

behaviors. Also, a framework is provided to control 

the evolutionary dynamics by choosing a gain 

parameter which governs the replicator dynamics.  

 

3.3. Swarm Intelligence-based Congestion Control 

Schemes in WSNs 

Social groups in nature contribute to a common 

goal by collectively carrying out their tasks. Wireless 

sensor networks have common characteristics in 

comparison with social groups, i.e. nodes perform 

their tasks collectively as constituents of social groups. 

Swarm intelligence is suggested to mitigate congestion 

by mimicking the collective behavior of swarms 

where swarms are low-intelligence interacting agents 

which are organized in small societies [35]. Some 

well-known swarm intelligence-based congestion 

control schemes are summarized as follows [36-43]: 
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3.3.1. Bio Inspired Swarm Intelligence-based 

Algorithm to Control Congestion  
In [36], a bio inspired swarm intelligence scheme 

is utilized to mitigate congestion and enhance energy 

efficiency by forming clusters. In this scheme, 

Biography Based Krill Herd (BBKH) algorithm is 

used to improve network performance. BBKH 

algorithm is inspired by a bio-based swarm 

intelligence algorithm where the objective function is 

the highest swarm density and the distance from food. 

Also, few control variables are required to adjust 

BBKH. The results confirm that the algorithm renders 

superior performance on the basis of network lifetime 

increase. 

 

3.3.2. Hybrid Multi-Objective Optimization for 

Congestion Control 

In [37], Particle Swarm optimization (PSO) and 

Gravitational Search Algorithm (GSA) are combined 

to form a hybrid multi-objective optimization 

(PSOGSA) which is used to control congestion. 

PSOGSA is used to optimize and regulate the data 

arrival rate from child node to parent node where the 

node energy is considered in the corresponding fitness 

function. In case the arrival rate is regulated based on 

the priority, the transmission is enabled. Moreover, 

rate adjustment to the optimal value is utilized for 

congestion mitigation. The results confirm the 

superior performance of algorithm comparing with 

Cuckoo Search (CS) and Adaptive Cuckoo Search 

(ACS) algorithms. 

 

3.3.3. Bird Flocking-based Congestion Control 

(BFCC)  

In [38], the bird flocking behavior is the key point 

to design a congestion control scheme in WSNs. In 

BFCC, a swarm intelligence paradigm is applied 

which is inspired by the bird flock’s behavior. In this 

protocol, flocks are formed by the packets (birds) 

which flow towards the sink and at the same time 

congested areas are avoided. It is quite simple to 

implement the scheme at node level since minimum 

information exchange is required. The results confirm 

the scalability of BFCC and that it is robust against the 

failing nodes. 

 

3.3.4. Epsilon Constraint-Based Adaptive Cuckoo 

Search Algorithm for Rate Optimized (EACSRO)  

In [39], the congestion occurrence is detected by 

the node incoming packets. Afterwards, the virtual 

queue length is used to determine the congestion level. 

The Epsilon parameter is used to formulate the fitness 

function to gain the optimal value. Thereafter, the 

fitness is exploited and the step size is adaptively 

adjusted. The best solution is gained in case the data 

transmission is accomplished without congestion. The 

results confirm the effectiveness of EACSRO on the 

basis of sending rate and throughput. 

 

3.3.5. Computational Intelligence-based Congestion 

Control and QoS Enhancement 

In [40], different metaheuristic and computational 

intelligence schemes are used for congestion 

mitigation and QoS enhancement. In this regard, 

throughput, residual energy, the number of 

retransmissions and the distance between nodes are 

used to formulate the objective function which is 

optimized by nature inspired computational 

intelligence techniques. The results confirm the 

superior performance of water wave algorithm in 

comparison with Firefly Algorithm, Improved Bat 

Algorithm, Ant Colony Optimization (ACO), PSO, 

and CODA on the basis of throughput and drop ratio. 

 

3.3.6. Bio-Inspired Protocol for Congestion Control  

In [41], a hybrid congestion control protocol for 

large-scale WSNs is presented. In this protocol, 

congestion avoidance is accomplished by a 

competitive Lotka-Volterra model and fairness is 

maintained among sensor nodes. Moreover, PSO is 

used to enhance C-LV by minimizing the E2E delay. 

The results confirm the effectiveness of the scheme for 

QoS enhancement. This protocol is fair; however, it is 

not energy efficient. 

 

3.3.7. Improved Bat Algorithm Energy Efficient 

Congestion Control (IBAEECC) 
In [42], an improved bat algorithm is implemented 

on the basis of bat echolocation. In IBAEECC, sonar 

echoes are used by bats to detect and avoid obstacles. 

The sonar echoes are then reflected from the obstacle 

and transformed to frequency. The optimum solution 

is obtained by applying the aforementioned algorithm 

on the fitness function. The results confirm the 

superior performance of IBAEECC comparing with 

ACO, PSO and CODA in terms of throughput and 

network lifetime. 

 

3.3.8. Cuckoo Fuzzy-PID Controller (CFPID) 

In [43], queue size is controlled using PID 

controller and the effective sensor data collection is 

realized by applying the PID algorithm on cluster head 

nodes. Moreover, the problems concerning PID 

controller, i.e., the limited adaptive ability, slow 

parameter optimization, and poor optimization 

precision are rectified using a fuzzy control scheme. 

CFPID optimizes the quantization factor of fuzzy PID 

controller and the PID parameter. The results confirm 

that CFPID outperforms IBLUE and PID on the basis 

of real-time loss rate and instantaneous queue length.  

 

https://www.sciencedirect.com/topics/engineering/parent-node
https://www.sciencedirect.com/topics/computer-science/cuckoo-search
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3.4. Learning Automata-based Congestion Control 

Schemes in WSNs 

Learning Automata (LA) is a self-operating 

mechanism which responds to a sequence of 

instructions to achieve a specific goal. The automaton 

adapts to the environmental dynamics or responds to a 

pre-determined rule set. The automata learn the best 

action from a set of possible actions offered by the 

operating environment [44]. Learning automata-based 

congestion control can be considered as one of the 

latest approaches to control congestion. Some well-

known Learning automata-based congestion control 

schemes are summarized as follows [45]-[51]: 

 

3.4.1. Learning based Congestion Control Protocol 

(LCCP) 

In LCCP [46], a learning-based rate adjustment 

and AQM are used to mitigate congestion. Since 

different physiological signals are discriminated and 

assigned different priorities, better QoS is provided for 

transmitting important signs in LCCP. In LCCP, the 

source rate is adjusted by the learning automata-based 

transport protocol which is located in the sink which 

ends in congestion mitigation. The results show that 

LCCP outperforms LACAS on the basis of delay, 

throughput, and drop ratio. 

 

3.4.2. Intelligent Closed-Loop Learning 

Automaton-Based Congestion Control  

(ICLACC) 

In [47], a learning automation-based congestion 

control scheme is presented for Wireless Body Area 

Networks (WBANs). In this scheme, each packet is 

assigned as the appropriate queue based on the 

conditional probabilities. In [47], an exponential 

arrival and service time is considered in each queue. In 

this scheme, each packet is directed to a suitable queue 

for QoS enhancement and meets the application real-

time constraints by congestion mitigation. The results 

confirm the effectiveness of ICLACC on the basis of 

throughput and the drop ratio.  

 

3.4.3. Learning Automata-Based Congestion 

control Scheme (LACC) 

In [45], congestion control is assessed using LA. In 

this scheme, a learning-automata based algorithm is 

presented where each node has an automaton which 

selects an action and adjusts the corresponding rate 

according to the environment responses. Also, the 

algorithm enhancement is gained as it learns from the 

past. 

 

3.4.4. Prioritization-based Congestion Control  

In [48], a service prioritization and congestion 

control scheme is presented for real time monitoring 

of vital signs of patients using wireless biomedical 

sensor networks. It includes bandwidth allocation and 

learning automata based AQM in intermediate nodes. 

In this scheme, different priorities are given to patients 

based on the corresponding physiological conditions. 

In this scheme, less packet loss and higher throughput 

are gained by selecting a proper source rate. Also, the 

optimal packet service rate is chosen in the 

intermediate nodes which renders E2E delay 

reduction. 

 

3.4.5. Learning Automata-based Congestion 

Avoidance Scheme (LACAS) 

In LACAS [49], a learning automata-based 

congestion is addressed in healthcare WSNs. In this 

protocol, the flow rate is controlled to minimize 

congestion occurrence. Using the past experience, 

LACAS can adaptively learn and intelligently choose 

better data rates in future. In LACAS, congestion 

detection is accomplished based on the queue size and 

implicit congestion notification is used. In this 

protocol, a proactive approach is taken by the 

intermediate nodes to control the packet flow rate. The 

results confirm that LACAS renders superior 

performance comparing with other schemes available 

in the literature. 

 

3.4.6. Learning Automata-based Protocol for 

Solving Congestion Problem  

In [50], an action is selected by an automaton, and 

the rate is adjusted based on the environment 

responses. Learning from the past can be considered 

as an important feature of this scheme. In this 

protocol, a proactive approach is taken by the 

intermediate nodes to control the packet flow rate and 

enhance the network performance on the basis of 

energy consumption and life time. In this scheme, the 

intermediate nodes do not feedback the source nodes 

to slow down the network performance. 

 

3.4.7. Optimized Congestion Management Protocol 

(OCMP) 

OCMP [51] consists of a congestion control 

scheme and an AQM technique where the latter is 

used to avoid congestion and provide QoS. Based on 

the source traffic priority, separate virtual queues are 

used on a single physical queue. In case the incoming 

packet is accepted, congestion control is 

accomplished. In OCMP, congestion is detected by a 

three-state machine and virtual queue status. 

Moreover, the child’s sending rate is adjusted by an 

optimization function. The scheme outperforms 

PCCP, CCF and backpressure algorithms on the basis 

of fairness, packet loss, E2E delay and energy 

consumption. 
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3.5. Neural Network-based Congestion Control 

Schemes in WSNs 

Neural networks (NNs) are able to approximate an 

arbitrary nonlinear function [52]. NNs are studied in 

traffic control or prediction of networks due to their 

flexible learning capabilities [53]. NNs can model the 

network behavior to predict the occurrence of network 

congestion and manage the traffic. Some well-known 

neural network- based congestion control schemes are 

summarized as follows [54]-[59]: 

 

3.5.1. Particle Swarm–Neural PID Congestion 

Control (PNPID) 

In [54], first the queue management of WSN nodes 

is accomplished by the PID control. Then, the online 

weight adjustment is gained to adjust the PID 

parameters. Finally, the online optimization is 

achieved using PSO to neural PID (PNPID) algorithm 

which is applied to initial PID parameter values and 

neuron learning rates. PNPID algorithm renders 

superior performance on the basis of packet loss rate 

and throughput which confirms network QoS 

enhancement. 

 

3.5.2. NARX Neural Network-based Rate 

Adjustment for Congestion Avoidance and Control 

(NNRA-CAC) 

In [55], Neural network- based Rate Adjustment 

(NNRA) uses the LM-based NARX neural network to 

avoid and control congestion. The optimized share rate 

for congestion control is provided by the optimization 

algorithm. In this protocol, data transmission is 

accomplished according to the priorities of parent and 

child nodes. Moreover, dropping the packets that 

arrive the parent nodes ends in congestion avoidance. 

Packet drop at the parent nodes depends on the 

importance of data. The results show the superior 

performance of NNRA-CAC comparing with SS, 

ORA, CS, ACS, and EACS on the basis of packet loss, 

throughput, queue length, delay, and the congestion 

level. 

 

3.5.3. Neural Network-Based Congestion Control 

(NNCC) 

In [56], a congestion scheme with sensitivity to 

delay and the corresponding changes is presented. In 

this scheme, congestion is detected using neural 

networks. It prevents network service failures and 

detects the congestion source. In NNCC, time distance 

between source and sink and the remaining energy are 

considered in the transmitted message. The results 

confirm the superior performance of NNCC in terms 

of E2E delay, E2E reliability, and network lifelong. 

 

3.5.4. Congestion Control Based on L1/2 

Regularization 

In [57], the congestion problem near the central 

node is solved. In this scheme, the collected data is 

compressed to balance the network load. Then, the 

dimension of the compressed sensing observation 

matrix is adjusted by the fuzzy neural network. In this 

protocol, the PID queue management parameters are 

optimized by the fuzzy control to maintain the node 

queue size near the desired value. Moreover, the 

compressed transmission data is reconstructed using a 

L1/2 regularization half-threshold iterative algorithm 

which has small data loss and high reconstruction 

precision. The results confirm that the scheme renders 

superior performance on the basis of delay, drop ratio 

and throughput. 

 

3.5.5. Radial Basis Neural Network Congestion 

Controller (RBNNCC) 

In [58], the possibility of using the shortest path 

routing in WSNs is explored where the perfect path 

for data transmission within an exact time is obtained 

using an ideal routing technique. In RBNNCC, 

congestion is estimated by a multilayer perceptron 

neural networks with sigmoid activation function and 

Radial Basis Neural Network Congestion Controller at 

the sink. The results confirm the effectiveness of the 

scheme in terms of data lost, the execution time, 

memory utilization and the traffic received at the sink. 

 

3.5.6. Modified Neural Network Wavelet 

Congestion Control (MNNWCC) 

In [59], the wavelet activation function is used to 

activate the neural network and control the WSN 

traffic. In MNNWCC, congestion is detected using the 

congestion level indications, then the traffic rate is 

estimated for congestion avoidance, and finally QoS 

enhancement is obtained in terms of network energy, 

packet loss ratio, buffer utilization, and throughput. 

The results confirm the effectiveness of MNNWCC 

for QoS enhancement. 

 

4. COMPARISON OF SOFT COMPUTING-

BASED CONGESTION CONTROL SCHEMES 

IN WSNs 

In this section, first, the above-mentioned soft 

computing-based congestion control schemes are 

compared with each other. Tables1,2,3,4 and 5 

summarize the fuzzy logic-based, game theory-based, 

swarm intelligence-based, learning automata-based, 

and neural network-based congestion control schemes, 

respectively. In the aforementioned Tables, congestion 

detection, notification and mitigation of several soft 

computing-based congestion control protocols are 

outlined. Also, the evaluation type and the comparison 

with protocols are outlined and the fairness and the 

energy conservation are presented. Afterwards, in 
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Table 6, the aforementioned protocols are compared 

using different parameter evaluation metrics. 

 

 

Table 1. Comparison of Fuzzy logic- based congestion control schemes. 

 

Table 2. Comparison of Game theory- based congestion control schemes. 

Protocol 
Congestion 

detection 

Congestion 

notification 

Congestion 

control 

Energy 

efficiency 

 

Generic/ 

crosslayer 

 

Loss 

recovery 
Fairness 

Compare

d with 

Evaluation 

type 

EGRC 

[31] 
Queue size 

Implicit 

 

 

Game theory- 

based congestion 

control 

Yes 

 

 

Generic 

 

 

No 
Yes TADR 

OPNET 

simulator 

GTCC 

[32] 

Net packet 

flow rate 

 

Implicit 

 

Alternative 

path selection 
No 

 

 

Generic 

 

 

No 
No 

CRPL-

OF0, 

CRPL-

OF-ETX 

 

Cooja 

simulator 

[33] Queue size 
Implicit 

 

Game theory- 

based congestion 

control 

No 

 

 

Generic 

 

 

No 
No - 

MATLAB 

simulation 

 

Table 3. Comparison of Swarm intelligence- based congestion control schemes. 

Protocol 

Congestio

n 

detection 

Congestion 

notification 

Congestion 

control 

Energy 

efficiency 

Generic/cross

layer 

Loss 

recovery 
Fairness 

Compared 

with 

Evaluatio

n type 

[37] 

Node 

congestion 

level 

Implicit 
Rate 

adjustment 
Yes 

 

Generic 

 

 

No 
No 

Cuckoo 

Search (CS), 

Adaptive 

Cuckoo 

Search 

(ACS) 

Simulation 

 

Bio-Inspired 

scheme for 

Congestion 

Control 

[41] 

 

Queue size 

 

Implicit 

 

Rate 

adjustment 
No Generic 

 

No 

Yes 

 
- 

Implementat

ion using 

NS3 network 

simulator 

Protocol 
Congestion 

detection 

Congestion 

notification 

Congestion 

control 

Energy 

efficienc

y 

 

 

Generic

/crossla

yer 

 

 

Loss 

recovery 

Fairness 

Compa

red 

with 

Evaluation type 

CCSFL 

[22] 

Buffer 

occupancy, 

congestion 

index 

Implicit 

 
Fuzzy logic- based 

congestion control 
No Generic No 

No 

 
SenTCP OPNET 

FRC [14] Queue size Implicit 
Fuzzy logic- based 

congestion control 
Yes 

 

Generic 

 

No No 
IEEE 

802.11 
Simulation 

FBACC 

[27] 

Traffic rate, 

participants, 

buffer 

occupancy 

Implicit 
Fuzzy logic- based 

congestion control 
Yes 

 

 

Generic 

 

 

 

No 

No 

ESRT, 

FLCE, 

CCSFL 

MATLAB 

Simulink 

AFCC 

[20] 

 

Buffer 

capacity, node 

rate 

Implicit 

 

Fuzzy logic- based 

congestion control 
Yes Generic No No 

CCF, 

PCCP, 

OCMP 

OPNET simulator 

and MATLAB 

HTCCFL 

[17] 

Fuzzy based 

congestion 

detection 

Implicit 

 

Priority Based Rate 

Adjustment 
Yes Generic No No PHTCCP 

Network 

Simulator (NS2) 

FPCC 

[18] 

Average queue 

size 
Implicit Rate adjustment Yes 

 

Generic 

 

No Yes 

PCCP, 

PHTCC

P 

OPNET simulator 

and MATLAB 

IFCCDC 

[24] 

 

Congestion 

degree 
Implicit Rate adjustment No Generic No No CODA Simulation 

FCC 

[26] 

Channel load, 

queue length 

Implicit 

 
Rate adjustment Yes 

 

Generic 

 

No No - OPNET 

CONSEQ 

[25] 

Queue lengths 

and channel 

conditions 

Implicit 

 

Dynamic rate 

adaptation via fuzzy 

control 
Yes 

Cross 

layer 
No No PCCP 

OMNeT++ 

network simulator 
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Protocol 

Congestio

n 

detection 

Congestion 

notification 

Congestion 

control 

Energy 

efficiency 

Generic/cross

layer 

Loss 

recovery 
Fairness 

Compared 

with 

Evaluatio

n type 

 

EACSRO 

[39] 

 

Virtual 

queue size 

Implicit 

 

Rate 

adjustment 
No 

 

Generic 

 

 

No 
No - Simulation 

BFCC [38] 
Buffer 

occupancy 
Implicit 

 

Rate 

adjustment 
Yes 

 

Generic 

 

 

No 
No 

NCC, 

CAwR, 

AODV, 

AntHocNet, 

AntSensNet 

ns-2 

simulator 

CFPID [43] 
Buffer 

occupancy 
Implicit 

 

Rate 

adjustment  
No 

Generic 

 

 

No 
No 

IBLUE, 

PID 
MATLAB 

 

Table 4. Comparison of Learning automata- based congestion control schemes. 

Protoco

l 

Congestion 

detection 

Congestion 

notification 

Congestion 

control 

Energy 

efficiency 

 

Generic/cros

slayer 

 

 

Loss recovery 
Fairness 

Compared 

with 
Evaluation type 

LACA

S [49] 
Queue size Implicit 

Learning automata 

adjust flow rate 
Yes 

 

Generic 

 

No Yes - Simulation 

LCCP 

[46] 

Queue 

length and 

packet loss 

rate 

Implicit 

 

 

Learning automata- 

based congestion 

control 

 

Yes Generic No Yes LACAS 
OPNET 

simulator 

ICLA

CC 

[47] 

Queue size Implicit 

Learning automata- 

based congestion 

control 

No 

 

Generic 

 

No No - 
OMNeT++ 

simulation 

[48] 

Automata-

based 

congestion 

detection 

Implicit 

Learning automata- 

based congestion 

control 

No Generic No Yes - Simulation 

OCMP

[51] 

Automata-

based 

congestion 

detection 

Implicit 
optimized Rate 

Adjustment 
Yes Generic No Yes 

CCF, 

PCCP 

OPNET 

simulator 

 

Table 5. Comparison of Neural network- based congestion control schemes. 

Protocol 
Congestion 

detection 

Congestion 

notification 

Congestion 

control 
Energy 

efficiency 

Generic/ 

crosslayer 

Loss 

recovery 
Fairness 

Compared 

with 

Evaluation 

type 

PNPID 

[54] 
Queue size 

Implicit 

 

Rate 

adjustment 
No 

 

Generic 

 

 

No 
No 

PI, PID, 

NPID, 

PNPID 

Simulation 

NS2 

NNRA-

CAC [55] 
Queue size 

Implicit 

 

LM-based 

NARX neural 

network 

congestion 

control 

No 

 

Generic 

 

 

No 
No 

SS, 

ORA, CS, 

ACS, and 

EACS 

MATLAB 

simulation 

[57] Queue size 
Implicit 

 

Rate 

adjustment 
No 

Generic 

 
No No PID 

MATLAB 

simulation 

 

Different metrics [51] are used to evaluate the 

performance of the soft computing-based congestion 

control schemes. The features and evaluation metrics 

are the source rate, throughput, goodput, network 

efficiency or life time, energy efficiency, packet loss 

ratio, fairness, memory requirements, end-to-end 

delay, instantaneous queue size, control packet 

overhead, fidelity index and penalty where the 

schemes are compared regarding the aforementioned 

features in Table 6. 

 

 

Table 6. Comparison of soft computing-based 

congestion control schemes in WSNs based on 

different performance metrics. 

Protocol Performanc

e metrics 

Protocol Performanc

e metrics 

CCSFL 

[22] 

Throughput, 

delay, packet 

loss rate 

 

Bio-

Inspired 

scheme 

for 

Congestio

n Control 

[41] 

E2E delay, 

packet 

delivery 

ratio, 

throughput 

FRC [14] Utilization, 

throughput, 

EACSRO 

[39] 

Throughput, 

sending rate 
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delay 

FBACC 

[27] 

Packet loss, 

E2E delay, 

energy 

BFCC 

[38] 

Energy tax, 

packet loss, 

delay, packet 

delivery 

ratio 

 

AFCC 

[20] 

 

Data loss 

rate, E2E 

delay 

CFPID 

[43] 

Instantaneou

s queue 

length, 

packet loss 

rate 

HTCCF

L [17] 

Delay, 

Energy 

consumption 

Packet drop, 

Packet 

delivery 

ratio 

LACAS 

[49] 

 

Energy 

consumption

, 

throughput 

FPCC 

[18] 

Packet loss, 

E2E delay, 

energy 

LCCP 

[46] 

 

Throughput, 

delay, packet 

drop ratio, 

energy 

efficiency 

IFCCDC 

[24] 

Packet 

Delivery 

Ratio, delay 

 

ICLACC 

[47] 

Drop ratio, 

throughput 

FCC 

[26] 

Energy 

efficiency, 

E2E delay, 

Throughput, 

Packet loss 

[48] Packet loss 

ratio, Source 

rate, 

Delivery 

ratio, 

Throughput, 

Queue 

Length, 

Delay 

CONSE

Q [25] 

 

E2E packet 

delivery 

ratio, E2E 

delay, 

energy 

efficiency 

OCMP 

[51] 

 

Packet loss, 

energy 

efficiency, 

E2E delay, 

fairness 

 

EGRC 

[31] 

 

Packet drop 

ratio, 

throughput, 

energy 

efficiency 

PNPID 

[54] 

Throughput, 

packet loss 

rate 

 

 

GTCC 

[32] 

 

Packet loss 

rate, 

throughput, 

average hop 

count 

 

NNRA-

CAC [55] 

Throughput, 

delay, packet 

loss, queue 

size, 

congestion 

level 

[33] Transmissio

n Time 

[57] Throughput, 

packet loss 

rate, delay 

[37] Energy 

efficiency, 

E2E delay, 

packet loss, 

queue 

length, 

sending rate, 

throughput, 

congestion 

level 

  

 

5. CONCLUSION 

Congestion mitigation schemes are classified based 

on the way congestion is detected, notified to nodes, 

and faced. Congestion can be detected using different 

metrics. Congestion notification is accomplished 

either explicitly or implicitly. In this paper, congestion 

control algorithms are classified as classic or soft 

computing-based schemes. Thereafter, a 

comprehensive review of different soft computing-

based congestion control schemes in wireless sensor 

networks is presented. Furthermore, these schemes are 

compared using different performance metrics. In this 

paper, the classic congestion control schemes are 

listed under 12 categories, i.e. traffic control, resource 

control, traffic and resource control, fairness-based, 

priority-aware, E-2-E or H-by-H, energy efficient, 

reliability-based, queue-assisted, centralized or 

distributed, generic or cross layer, and content-aware 

congestion control schemes. However, soft 

computing-based congestion control schemes are 

listed as fuzzy logic-based, game theory-based, swarm 

intelligence-based, learning automata-based, and 

neural network-based congestion control schemes. 

Hop-by-hop congestion control schemes are also 

suggested, since E2E schemes end in error rate and 

latency increase and reduced responsiveness.  

 

6. FUTURE DIRECTIONS 

Future directions for soft computing-based 

congestion control schemes in WSNs should consider 

the following items: 

 Soft computing-based congestion control schemes 

shall be robust against internal perturbations and 

external stimuli. 

 Soft computing-based congestion control schemes 

shall be scalable to be able to adapt to the number 

of sensor nodes.  

 Soft computing-based congestion control schemes 

shall be self-adaptable to respond to sudden 

environmental changes and node removal or 

addition. 
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 Soft computing-based congestion control schemes 

shall consider deployment aspects. 

 Soft computing-based congestion control schemes 

shall consider the possibility of using mobile agent 

techniques for performance enhancement. 

 Soft computing-based congestion control schemes 

shall consider both wireless channel contention    

losses and queue occupancy or buffer drops to 

infer congestion. This is due to the fact that queue 

occupancy alone is not an indication of congestion 

and wireless channel contention losses quickly 

increase with channel load and end in buffer drop 

increase. 

 Soft computing-based congestion control schemes 

shall consider new WSN generations. New WSN 

generations as Under Water Sensor Networks 

(UWSNs), Body Area Sensor Networks (BASN) 

and Wireless Multimedia Sensor Networks 

(WMSNs) bring about new issues in the design of 

congestion control schemes which shall be 

considered as a future work. 

 Soft computing-based congestion control schemes 

shall consider energy efficiency. 

 Soft computing-based congestion control schemes 

shall consider QoS provisioning in WSNs. 

 Soft computing-based congestion control schemes 

shall optimize network performance since network 

performance is of paramount importance and the 

trade-off among different factors to control 

congestion and optimize network performance is 

required. 

 Soft computing-based congestion control schemes 

shall consider the security issue. 

 Soft computing-based congestion control schemes 

shall be cross-layer to be able to interact with 

different layers. 

 Soft computing-based congestion control schemes 

shall be autonomous and decentralized to provide 

fast congestion relief. 

 Soft computing-based congestion control schemes 

shall be easily implementable due to the existing 

energy and memory constraints of sensors in 

wireless sensor networks. 

 Soft computing-based congestion control schemes 

shall consider the experimental methods to 

demonstrate their effectiveness in real life 

scenarios. 
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