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ABSTRACT: 

The micro-grid operator must provide the energy required by its customers at the lowest cost and consider issues such 

as greenhouse gas emissions and security. The operator is faced with a multi-objective optimization problem in which 

customer demand must be provided at the lowest cost and safely. This research provides a new energy management 

system for islanded micro-grids. The small size of the islanded micro-grids, the high level of intermittent operation and 

the low inertia of distributed generation of inverter energy production resources make the frequency and voltage security 

two vital factors in the energy management system, which must be managed alongside economic-environmental 

policies. In this study, two practical tools are provided to help with the optimal operation and increase the profitability 

of the micro-grid operator. The first tool is the optimal and managed use of the V2G mode of electric vehicles. In the 

proposed approach, not only the penetration of electric vehicles in the network is managed but also this equipment is 

used to solve some of the network's challenges. The second tool is responsive loads and demand response programs in 

order to achieve the goals of the micro-grid operator. Covering the uncertainty of renewable energy sources by 

responsive loads, and how to model a demand response program in a micro-grid, are followed in this study. The strategy 

pursued several goals, including reducing energy and load costs, reducing the cost of charging EVs, and improving 

network parameters and security, such as voltage and frequency. The results confirm the effectiveness of the proposed 

approach. 

 

KEYWORDS: Optimal Operation, Stochastic Model, Demand Response, Voltage Safety, Frequency Safety, Electric 

Vehicles, Renewable Energy Resources. 

  

1.  INTRODUCTION 

In recent years, the dramatic growth in electricity 

consumption and limited fossil energy resources has 

prompted operators of power systems in various 

countries to seek new ways for managing consumption 

and supply energy to customers. The results of some 

researches indicate that in the future years, the high cost 

of extracting fossil energy resources will not permit 

them to be operated [2]. On the other hand, the 

environmental pollution of these energy sources and the 

problems of global warming, and international treaties 

have limited their usage in recent years. These issues 

have increased the tendency of governments to invest in 

renewable and clean energy resources. The main 

problem of renewable energy plants is the high cost of 

investment to build them [3]. On the other hand, with the 

growth and development of the science of restructuring 

and the development of privatization in the electricity 

industry, the pattern of operating power networks has 

changed. In the past, the operation of power grids was 

centralized, meaning that the network operator, on 

behalf of all manufacturers and consumers, the optimal 

production plan was determined based on the minimum 

cost of energy supply required by the subscribers. 
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Introducing the benefits of privatization, the 

development of measuring and control devices, the 

limitation of fossil energy resources, environmental 

pollution, the advancement of technology in the 

operation of renewable energy sources, etc. change the 

strategy of operating power systems, from centralized to 

decentralized and have led to the appearance of smart 

micro-grids [4].  

One of the most important challenges for micro-grid 

users is to maintain system security. One of the reasons 

for the difficulty of maintaining micro-grid security is 

that the production of distributed generation power 

plants is based on renewable energy, which depends on 

uncertain resources such as wind speed and sunlight. 

Any error in predicting these uncertain sources will 

cause the balance of production and consumption to be 

lost and the frequency and voltage of the network to be 

disrupted. This challenge is even more important when 

the micro-grid is being used separately from the global 

network. Unlike synchronous generators, most 

distributed generation power plants require electronic 

power devices for connecting to the micro-grid. The low 

inertia of these devices reduces the loadability, 

complexity of the control system, and compromises the 

security of the system. Therefore, variations in 

subscriber consumption and uncertainty of sunlight and 

wind (and thus fluctuations in the production of solar 

and wind units) as well as low inertia of distributed 

generations can compromise the security of the 

frequency and voltage of the micro-grid. Failure to pay 

attention to frequency and voltage in the production 

planning of distributed generation units, besides 

endangering network security, may impose economic 

losses to the operation of the micro-grids[5]. 

 So far, several articles have been published about 

the optimal operation of micro-grids and their 

challenges. In [6], the role of demand response in 

thermal-wind production programming is considered 

using probabilistic programming. In this reference, 

researchers have dealt with the modeling of responsive 

loads in two modes of response based on encouragement 

and accountability based on pricing and have provided 

models for them. The results of this study show that 

responsive loads have a significant effect on reducing 

operating costs. In [7], the programming of renewable 

products and demand response in a network is analyzed. 

The researchers first modeled responsive loads and 

renewable production resources, including wind and 

solar power, and defined the objective function. In this 

study, researchers are using probabilistic programming 

to solve the problem. The results of the research show 

that if the demand response programs are used, it is 

possible to cover the fluctuations of wind and solar 

power. In [8], a frequency-dependent operation model 

has been proposed for intelligent micro-grid energy 

management. In this reference, optimal energy planning 

and reservation are determined in such a way that both 

economic and security goals are achieved. In [9], 

primary and secondary frequency control loops have 

been considered in the production planning of a micro-

grid, although the uncertainty of sources of production 

based on renewable energy and the requirements of 

micro-grid frequency security and demand response 

capacities (in improving micro-grid security) have been 

ignored. In [10], a new model for the operation of micro-

grids in the electricity market environment is presented. 

The micro-grid includes a wind turbine, a micro-turbine, 

and a residential consumer, and a battery-powered 

energy storage system. There is also a parking lot in the 

micro-grid that can be fed to network-connected vehicle 

and the energy stored in the vehicles can be sometimes 

used. The mentioned micro-grid is managed 

cooperatively, so that the parking lot, wind turbine, 

microturbine, and battery are at the disposal of the 

micro-grid manager. In the proposed model, the micro-

grid participates in both the buyer and the seller in the 

distribution network market and suggests using game 

theory in the market. In [11], a smart parking lot has been 

simulated and analyzed to charge grid-connected hybrid 

electric vehicles. In using these parking lots, the main 

approach is to control the process of charging the 

vehicles in order to take advantage of the economic and 

environmental benefits of these vehicles and prevent the 

occurrence of unwanted loads on the network. Smart 

parking software, by being aware of the network 

situation, including low load, intermediate and high 

load, as well as receiving the real-time signal of the price 

of electricity on the one hand and the customer charging 

parameters, on the other hand, allocates power to the 

vehicles charger. In [12], network charging of hybrid 

electric vehicles is planned, taking into account the high 

percentage of penetration of these vehicles in the 

network. The goal is to improve the load profile of the 

distribution network when the vehicle is charging. For 

the convenience of the customer, the charge is assumed 

to be charged at home. In [13], a new method has been 

proposed to quantify the effect of charging EVs that may 

be distributed on the network security level. Network 

security is monitored by analyzing the single event N-1 

before and after charging EVs at home. In [14], the 

behavior of these vehicles is modeled using binary and 

normal distributions and it is tried to provide an almost 

complete probabilistic model that covers the required 

parameters such as energy limitation, charging 

programming, etc. and how to calculate the optimal 

power to participate in the ancillary services market is 

described. Also, using these probability distributions, 

the optimal amount of power to participate in the 

ancillary services market is obtained according to the 

penal mechanisms. In [15], a two-level optimization has 

been proposed for the operation of a hybrid micro-grid 

(24 hours) with load forecasting and renewable 
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production. In [16], consumers' responses to different 

pricing schemes on the network have been studied at the 

distribution level. This research was conducted in a 

smart network environment. In this case, consumers 

have full access to immediate consumption and pricing 

information. Each consumer has an automatic demand 

response system to control the load with the applied 

price variations. Electric vehicles have also been 

introduced as a mobile energy storage unit, and the 

following function is intended for them in the smart grid. 

 Area peak load displacement 

 Respond to frequency fluctuations 

 Operation as an emergency power supply 

 Stabilization of the power of distributed 

generations 

 In [17], Multi-objective utilization planning has 

been investigated in an intelligent micro-grid system 

with responsive loads. In this reference, researchers are 

looking for optimal operation of an intelligent 

distribution system in the presence of distributed 

generation sources such as diesel generators, fuel cells, 

wind turbines, and solar cells in the presence of 

responsive loads. The authors solve the problem in a 

multi-objective way by using responsive loads to try to 

cover the uncertainty from wind and solar sources. To 

improve the efficiency of this research, the following 

can be recommended: 

 Modeling the types of participant loads in 

demand response programs 

 Penetration management of electric vehicles 

 Considering appropriate and practical solutions 

for implementing demand response programs 

 Considering the costs of operation and 

pollution separately 

 In this research, a management plan for micro-grid 

operators with a multi-objective, economic, technical, 

and security approach, environmental, and reliability has 

been presented. The low inertia of Distributed 

Generation Resources (DGs) and the high penetration of 

Renewable Energy Sources (RESs) disrupt the safety 

and stability of micro-grids, especially in island mode. 

Based on the proposed model, planning of controllable 

units on the production side is done not only to maintain 

the stability and security of the frequency and voltage of 

the micro-grid but also for the economic purpose of 

maximizing the expected benefit of the Micro-Grid 

Operator (MGO) and the environmental goal of 

minimizing pollutant production. Due to the dependence 

of renewable energy production capacity on climatic 

conditions, in this model, a new solution has been 

proposed to operate the system under uncertainty. 

 The proposed plan also includes the management of 

the penetration of electric vehicles into the micro-grid 

structure. For proper integration of electric vehicles with 

the grid and their use as a production unit using network 

connection technologies (V2G), electric vehicles have 

penetrated the micro-grid surface. The penetration of 

electric vehicles, especially in smart distribution 

networks and micro-grids, has caused serious challenges 

for the operators of micro-grids, especially during peak 

hours. The proposed management plan in this study has 

turned these problems into opportunities by proper 

management and controlling the challenge. In other 

words, with the proposed management plan, the energy 

stored in electric vehicles is returned to the grid in order 

to be used. These resources in addition to covering 

uncertainty, with proper management namely charging 

during the hours when electricity prices are low and 

discharging during peak hours and rising electricity 

prices, increase the operator's benefit greatly. In addition 

to production units and charging and discharging 

stations for electric vehicles, the proposed model has 

also provided a good way to participate in more loads in 

order to achieve more benefits. The proposed model for 

responsive loads makes it possible to analyze the effect 

of customer participation in DR programs on the 

economy and security in island mode. In this model, 

customers who participate in the DR program are 

divided into three general categories: price-sensitive 

loads, voltage-sensitive loads, and frequency-sensitive 

loads. The load position in the proposed model is 

considered to have a more accurate result. The vast 

majority of studies have used DC load flow in the 

optimization model. This unrealistic approximation 

causes ignoring the reactive power of programming and 

its significant effect on node voltage and even system 

frequency (if the lines are resistive). However, in the 

proposed approach, using AC-OPF, the frequency and 

voltage deviation planning and decision-making are 

done to compensate for them. Besides, the effect of DR 

resource participation on voltage regulation and micro-

grid frequency is also investigated. 

 

2.  THE STRUCTURE OF THE PROPOSED 

MODEL 
In this research, distributed energy resources include 

Distributed Controllable Generations (DGs) and 

distributed resources based on Renewable Resources 

(RESs) as well as Responsive Loads (DR) and Electric 

Vehicles (EVs) have been managed to meet the goals of 

the system and eliminate technical and security 

constraints. In this process, the MGO (Micro-Grid 

Operator) plays a key role as a supervisor of the optimal 

planning process and decision monitoring. To 

participate in customers in the DR program and the 

management of V2G and G2V electric vehicles, 

consumers are assumed to be equipped with intelligent 

measuring equipment and a Building Energy 

Management System (BMS). 

 The environmental information required by the 

MGO is received through communication lines and 

other required information, such as the amount of RESs 
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production and the amount of demand, is generated 

through predication methods, which are described 

below. MGO solves a problem of security-constrained 

optimization with the goal of energy planning and 

management charge and discharge of electric vehicles 

and responsive loads on the planning horizon to find 

optimal solutions according to the goals of the system. 

 

2.1.   Solution Method 
The input data in the proposed structure consists of two 

categories: Deterministic data and stochastic data which 

are obtained by modeling random processes. This is 

done in order to model the uncertainty in the production 

of wind (WT), solar (PV) resources and the demand of 

customers, with the aim of minimizing the amount of 

forecast error. Accordingly, several scenarios are 

initially generated based on Probability Density 

Functions (PDF). Then, using a scenario reduction 

algorithm, the 𝑁𝑠- scenario is selected to model the 

uncertainty. In the next step, the reduced scenarios are 

used in the process of optimization modeling based on 

Mixed-Integer Linear Programming (MILP), in order to 

maximize the expected benefit of MGO by considering 

voltage and frequency security and DR and V2G 

management. 

 

2.2.  Modeling the Uncertainty of Production of 

Renewable Resources and Demand of Customers 
To model the variations in the output power of 

scattered wind products, the information received about 

wind speed (v) is used to model the probability density 

function (PDF) of a wind turbine. Rayleigh probability 

density function is used to model wind speed. This 

function for wind speed variations can be calculated by 

the following formula: 

 

𝑃𝐷𝐹(𝑣) = (
𝑣

𝑠𝑓2
) . 𝑒𝑥𝑝 [−(

𝑣2

2𝑠𝑓2
)] (1) 

 

In this formula, v and sf are wind speed and scale 

parameters, respectively. The relationship between wind 

turbine production capacity and wind speed is as 

follows: 

 

P𝑤𝑡𝑔(𝑣(𝑡))

=

{
 
 

 
 

0                  , 𝑣(𝑡) < v𝑐𝑖
𝑣(𝑡) − 𝑣𝑐𝑖
𝑣𝑟 − 𝑣𝑐𝑖

∗ 𝑃𝑟 , v𝑐𝑖 < 𝑣(𝑡) < v𝑟

P𝑟                 , v𝑟 < 𝑣(𝑡) < v𝑐𝑜 

0                  , 𝑣(𝑡) > v𝑐𝑜

 

(2) 

 

Where, 𝑃𝑟  is the allowable power, 𝑣𝑐𝑖  is the cut-in 

speed, v𝑐𝑜 is the cut-out speed, P𝑤𝑡𝑔 is the output power 

of the wind turbine. 

The hourly distribution of the emitted radiation is 

usually a bimodal distribution that can be considered as 

a linear combination of two distribution functions. To 

model the variations in the sun's radiation, the beta 

probability density function is used according to the 

following relation: 

 

(3)           𝑃𝐷𝐹(𝛽) 

= {
Γ(𝛼 + 𝛽)

Γ(𝛼) ∙ Γ(β)
∙ 𝜑(𝛼−1) ∗ (1 − 𝜑)𝛽−1   0≤𝜑≤1,   𝛼≥0,   𝛽≥0

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The functional parameters of beta distribution (β and 

α) are calculated based on the mean (μ) and standard 

deviation (σ) of random variables according to the 

following equation: 

 

𝛽 = (1 − 𝜇) ∗ (
𝜇 ∗ (1 + 𝜇)

𝜎2
− 1) 

(4) 

𝛼 =
𝜇 ∗ 𝛽

1 − 𝜇
 

(5) 

 

 

 

The uncertainty of the load is also considered as 

random variables whose prediction error is modeled 

using the normal probability density function. In this 

study, for the uncertainty model of each random 

variable, a set of possible scenarios is generated based 

on the Metropolis-Hastings algorithm and using the 

corresponding PDF. Then the scenarios generated by the 

k-means clustering method are reduced to an optimal 

subset, which indicates sufficient uncertainty. Finally, 

scenarios (wind, solar, and load) are combined to create 

complete sets based on the scenario tree. Each branch in 

the scenario tree corresponds to a scenario on the 

planning horizon with probability 𝜋𝑠, which is 

calculated as follows: 

 

𝜋𝑠 = 𝜋𝑘_𝑠 ∗ 𝜋𝑖_𝑠 ∗ 𝜋𝑙_𝑠 (6) 

 

Where, 𝜋𝑙_𝑠 , 𝜋𝑖_𝑠 , 𝜋𝑘_𝑠 are the probability of 𝑙_𝑠-th 

load scenario, 𝑖_𝑠-th PV scenario, and 𝑘_𝑠-th wind 

scenario, respectively. 

 

2.3.   Objective Functions 

Four main goals are considered in the proposed 

management plan. In other words, the proposed model is 

an optimal multi-objective operation model. These four 

goals are as follows: 

1) Economic Objective function (ECOF) 

 Minimizing the cost of energy supply and 

reserving required micro-grid load and the energy 

cost required for electric vehicles on the planning 

horizon with the participation of responsive loads 

and charge and discharge management of electric 

vehicles 
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2) Security Objective function (SOF) 

 Minimizing bus voltage deviations from the 

nominal value on the planning horizon 

 Minimizing the deviation of the micro-grid 

frequency from the nominal value on the 

planning horizon 

3) Environmental Objective function (EOF) 

 Minimizing greenhouse gas emissions on the 

planning horizon 

4) Reliability Objective function (ROF) 

 Minimizing the lost load on the planning 

horizon 

     The mathematical model of the objective function is 

expressed as the following relation: 

 

𝑂𝐹: min[ 𝜔1{𝐸𝐶𝑂𝐹} + 𝜔2{𝑆𝑂𝐹} + 𝜔3{𝐸𝑂𝐹}
+ 𝜔4{𝑅𝑂𝐹}] 

(7) 

 

 𝜔1, 𝜔2, 𝜔3 and 𝜔4 are the weight coefficients of 

each of the system's objective functions. These 

coefficients make it possible to align the objective 

functions and also allow the operator to change the 

effectiveness of each objective function in the overall 

objective function of the system according to the priority 

in the operation. Each of the higher priority objective 

functions is multiplied by the larger weight factor. 

For the variations in each component of the objective 

function to be equal (the importance of all components 

of the objective function is the same), the distance 

between the minimum and maximum value of each 

component of the objective function must be calculated 

and then the weights of the objective function are 

calculated in such a way that the distance between the 

minimum and maximum values of all sections is equal. 

If the minimum and maximum value of each component 

of the objective function is determined by the min and 

max indices, then the relationship between the weight 

coefficients is obtained from the following equations: 

 

 
 𝜔1

 𝜔2
=

𝐸𝐶𝑂𝐹𝑚𝑎𝑥−𝐸𝐶𝑂𝐹𝑚𝑖𝑛

𝑆𝑂𝐹𝑚𝑎𝑥−𝑆𝑂𝐹𝑚𝑖𝑛
 

(8) 

 𝜔1
 𝜔3

=
𝐸𝐶𝑂𝐹𝑚𝑎𝑥 − 𝐸𝐶𝑂𝐹𝑚𝑖𝑛

𝐸𝑂𝐹𝑚𝑎𝑥 − 𝐸𝑂𝐹𝑚𝑖𝑛
 

(9) 

 𝜔1
 𝜔4

=
𝐸𝐶𝑂𝐹𝑚𝑎𝑥 − 𝐸𝐶𝑂𝐹𝑚𝑖𝑛

𝑅𝑂𝐹𝑚𝑎𝑥 − 𝑅𝑂𝐹𝑚𝑖𝑛
 

(10) 

 

The variables and Indices of the objective functions 

are given in table 1. 

 

 

 

Table 1. Variables and Indices of the objective 

functions. 

s, n, t, l Index of scenarios, buses, time 

periods and load groups 

k, i, j Index of wind, solar and DGs 

𝑁𝑠, 𝑁𝐵  , 𝑁𝑇 , 𝑁𝐿  Number of scenarios, buses, 

time periods and load groups 

  𝑁𝑘 , 𝑁𝐼 , 𝑁𝐽  Number of wind, solar and 

DGs units 

𝑃𝑒,𝑡
𝐸𝑉  The scheduled power of the 

electric vehicle e to participate 

in V2G in the period t 

 (𝑃𝑗,𝑡,𝑠) 𝑃𝑗,𝑡 The scheduled  active power of 

the DG j in the period t (and 

scenario s)(kw) 

 (𝑄𝑗,𝑡,𝑠) 𝑄𝑗,𝑡 The scheduled  reactive power 

of the DG j in the period t (and 

scenario s)(kvar) 

 (𝑃𝑘,𝑡,𝑠)  𝑃𝑘,𝑡 The scheduled  active power of 

the wind unit k in the period t 

(and scenario s)(kw) 

 (𝑄𝑘,𝑡,𝑠)  𝑄𝑘,𝑡 The scheduled reactive power 

of the wind unit k in the period 

t (and scenario s)(kvar) 

 (𝑃𝑖,𝑡,𝑠)  𝑃𝑖,𝑡 The scheduled  active power of 

the solar unit i in the period t 

(and scenario s)(kw) 

 (𝑄𝑖,𝑡,𝑠)  𝑄𝑖,𝑡 The scheduled  reactive power 

of the solar unit i in the period t 

(and scenario s)(kvar) 

𝑅𝑗,𝑡
𝑁𝑆 The scheduled non-spinning 

reserve of the DG j in the 

period t (kw) 

 (𝑅𝑙,𝑡
𝑈)  𝑅𝑗,𝑡

𝑈 The scheduled up-spinning 

reserve of the DG j (load l) in 

the period t (kw) 

(𝑅𝑙,𝑡
𝐷)  𝑅𝑗,𝑡

𝐷 The scheduled down-spinning 

reserve of the DG j (load l) in 

the period t (kw) 

𝑟𝑗,𝑡,𝑠
𝑁𝑆  The deployed non-spinning 

reserve of the DG j in the 

period t and scenario s (kw) 

(𝑟𝑙,𝑡,𝑠
𝑈)  𝑟𝑗,𝑡,𝑠

𝑈 The deployed up-spinning 

reserve of the DG j (load l) in 

the period t and scenario s (kw) 

(𝑟𝑙,𝑡,𝑠
𝐷)  𝑟𝑗,𝑡,𝑠

𝐷 The deployed down-spinning 

reserve of the DG j (load l) in 

the period t and scenario s (kw) 

(𝑄𝑙,𝑡) 𝑃𝑙,𝑡 Active(reactive) demand for 

load l in the period t (kw) 

(kvar) 

(𝑄𝑛,𝑚,𝑡) 𝑃𝑛,𝑚,𝑡 Active (reactive) power passing 

from bus n to bus m in period t 

(kW) (kVar) 
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(𝑎𝑗,𝑡,𝑠)  𝑎𝑗,𝑡 The binary variable, equal 1 if 

unit j is starting up in the period 

t (and scenario s) 

(𝑏𝑗,𝑡,𝑠) 𝑏𝑗,𝑡 The binary variable, equal 1 if 

unit j is shut down in the period 

t (and scenario s) 

(𝑢𝑗,𝑡,𝑠) 𝑢𝑗,𝑡 The binary variable, equal 1 if 

unit j is scheduled to be 

committed in the period t (and 

scenario s) 

𝜏𝑒,𝑡 The bid price of electric vehicle 

e to participate in V2G in the 

period t (cent/kwh) 

𝜏𝑙,𝑡 Electricity price for load l in 

period t (cent/kwh) 

𝜏𝑘,𝑡 Energy bid submitted by wind 

unit k in period t (cent/kwh) 

𝜏𝑖,𝑡 Energy bid submitted by solar 

unit i in period t (cent/kwh) 

𝐴𝑗 , 𝐵𝑗 Cost function coefficients of 

DG j  

𝑆𝑈𝐶𝑗 The startup cost of DG j (cent) 

𝑆𝐷𝐶𝑗 Shutdown cost of DG j (cent) 

𝜏𝑗,𝑡
𝑅_𝑈

 (𝜏𝑗,𝑡
𝑅_𝐷

) The bid of the up (down)-

spinning reserve submitted by 

DG j in period t (cent/kwh) 

𝜏𝑙,𝑡
𝑅_𝑈

 (𝜏𝑙,𝑡
𝑅_𝐷

) The bid of the up (down)-

spinning reserve submitted by 

load l in period t (cent/kwh) 

𝜏𝑗,𝑡
𝑅_𝑁𝑆

 The bid of the non-spinning 

reserve submitted by DG j in 

period t(cent/kwh) 

(𝜏𝑒,𝑡
′()𝜏𝑥,𝑡

′) 𝜏𝑙,𝑡
′ Real-time price for buying and 

selling deviation power from 

load l (EV e)(unit x)(cent/kwh) 

𝛼𝐶𝑂2
𝑗

 , 𝛼𝑁𝑂𝑥
𝑗

, 𝛼𝑆𝑂2
𝑗

  The amount of CO2, NOx and 

SO2 pollutants (per kg) 

produced per production of 

1kWh of energy per unit of DG 

j 

𝑃𝑙,𝑡,𝑠
𝑠ℎ𝑒𝑑 Load shedding of l-th load 

group in period t and scenario s 

(kw)  

 

2.3.1. Economic objective function 

The economic objective function is intended to 

minimize the overall cost of MGO on the energy 

planning and reservation planning horizon. The overall 

cost of MGO includes energy supply and reservation 

costs to supply micro-grid electricity, participation fee 

for electric vehicles as V2G, and also expected operating 

costs under uncertainty. MGO income is the income 

from selling energy to customers. In this regard, the 

economic objective function of the system includes three 

main sets. These three sets include the planned MGO 

cost (𝐹1), the realized MGO cost (𝐹2), and the expected 

MGO income (𝐹3). Initially, energy distribution in the 

micro-grid is planned according to the mean load values 

and the production of renewable resources; then, 

according to each scenario and the difference between 

the amount of production and consumption with the 

predicted amount (average value), the final economic 

objective function is settled. Therefore, the economic 

objective function is expressed as follows: 

 

𝐸𝐶𝑂𝐹 = 𝐹1 − 𝐹2 − 𝐹3 (11) 

 

The mathematical model of the 𝐹1 set in the 

economic objective function of the system is expressed 

as follows: 

 

(12)            𝐹1 = 

∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑𝜏𝑒,𝑡 . 𝑃𝑒,𝑡
𝐸𝑉

𝑁𝐸

𝑒=1

+

∑[(𝐴𝑗. 𝑢𝑗,𝑡 + 𝐵𝑗 . 𝑃𝑗,𝑡) + 𝑆𝑈𝐶𝑗 . 𝑎𝑗,𝑡 + 𝑆𝐷𝐶𝑗 . 𝑏𝑗,𝑡)]

𝑁𝐽

𝑗=1

+∑[(𝜏𝑗,𝑡
𝑅_𝐷 . 𝑅𝑗,𝑡

𝐷 + 𝜏𝑗,𝑡
𝑅_𝑈. 𝑅𝑗,𝑡

𝑈 + 𝜏𝑗,𝑡
𝑅_𝑁𝑆. 𝑅𝑗,𝑡

𝑁𝑆)]

𝑁𝐽

𝑗=1

+∑[(𝜏𝑙,𝑡
𝑅_𝐷. 𝑅𝑙,𝑡

𝐷 + 𝜏𝑙,𝑡
𝑅_𝑈. 𝑅𝑙,𝑡

𝑈 )]

𝑁𝐿

𝑙=1

+[∑𝜏𝑘,𝑡 . 𝑃𝑘,𝑡

𝑁𝐾

𝑘=1

+∑𝜏𝑖,𝑡 . 𝑃𝑖,𝑡

𝑁𝐼

𝑖=1

]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑁𝑇

𝑡=1

 

The first part (𝐹11) is the cost paid by MGO for the 

V2G power programmed for electric vehicles. Electric 

vehicles are owned by customers. 

𝐹11 =∑∑𝜏𝑒,𝑡 . 𝑃𝑒,𝑡
𝐸𝑉

𝑁𝐸

𝑒=1

𝑁𝑇

𝑡=1

 (13) 

The second part (𝐹12) is the production cost of DG 

units and the cost of start-up and shutting them down 

according to the plan for the day ahead. 

 

𝐹12 =∑∑[(𝐴𝑗. 𝑢𝑗,𝑡 + 𝐵𝑗 . 𝑃𝑗,𝑡) + 𝑆𝑈𝐶𝑗 . 𝑎𝑗,𝑡

𝑁𝐽

𝑗=1

𝑁𝑇

𝑡=1

+ 𝑆𝐷𝐶𝑗 . 𝑏𝑗,𝑡)] 

(14) 

 

The third section (𝐹13) describes the reservation 

costs planned for production units. 
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𝐹13 =∑∑[(𝜏𝑗,𝑡
𝑅_𝐷. 𝑅𝑗,𝑡

𝐷 + 𝜏𝑗,𝑡
𝑅_𝑈. 𝑅𝑗,𝑡

𝑈

𝑁𝐽

𝑗=1

𝑁𝑇

𝑡=1

+ 𝜏𝑗,𝑡
𝑅_𝑁𝑆. 𝑅𝑗,𝑡

𝑁𝑆)] 

(15) 

The fourth section (𝐹14) describes the reservation 

costs planned by the load according to the DR program. 

 

𝐹14 =∑∑[(𝜏𝑙,𝑡
𝑅_𝐷. 𝑅𝑙,𝑡

𝐷 + 𝜏𝑙,𝑡
𝑅_𝑈. 𝑅𝑙,𝑡

𝑈 )]

𝑁𝐿

𝑙=1

𝑁𝑇

𝑡=1

 (16) 

 

The fifth section (𝐹15) represents the energy cost that 

buys MGO from owners of solar (PV) and wind (WT) 

units. In this study, it is assumed that PV and WT units 

are not owned by MGO. That is why WT and PV sell 

their energy to MGO at specific prices. 

 

𝐹15 =∑[∑𝜏𝑘,𝑡 . 𝑃𝑘,𝑡

𝑁𝐾

𝑘=1

+∑𝜏𝑖,𝑡 . 𝑃𝑖,𝑡

𝑁𝐼

𝑖=1

]

𝑁𝑇

𝑡=1

 (17) 

 

As explained, in the second set of the economic 

objective function (𝐹2), according to the values of each 

scenario and the probability of occurrence of each 

scenario, the difference between the planned amount and 

the amount realized by the production units, loads, and 

renewable resources is settled. The mathematical model 

of the 𝐹2 set in the economic objective function of the 

system is expressed as follows: 

 

(18)        𝐹2 = ∑ ∑ 𝜋𝑠 .
𝑁𝑇
𝑡=1

𝑁𝑠
𝑠=1 

[
 
 
 
 
 
 
 
 
 

∑𝑆𝑈𝐶𝑗 . (𝑎𝑗,𝑡,𝑠 − 𝑎𝑗,𝑡) + 𝑆𝐷𝐶𝑗 . (𝑏𝑗,𝑡,𝑠 − 𝑏𝑗,𝑡) +

𝑁𝐽

𝑗=1

∑𝜏𝑗,𝑡
′ (𝑟𝑗,𝑡,𝑠

𝑈 + 𝑟𝑗,𝑡,𝑠
𝑁𝑆 − 𝑟𝑗,𝑡,𝑠

𝐷 ) +∑𝜏𝑗,𝑡
′ (𝑟𝑗,𝑡,𝑠

𝑈 − 𝑟𝑗,𝑡,𝑠
𝐷 )

𝑁𝐽

𝑗=1

𝑁𝐽

𝑗=1

+∑𝜏𝑘,𝑡
′ . Δ𝑃𝑘,𝑡,𝑠

𝑁𝐾

𝑘=1

+∑𝜏𝑖,𝑡
′ . Δ𝑃𝑖,𝑡,𝑠

𝐼

𝑖=1

+∑𝜏𝑒,𝑡,𝑠
′ . Δ𝑃𝑒,𝑡,𝑠

𝐸𝑉

𝑁𝐸

𝑒=1 ]
 
 
 
 
 
 
 
 
 

 

 

According to the above relation, 𝐹2 consists of four 

parts. In the first part (𝐹21), the cost of commitment units 

in different scenarios is settled in real-time. 

 

𝐹21 =∑∑∑𝜋𝑠 . [𝑆𝑈𝐶𝑗 . (𝑎𝑗,𝑡,𝑠 − 𝑎𝑗,𝑡)

𝑁𝐽

𝑗=1

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

+ 𝑆𝐷𝐶𝑗 . (𝑏𝑗,𝑡,𝑠 − 𝑏𝑗,𝑡)] 

(19) 

 

In the second part (𝐹22), according to the amount of 

achieved reservation, the cost of the commitment of DGs 

and responsive loads for network reservation is settled 

by the production units and customers who have 

participated in the DR program. 

𝐹22 =∑∑𝜋𝑠. [(∑𝜏𝑗,𝑡
′ (𝑟𝑗,𝑡,𝑠

𝑈 + 𝑟𝑗,𝑡,𝑠
𝑁𝑆 − 𝑟𝑗,𝑡,𝑠

𝐷 )

𝑁𝐽

𝑗=1

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

+∑𝜏𝑗,𝑡
′ (𝑟𝑗,𝑡,𝑠

𝑈 − 𝑟𝑗,𝑡,𝑠
𝐷 )

𝑁𝐽

𝑗=1

] 

(20) 

 

In the third section (𝐹23), the energy supply costs are 

settled by the PV and WT units, which are the result of 

the difference between the real-time output power and 

the predicted power for the coming day. 

 

𝐹23 =∑∑𝜋𝑠. [

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

∑𝜏𝑘,𝑡
′ . Δ𝑃𝑘,𝑡,𝑠

𝑁𝐾

𝑘=1

+∑𝜏𝑖,𝑡
′ . Δ𝑃𝑖,𝑡,𝑠

𝐼

𝑖=1

] 

(21) 

 

It should be noted that in the first stage of 

programming, MGO considers WT and PV units based 

on the predicted values in the programming, but due to 

the changing weather conditions, the output power of 

these units always changes. Therefore, in section 𝐹23, the 

cost exchanged by the owners of PV and WT units 

should be paid based on the difference between actual 

and predicted production in each scenario. This 

component can be positive or negative on the planning 

horizon. 

In the fourth section (𝐹24), the cost of paying 

customers in real-time is settled according to the amount 

of power realized for the participation of electric 

vehicles in V2G mode. 

 

𝐹24 =∑∑𝜋𝑠. [

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

∑𝜏𝑒,𝑡,𝑠
′ . Δ𝑃𝑒,𝑡,𝑠

𝐸𝑉

𝑁𝐸

𝑒=1

] 

(22) 

 

Finally, the third set of the economic objective 

function (𝐹3) indicates MGO income from electricity 

sales to customers. This income is determined by the net 

consumption of the customers (the predicted average 

value) and the price of electricity per hour. 

 

𝐹3 =∑∑𝜏𝑙,𝑡 . 𝑃𝑙,𝑡

𝑁𝐿

𝑙=1

𝑁𝑇

𝑡=1

 (23) 

 

2.3.2. Security objective Function 

In the third objective function of the system, the 

optimization approach is based on minimizing the 
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deviations of the bus voltage and the frequency deviation 

of the micro-grid from the nominal value. The voltage of 

the buses and the frequency of the micro-grid are also 

calculated based on the droop control relations. 

Relationships related to frequency and voltage droop 

control are expressed in reference [18]. 

 

𝑆𝑂𝐹 =∑∑𝜋𝑠. [|𝑓𝑡,𝑠 − 𝑓
𝑟𝑒𝑓|

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

+∑|𝑉𝑛,𝑡,𝑠 − 𝑉
𝑟𝑒𝑓|

𝑁𝐵

𝑛=1

] 

(24) 

 

In the above relation, 𝑉𝑟𝑒𝑓 is the value of the nominal 

voltage in the n-th bus and 𝑓𝑟𝑒𝑓 is the value of the 

nominal frequency of the micro-grid. 

 

2.3.3. Environmental objective function  

In order to consider the destructive effects of 

environmental pollution caused by pollutants produced 

by various energy sources, the third objective function 

of the optimization problem is considered as the total 

emission of micro-grids, along with other objective 

functions. This is done to pay more attention to 

renewable energy-based dispersed products. In this 

objective function (EOF), the most common 

environmental pollutants include sulfur dioxide (𝑆𝑂2), 

nitrogen oxides (𝑁𝑂𝑥) and carbon dioxide (𝐶𝑂2), which 

are considered. This objective function includes the 

penalty for emitting pollutants produced by non-

renewable distributed products and is calculated as 

follows: 

 

𝐸𝑂𝐹 =∑∑𝜋𝑠(∑𝑃𝑗,𝑡,𝑠 . (𝛼𝐶𝑂2
𝑗
𝑘𝐶𝑂2 + 𝛼𝑁𝑂𝑥

𝑗
𝑘𝑁𝑂𝑥

𝑁𝐽

𝑗=1

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

+ 𝛼𝑆𝑂2
𝑗
𝑘𝑆𝑂2) 

(25) 

 

According to the above relationship, the amount of 

this fine depends on the production capacity of non-

renewable units. This part of the objective function leads 

the operator to maximize the use of renewable energy 

sources. Since pollutants 𝑁𝑂𝑥 and SO2 are more harmful 

than CO2, this has been addressed in the model by setting 

the weight coefficients (𝑘𝑆𝑂2،𝑘𝐶𝑂2، 𝑘𝑁𝑂𝑥). The values of 

these coefficients are determined according to the 

reference [19]. 

 

2.3.4. Reliability objective function  

The fourth objective function is intended to increase 

the reliability of the power supply. In this objective 

function, the Expected Energy Not Supplied (EENS) for 

non-elastic loads is expressed in different scenarios. 

𝑅𝑂𝐹 =∑𝑉𝑂𝐿𝐿. 𝐸𝐸𝑁𝑆𝑗

𝑁𝑗

𝑗=1

 (26) 

 

The value of EENS for customer l during the 

planning horizon is formulated as follows: 

 

𝐸𝐸𝑁𝑆𝑗 =∑∑𝜋𝑠

𝑁𝑠

𝑠=1

𝑁𝑇

𝑡=1

. 𝑃𝑙,𝑡,𝑠
𝑠ℎ𝑒𝑑  (27) 

 

2.4.  Restrictions 

The limitations of the proposed plan are as follows: 

 

2.4.1. AC load flow constraint in micro-grid 

As explained in the previous section, in a micro-grid, 

the frequency and voltage are controlled by active and 

reactive power. In other words, an imbalance between 

production and consumption power affects the 

frequency and voltage of the micro-grid. Therefore, the 

AC load flow is required to calculate the voltage and 

frequency deviation in the absence of an infinite bus. 

The equations for the equilibrium of active and reactive 

power at time t in each of the micro-grid buses in the 

steady-state are defined as follows: 

 

∑ 𝑃𝑗,𝑡
𝑗:(𝑗,𝑛)∈𝐽(𝑡)

+ ∑ 𝑃𝑘,𝑡
𝑘:(𝑘,𝑛)∈𝐾(𝑡)

+ ∑ 𝑃𝑖,𝑡
𝑖:(𝑖,𝑛)∈𝐼(𝑡)

− ∑ 𝑃𝑙,𝑡
𝑙:(𝑙,𝑛)∈𝐿(𝑡)

= ∑ 𝑃𝑛,𝑚,𝑡
𝑚:(𝑛,𝑚)∈𝐵(𝑡)

 

(28) 

 

∑ 𝑄𝑗,𝑡
𝑗:(𝑗,𝑛)∈𝐽(𝑡)

+ ∑ 𝑄𝑘,𝑡
𝑘:(𝑘,𝑛)∈𝐾(𝑡)

+ ∑ 𝑄𝑖,𝑡
𝑖:(𝑖,𝑛)∈𝐼(𝑡)

− ∑ 𝑄𝑙,𝑡
𝑙:(𝑙,𝑛)∈𝐿(𝑡)

= ∑ 𝑄𝑛,𝑚,𝑡
𝑚:(𝑛,𝑚)∈𝐵(𝑡)

 

(29) 

 

𝑃𝑛,𝑚,𝑡  and 𝑄𝑛,𝑚,𝑡 are the active and reactive power 

passing from bus n to bus m during the period t, which 

are calculated by the following relations: 

 

𝑃𝑛,𝑚,𝑡 = 𝐺𝑛.𝑚[𝑉𝑛,𝑡
2 − 𝑉𝑛,𝑡 ∙ 𝑉𝑚,𝑡cos (𝛿𝑛,𝑡 − 𝛿𝑚,𝑡)]

− 𝐵𝑛,𝑚𝑉𝑛,𝑡
∙ 𝑉𝑚,𝑡 sin(𝛿𝑛,𝑡 − 𝛿𝑚,𝑡) 

(30) 
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𝑄𝑛,𝑚,𝑡 = −𝐵𝑛,𝑚[𝑉𝑛,𝑡
2 − 𝑉𝑛,𝑡 ∙ 𝑉𝑚,𝑡cos (𝛿𝑛,𝑡
− 𝛿𝑚,𝑡)] − 𝐺𝑛,𝑚𝑉𝑛,𝑡
∙ 𝑉𝑚,𝑡 sin(𝛿𝑛.𝑡 − 𝛿𝑚,𝑡) 

(31) 

 

Where, 𝑉𝑛,𝑡 and 𝑉𝑚,𝑡, are n node and m node voltage 

at time t, respectively, 𝐺𝑛,𝑚 and 𝐵𝑛,𝑚 are the line 

conductance and susceptance between n and m nodes 

and 𝛿𝑛,𝑡 , 𝛿𝑚,𝑡 are also the voltage angles of node n and 

node m at time t in rad. 

Depending on the random model, operational and 

technical constraints must be established in each of the 

system scenarios. So we have: 

 

∑ 𝑃𝑗,𝑡,𝑠
𝑗:(𝑗,𝑛)∈𝐽(𝑡,𝑠)

+ ∑ 𝑃𝑘,𝑡,𝑠
𝑘:(𝑘,𝑛)∈𝐾(𝑡,𝑠)

+ ∑ 𝑃𝑖,𝑡 , 𝑠

𝑖:(𝑖,𝑛)∈𝐼(𝑡,𝑠)

− ∑ 𝑃𝑙,𝑡,𝑠
𝑙:(𝑙,𝑛)∈𝐿(𝑡,𝑠)

= ∑ 𝑃𝑛,𝑚,𝑡,𝑠
𝑚:(𝑛,𝑚)∈𝐵(𝑡,𝑠)

 

(32) 

 

∑ 𝑄𝑗,𝑡,𝑠
𝑗:(𝑗,𝑛)∈𝐽(𝑡,𝑠)

+ ∑ 𝑄𝑘,𝑡,𝑠
𝑘:(𝑘,𝑛)∈𝐾(𝑡,𝑠)

+ ∑ 𝑄𝑖,𝑡 , 𝑠

𝑖:(𝑖,𝑛)∈𝐼(𝑡,𝑠)

− ∑ 𝑄𝑙,𝑡,𝑠
𝑙:(𝑙,𝑛)∈𝐿(𝑡,𝑠)

= ∑ 𝑄𝑛,𝑚,𝑡,𝑠
𝑚:(𝑛,𝑚)∈𝐵(𝑡,𝑠)

 

(33) 

𝑃𝑛,𝑚,𝑡,𝑠 = 𝐺𝑛,𝑚[𝑉𝑛,𝑡,𝑠
2 − 𝑉𝑛,𝑡,𝑠 ∙ 𝑉𝑚,𝑡,𝑠cos (𝛿𝑛,𝑡,𝑠
− 𝛿𝑚,𝑡,𝑠)] − 𝐵𝑛,𝑚𝑉𝑛,𝑡,𝑠
∙ 𝑉𝑚,𝑡,𝑠 sin(𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠) 

 

(34) 

𝑄𝑛,𝑚,𝑡,𝑠 = −𝐵𝑛,𝑚[𝑉𝑛,𝑡,𝑠
2 − 𝑉𝑛.𝑡.𝑠 ∙ 𝑉𝑚,𝑡,𝑠cos (𝛿𝑛,𝑡,𝑠

− 𝛿𝑚,𝑡,𝑠)] − 𝐺𝑛,𝑚𝑉𝑛,𝑡,𝑠
∙ 𝑉𝑚,𝑡,𝑠 sin(𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠) 

(35) 

 

2.4.2. Distributed generation restrictions  

There are operation restrictions to distributed 

generations that must be considered in the planning 

process. In the following, several relationships between 

the production capacity of distributed generation units 

and incremental and decreasing reservations have been 

expressed as system adjustment capacities. 

𝑃𝑗
𝑚𝑖𝑛𝑢𝑗,𝑡 + 𝑅𝑗,𝑡

𝐷 ≤ 𝑃𝑗,𝑡 ≤ 𝑃𝑗
𝑚𝑎𝑥𝑢𝑗,𝑡 − 𝑅𝑗,𝑡

𝑈  (36) 

0 ≤ 𝑅𝑗,𝑡
𝑈 ≤ 𝑅𝑗,𝑡

𝑈,𝑚𝑎𝑥  𝑢𝑗,𝑡 (37) 

0 ≤ 𝑅𝑗,𝑡
𝐷 ≤ 𝑅𝑗,𝑡

𝐷,𝑚𝑎𝑥  𝑢𝑗,𝑡 (38) 

0 ≤ 𝑅𝑗,𝑡
𝑁𝑆 ≤ 𝑅𝑗,𝑡

𝑁𝑆.𝑚𝑎𝑥  (1 − 𝑢𝑗,𝑡) (39) 

 

Relationship (36) indicates the minimum and 

maximum power of DGs. In relation (37) to (39), the 

range of the planned up-spinning reserve, down-

spinning reserve, and non-spinning reserve for unit j at 

time t are specified, respectively. In these relationships, 

𝑃𝑗
𝑚𝑖𝑛 is the minimum and 𝑃𝑗

𝑚𝑎𝑥 is the maximum output 

of DG j. 𝑅𝑗,𝑡
𝑈,𝑚𝑎𝑥

 and 𝑅𝑗,𝑡
𝐷,𝑚𝑎𝑥  are the maximum 

contribution of unit j in providing up-spinning and 

down-spinning reserves. 𝑅𝑗,𝑡
𝑁𝑆.𝑚𝑎𝑥 is the maximum 

contribution of unit j to the provision of the non-spinning 

reserve at time t. 

In the random model, the relationship between the 

production capacity of the distributed generation units 

and the incremental and decremental reservations are 

expressed as the regulatory capacities of the system in 

each scenario in the following relationships: 

 

𝑃𝑗
𝑚𝑖𝑛𝑢𝑗,𝑡,𝑠 + 𝑟𝑗,𝑡,𝑠

𝐷 ≤ 𝑃𝑗,𝑡,𝑠 ≤ 𝑃𝑗
𝑚𝑎𝑥𝑢𝑗,𝑡,𝑠 − 𝑟𝑗,𝑡,𝑠

𝑈  (40) 

0 ≤ 𝑟𝑗,𝑡,𝑠
𝑈 ≤ 𝑅𝑗,𝑡,𝑠

𝑈,𝑚𝑎𝑥  𝑢𝑗,𝑡,𝑠 (41) 

0 ≤ 𝑟𝑗,𝑡,𝑠
𝐷 ≤ 𝑅𝑗,𝑡,𝑠

𝐷,𝑚𝑎𝑥  𝑢𝑗,𝑡,𝑠 (42) 

0 ≤ 𝑟𝑗,𝑡,𝑠
𝑁𝑆 ≤ 𝑅𝑗,𝑡,𝑠

𝑁𝑆.𝑚𝑎𝑥  (1 − 𝑢𝑗,𝑡,𝑠) (43) 

𝑃𝑗,𝑡 = 𝑃𝑗,𝑡,𝑠 + 𝑟𝑗,𝑡,𝑠
𝑈 + 𝑟𝑗,𝑡,𝑠

𝑁𝑆 − 𝑟𝑗,𝑡,𝑠
𝐷  (44) 

𝑄𝑗
𝑚𝑖𝑛 ≤ 𝑄𝑗,𝑡,𝑠 ≤ 𝑄𝑗

𝑚𝑎𝑥  (45) 

 

 (44) shows the relationship between the 

programmed power of DGs and the reserve power (due 

to increased or decreased production) for each scenario. 

The relation (45) also shows the minimum 𝑄𝑗
𝑚𝑖𝑛 and the 

maximum 𝑄𝑗
𝑚𝑎𝑥 of the allowed reactive power for each 

unit in each scenario and for all the planning horizon 

times. 

 

2.4.3. Restrictions and Equations of Frequency 

Security 

When the micro-grid frequency deviates from the 

normal range value, the central controller must return the 

frequency to the nominal value, by resetting the 

distributed generation output settings or using the DR 

program. Besides, the restoration function must be in 

line with the economic goals of the micro-grid. 

Therefore, based on the droop control function of the 

distributed generations, the frequency in the steady-state 

can be formulated as follows: 
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𝑓𝑡,𝑠 = −∑(𝑃𝑗,𝑡,𝑠 − 𝑃𝑗,𝑡,𝑠
𝑟𝑒𝑓
)

𝑁𝐽

𝑗

/ [𝐷𝑙,𝑡,𝑠 +∑(
1

𝑚𝑝,𝑗

)𝑢𝑗,𝑡

𝑁𝐽

𝑗

] 

(46) 

 

This relationship has been developed according to 

the droop control equation in reference [18]. 𝑃𝑗,𝑡,𝑠
𝑟𝑒𝑓

 is the 

reference point of the production power for the DG j at 

time t and scenario s. 

𝐷𝑙,𝑡,𝑠 is the frequency elasticity of MG loads at period 

t and in scenario s. 𝑚𝑝,𝑗 is the frequency droop 

coefficient, 𝑓𝑡,𝑠 is the micro-grid frequency at time t and 

scenario s. 

To keep the frequency stable, the MGCC must adjust 

the active power of the distributed generation units to 

achieve the following criteria. To ensure that frequency 

deviations are within an acceptable range, micro-grid 

frequency deviations must be less than the allowable 

frequency deviations. So we have: 

 

|∆𝑓𝑡,𝑠| ≤ ∆𝑓𝑚𝑎𝑥 (47) 

 

In this relation, ∆𝑓𝑚𝑎𝑥 is the maximum allowable 

amount of microgrid frequency deviation. 

 

2.4.4. Technical limitations of the network 

In addition to the stated constraints, the following 

relations are the constraints of the node voltage limit and 

the power limit of the lines. 

 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑛,𝑡,𝑠 ≤ 𝑉
𝑚𝑎𝑥  (48) 

√(𝑃𝑛,𝑚,𝑡,𝑠)
2 + (𝑄𝑛,𝑚,𝑡,𝑠)

2 ≤ 𝑆𝑛,𝑚
𝑚𝑎𝑥 (49) 

 

In the above relations, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the 

maximum and minimum allowable value of voltage for 

bus n in scenario s and period t. 𝑃𝑛,𝑚
𝑚𝑎𝑥 is also the 

maximum power passing through the connecting line 

between bus n and bus m. 

 

2.4.5. Restrictions and equations of electric vehicles 

The data on the time of entry and exit of electric 

vehicles depends on the behavior of the owners of 

electric vehicles. According to reference [20], the 

management of electric vehicles is based on the 

following three assumptions: 

• Electric vehicles are connected to the grid in 

household parking lots for charging or discharging. 

In other words, electric vehicles are in the place of 

customers and load buses. 

 • After daily use, electric vehicles return to the 

parking lot and connect to the grid. 

 • Electric vehicles are connected to the network 

only once a day and are ready to be charged or 

discharged. In other words, the frequent connection 

of vehicles during the day has been omitted. 

Electric vehicle restrictions are divided into the 

following three categories: 

• Limit the power of vehicle exchanges with the 

network 

• Technical limitation of the vehicle battery 

• Energy limit on the vehicle battery 

The rate of change in the battery charge percentage 

of the electric vehicle e at time t is calculated by the 

following equation: 

 

𝑆𝑂𝐶𝑒,𝑡
𝐸𝑉 = 𝑆𝑂𝐶𝑒,𝑡−1

𝐸𝑉 −
1

𝐶𝑒
𝑚𝑎𝑥 (

1

1−𝑃𝑒,𝑡
𝐿_𝑉2𝐺 .

1

𝜂𝑒
𝐵𝑇𝐵 . 𝑃𝑒,𝑡

𝑉2𝐺 − (1 −

𝑃𝑒,𝑡
𝐿_𝐺2𝑉). 𝑃𝑒,𝑡

𝐺2𝑉 . 𝜂𝑒
𝐵𝑇𝐵)                           

(50) 

 

In the above relation, e is the index of the electric 

vehicle. 𝐶𝑒
𝑚𝑎𝑥 is the battery capacity of the electric 

vehicle e. 𝑃𝑒,𝑡
𝐿_𝑉2𝐺

 and 𝑃𝑒,𝑡
𝐿_𝐺2𝑉

 are the losses in V2G 

(discharge) and G2V (charge) mode for electric vehicle 

e, respectively. 𝑃𝑒,𝑡
𝑉2𝐺  and 𝑃𝑒,𝑡

𝐺2𝑉 are the power exchanged 

between the network and the electric vehicle e at time t 

in the V2G (discharge) and G2V (charge) mode. 𝜂𝑒
𝐵𝑇𝐵 is 

the converter efficiency between the vehicle e and the 

network. 𝑆𝑂𝐶𝑒,𝑡−1
𝐸𝑉  is the initial charge value of the 

electric vehicle e. The initial value for the first SOC 

(𝑆𝑂𝐶𝑒,𝑡=1
𝐸𝑉 ) is equal to the last SOC status in the last 

period of the previous day. 

Given that the maximum amount of EV charge is 

100%, so we have for each vehicle: 

 

0 ≤ 𝑆𝑂𝐶𝑒,𝑡
𝐸𝑉 ≤ 1 (51) 

 

      The amount of power exchange between the vehicle 

and the network for EV e and at time t is limited by the 

vehicle’s battery capacity (𝐶𝑒
𝑚𝑎𝑥) and vehicle charge 

percentage (𝑆𝑂𝐶𝑒,𝑡−1
𝐸𝑉 ). To show the charge and 

discharge state of the electric vehicle e at time t, the 

binary variable 𝑋𝑒,𝑡
𝐸𝑉 is considered. 

 

0 ≤ 𝑃𝑒,𝑡
𝐺2𝑉 ≤ 𝐶𝑒

𝑚𝑎𝑥(1 −

𝑆𝑂𝐶𝑒,𝑡−1
𝐸𝑉 ).

1

1−𝑃𝑒,𝑡
𝐿𝐺2𝑉

.
1

𝜂𝑒
𝐵𝑇𝐵 . (1 − 𝑋𝑒,𝑡

𝐸𝑉)                           (52) 

0 ≤ 𝑃𝑒,𝑡
𝑉2𝐺 ≤ 𝐶𝑒

𝑚𝑎𝑥 . 𝑆𝑂𝐶𝑒,𝑡−1
𝐸𝑉 . (1 −

𝑃𝑒,𝑡
𝐿𝑉2𝐺). 𝜂𝑒

𝐵𝑇𝐵 . 𝑋𝑒,𝑡
𝐸𝑉                           

(53) 

𝑃𝑒,𝑡
𝐸𝑉 = 𝐵𝑒,𝑡

𝐸𝑉 − 𝑃𝑒,𝑡
𝐿𝐸 (54) 
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𝐵𝑒,𝑡
𝐸𝑉 is the power exchange between the vehicle 

battery and charger/discharge converter (converter 

input) and 𝑃𝑒,𝑡
𝐸𝑉 is the Power exchange between network 

and charge/discharge converter and 𝑃𝑒,𝑡
𝐿𝐸  is the loss of 

charge/discharge converter for the vehicle e in the period 

t. 

 As explained above, the power exchanged between 

the vehicle and the network (𝑃𝑒,𝑡
𝐸𝑉), if the electric vehicle 

is in the charging state (G2V), as 𝑃𝑒,𝑡
𝐺2𝑉and if it is in the 

discharge state (V2G) as 𝑃𝑒,𝑡
𝑉2𝐺 . Therefore, the following 

relationship is established for each vehicle in each hour: 

 

𝑃𝑒,𝑡
𝐸𝑉 = 𝑃𝑒,𝑡

𝐺2𝑉 − 𝑃𝑒,𝑡
𝑉2𝐺                              (55) 

 

The limitations for energy balance in an electric 

vehicle are as follows: 

 

𝑊𝑒,𝑡=1
𝐸𝑉 = 𝑊𝑒,0

𝐸𝑉 + 𝐵𝑒,𝑡=1
𝐸𝑉                       (56) 

𝑊𝑒,𝑡
𝐸𝑉 = 𝑊𝑒,𝑡−1

𝐸𝑉 + 𝐵𝑒,𝑡
𝐸𝑉                       (57) 

 

In other words, the energy stored in the battery is 

equal to the primary energy in the battery (when the 

vehicle is connected to the network) plus the exchange 

energy with the network. 

 

2.4.6. Limitations and equations of the demand 

response program 

Responsive load management, along with electric 

vehicles, has been proposed in this model to improve 

micro-grid performance, especially during peak load 

times. This management plan expresses the behavior of 

the load in response to incentives and uses it to improve 

network operation. In this model, the responsive loads 

are modeled as follows: 

 Price-sensitive loads 

 Voltage-sensitive loads 

 Frequency-sensitive loads 

Since the location of customers in the micro-grid and 

the level of their participation in the DR, and the 

program is different, so customers in the 𝑁𝐿 -group are 

classified with the participation of 𝛾𝑙 . Customers 

participating in the DR program change their 

consumption pattern based on electricity price signals 

and the amount of voltage and frequency deviation from 

the nominal value. Therefore, the total load demand of 

the system after participating in the DR program in the 

period t is calculated as follows: 

 

𝐷𝑡 =∑[𝑃𝑙,𝑡
𝑁𝐷𝑅+𝑃𝑙,𝑡

𝐷𝑅]

𝑁𝐿

𝑙=1

 (58) 

 

In this regard, 𝑃𝑙,𝑡
𝑁𝐷𝑅and 𝑃𝑙,𝑡

𝐷𝑅 are the non-responsive 

loads and the responsive loads in the l group of 

customers, respectively. To maximize benefits, each 

customer group may change their load level from 𝑃𝑙,𝑡 to 

𝑃𝑙.𝑡
𝐷𝑅 in time t. So we have: 

 

∆𝑃𝑙,𝑡
𝐷𝑅 = 𝑃𝑙,𝑡 − 𝑃𝑙,𝑡

𝐷𝑅  (59) 

 

∆𝑃𝑙,𝑡
𝐷𝑅 shows the rate of change in customer load due 

to participation in the DR program. According to the 

reference [21], the elasticity ( 𝐸𝑙,𝑡,𝑣) and customer 

participation in the price-sensitive demand response 

program (𝑃𝑙,𝑡
𝐷𝑅−𝜏) are calculated as follows. The benefits 

of Group l customers by participating in the price-

sensitive DR program can be calculated as follows: 

 

𝐵(𝑃𝑙.𝑡
𝐷𝑅−𝜏) = 𝐼(𝑃𝑙.𝑡

𝐷𝑅−𝜏) − 𝑃𝑙.𝑡
𝐷𝑅−𝜏. 𝜏𝑙,𝑡 (60) 

 

𝜏𝑙,𝑡 is the price of electricity to supply load l therefore 

𝑃𝑙.𝑡
𝐷𝑅−𝜏. 𝜏𝑙,𝑡 is the amount paid by the customers to supply 

the load 𝑃𝑙.𝑡
𝐷𝑅−𝜏. 𝐼(𝑃𝑙.𝑡

𝐷𝑅−𝜏) is the customer income from 

participating in DR and 𝐵(𝑃𝑙.𝑡
𝐷𝑅−𝜏) is the benefit of the 

customer's group l in the period t after the 

implementation of the price-sensitive DR program. To 

maximize the benefit of l group customers, we derive the 

relation (60) from 𝑃𝑙.𝑡
𝐷𝑅−𝜏. So we have: 

 

𝜕𝐵(𝑃𝑙.𝑡
𝐷𝑅−𝜏)

𝜕𝑃𝑙.𝑡
𝐷𝑅−𝜏 =

𝜕𝐼(𝑃𝑙.𝑡
𝐷𝑅−𝜏)

𝜕𝑃𝑙.𝑡
𝐷𝑅−𝜏 − 𝜏𝑙,𝑡 = 0 

⇒  
𝜕𝐼(𝑃𝑙.𝑡

𝐷𝑅−𝜏)

𝜕𝑃𝑙.𝑡
𝐷𝑅−𝜏 = 𝜏𝑙,𝑡 

(61) 

 

Momentary variations in demand to price variations 

at the same time are defined as self-elasticity (𝐸𝑙,𝑡,𝑡
𝜏 ) and 

is defined in mathematical language as follows:  

 

𝐸𝑙,𝑡,𝑡
𝜏 =

𝜏𝑙,𝑡
0

𝑃𝑙,𝑡
0  .
𝜕𝑃𝑙,𝑡
𝜕𝜏𝑙,𝑡

 (62) 

 

According to Equation (62) and based on the 

quadratic-order DR model, the income of l group 

customers in the period t after using the price-sensitive 

DR program is calculated by the following equation: 

 

𝐼(𝑃𝑙.𝑡
𝐷𝑅−𝜏) = 𝐼𝑙,𝑡

0 +
𝜏𝑙,𝑡
0  .  𝑃𝑙,𝑡

𝐷𝑅−𝜏

1 + (𝐸𝑙,𝑡,𝑡
𝜏 )−1

∗ [(
𝑃𝑙,𝑡
𝐷𝑅−𝜏

𝑃𝑙,𝑡
)(𝐸𝑙,𝑡,𝑡

𝜏 )−1 − 1] 

(63) 

 

Derivation from (63) leads to 



Majlesi Journal of Electrical Engineering                                                                             Vol. 15, No. 2,  June 2021 

 

26 

 

𝜕𝐼(𝑃𝑙.𝑡
𝐷𝑅−𝜏)

𝜕𝑃𝑙.𝑡
𝐷𝑅−𝜏

=
𝜏𝑙,𝑡
0  

1 + (𝐸𝑙,𝑡,𝑡
𝜏 )−1

∗ [(
𝑃𝑙,𝑡
𝐷𝑅−𝜏

𝑃𝑙,𝑡
)

(𝐸𝑙,𝑡,𝑡
𝜏 )−1

− 1]

+
𝜏𝑙,𝑡
0  .  𝑃𝑙,𝑡

𝐷𝑅−𝜏

1 + (𝐸𝑙,𝑡,𝑡
𝜏 )−1

∗ [(𝐸𝑙,𝑡,𝑡
𝜏 )−1.

1

𝑃𝑙,𝑡
(
𝑃𝑙,𝑡
𝐷𝑅−𝜏

𝑃𝑙,𝑡
)

(𝐸𝑙,𝑡,𝑡
𝜏 )−1−1

] 

(64) 

 

Placing (64) in (62) gives 

 

(𝐸𝑙,𝑡,𝑡
𝜏 )−1 + 1) ∗

𝜏𝑙,𝑡
0  

𝜏𝑙,𝑡

= (
𝑃𝑙,𝑡
𝐷𝑅−𝜏

𝑃𝑙,𝑡
)

(𝐸𝑙,𝑡,𝑡
𝜏 )−1

− 1

+ (𝐸𝑙,𝑡,𝑡
𝜏 )−1. (

𝑃𝑙,𝑡
𝐷𝑅−𝜏

𝑃𝑙,𝑡
)

(𝐸𝑙,𝑡,𝑡
𝜏 )−1

 

⟹ 
𝜏𝑙,𝑡

𝜏𝑙,𝑡
0 = (

𝑃𝑙,𝑡
𝐷𝑅−𝜏

𝑃𝑙,𝑡
)

(𝐸𝑙,𝑡,𝑡
𝜏 )−1

−
1

1 + (𝐸𝑙,𝑡,𝑡
𝜏 )−1

 

(65) 

 

Therefore, the amount of l group demand at time t is 

obtained from the following equation: 

 

𝑃𝑙,𝑡
𝐷𝑅−𝜏 = 𝑃𝑙,𝑡 . (

𝜏𝑙,𝑡
0  

𝜏𝑙,𝑡
+

1

1 + (𝐸𝑙,𝑡,𝑡
𝜏 )−1

)𝐸𝑙,𝑡,𝑡
𝜏

 (66) 

 

In the same way, the cross-elasticity of price (𝐸𝑙,𝑡,𝑣
𝜏 ) 

means the sensitivity of demand l to price variations in 

the t-th period relative to price variations in the v-th 

period in the following mathematical language: 

 

𝐸𝑙,𝑡,𝑣
𝜏 =

𝜏𝑙,𝑡
0

𝑃𝑙,𝑡
0  .
𝜕𝑃𝑙,𝑡
𝜕𝜏𝑙,𝑣

 (67) 

 

𝜏𝑙,𝑡 is the price of electricity for load l in the period 

v, 𝜏𝑙,𝑡
0  is the initial price of electricity for the load l in the 

period v. Based on the quadratic-order DR model and 

according to (67), the responsive loads that must be 

transferred from other periods to period t are modeled 

using the following equations: 

𝑃𝑙,𝑡
𝐷𝑅−𝜏 = 𝑃𝑙,𝑡 . exp [∑𝐸𝑙,𝑡,𝑣

𝜏 . ln(
𝜏𝑙,𝑣

𝜏𝑙,𝑣
0

𝑁𝑇

𝑣=1
𝑣≠𝑡

+
1

1 + (𝐸𝑙,𝑡,𝑣
𝜏 )−1

)] 

(68) 

𝑃𝑙,𝑡
𝐷𝑅−𝜏 = 𝑃𝑙,𝑡  .∏(

𝜏𝑙,𝑣

𝜏𝑙,𝑣
0 +

1

1 + (𝐸𝑙,𝑡,𝑣
𝜏 )−1

)𝐸𝑙,𝑡,𝑣
𝜏

𝑁𝑇

𝑣=1
𝑣≠𝑡

 (69) 

 

Therefore, the total demand of customers after 

participating in the price-sensitive DR program 

according to (66) and (69) is as follows: 

 

𝑃𝑙,𝑡
𝐷𝑅−𝜏 = 𝑃𝑙,𝑡  .∏(

𝜏𝑙,𝑣

𝜏𝑙,𝑣
0 +

1

1 + (𝐸𝑙,𝑡,𝑣
𝜏 )−1

)

𝐸𝑙,𝑡,𝑣
𝜏𝑁𝑇

𝑣=1

  

⇒ 𝑃𝑙,𝑡
𝐷𝑅−𝜏

= 𝑃𝑙,𝑡 .∏exp [𝑙𝑛 (
𝜏𝑙,𝑣

𝜏𝑙,𝑣
0

𝑁𝑇

𝑣=1

+
1

1 + (𝐸𝑙,𝑡,𝑣
𝜏 )−1

)

𝐸𝑙,𝑡,𝑣
𝜏

]                                   

⇒ 𝑃𝑙,𝑡
𝐷𝑅−𝜏 = 𝑃𝑙,𝑡 . exp∑𝐸𝑙,𝑡,𝑣

𝜏

𝑁𝑇

𝑣=1

. ln (
𝜏𝑙,𝑣

𝜏𝑙,𝑣
0

+
1

1 + (𝐸𝑙,𝑡,𝑣
𝜏 )−1

) 

(70) 

 

Finally, according to Equation (70), the price-

sensitive load response model is as follows: 

 

𝑃𝑙,𝑡
𝐷𝑅−𝜏 = 𝑃𝑙,𝑡 . exp∑𝐸𝑙,𝑡,𝑣

𝜏  .

𝑁𝑇

𝑣=1

 ln (
𝜏𝑙,𝑣

𝜏𝑙,𝑣
0

+
1

1 + (𝐸𝑙,𝑡,𝑣
𝜏 )−1

) 

(71) 

 

Similar to the process for the relationship (71), The 

demand response model sensitive to frequency 

variations (𝑃𝑙,𝑡
𝐷𝑅−𝑓

) and the demand response sensitive to 

voltage variations (𝑃𝑙,𝑡
𝐷𝑅−𝑉) are also obtained according 

to relations (72) and (73), respectively: 

𝑃𝑙,𝑡
𝐷𝑅−𝑓

= (𝑃𝑙,𝑡 − 𝑃𝑙,𝑡
𝐷𝑅−𝜏). exp∑𝐸𝑙,𝑡,𝑣

𝑓
 .

𝑁𝑇

𝑣=1

 ln (
𝑓𝑣
𝑓𝑣
0

+
1

1 + (𝐸𝑙,𝑡,𝑣
𝑓
)
−1) 

(72) 
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𝑃𝑙,𝑡
𝐷𝑅−𝑉

= (𝑃𝑙,𝑡 − 𝑃𝑙,𝑡
𝐷𝑅−𝜏

− 𝑃𝑙,𝑡
𝐷𝑅−𝑓

). exp∑𝐸𝑙,𝑡,𝑣
𝑓
 .

𝑁𝑇

𝑣=1

 ln (
𝑉𝑙,𝑣

𝑉𝑙,𝑣
0

+
1

1 + (𝐸𝑙,𝑡,𝑣
𝑣 )

−1) 

(73) 

 

In the above relations, 𝐸𝑙,𝑡,𝑣
𝜏  is the sensitivity of 

demand l to voltage variations in t-th of the time period 

relative to variations in voltage in v-th of the time period 

and 𝐸𝑙,𝑡,𝑣
𝑓

is the sensitivity of demand l to variations the 

frequency in t-th of the time period relative to the 

frequency variations in v-th of the time period. 𝑉𝑙,𝑣  is the 

voltage of the node where the responsive load is located 

at v in v-th of the time period and 𝑓𝑣 is the micro-grid 

frequency at the v-th of the time period. It should be 

noted that the price-sensitive demand response program 

is initially implemented. If there is more load capacity to 

participate in the demand response program, then the 

frequency- sensitive response program and finally the 

voltage-sensitive response program are implemented. 

By placing the relations (71), (72), and (73) in (58), the 

complete load response model is obtained as follows: 

 

𝑃𝑙,𝑡 = (1 − 𝛾𝑙)𝑃𝑙,𝑡
+ 𝛾𝑙 . [(𝑃𝑙,𝑡

𝐷𝑅−𝜏. 𝑑1)

+ (𝑃𝑙,𝑡
𝐷𝑅−𝑓

. 𝑑2) + (𝑃𝑙,𝑡
𝐷𝑅−𝑉 . 𝑑3)] 

(74) 

 

𝛾𝑙 is the potential for implementing the DR program 

in load l. 𝑑1, 𝑑2 and 𝑑3 are binary variables. If 𝑑1, 𝑑2 

and 𝑑3 are equal to 1, then the load is sensitive to price, 

frequency, and voltage respectively. 

 

2.4.7. Load restrictions 

Constraints (75) and (76) express the limitation of 

increasing and decreasing reserves on the demand side. 

Note that increasing or decreasing the reserve of the 

demand side means an increase or decrease in the level 

of customer's consumption. 

 

0 ≤ 𝑟𝑙,𝑡,𝑠
𝑈 ≤ 𝑅𝑙,𝑡,𝑠

𝑈  (75) 

0 ≤ 𝑟𝑙,𝑡,𝑠
𝐷 ≤ 𝑅𝑙,𝑡,𝑠

𝐷  (76) 

𝑅𝑙,𝑡,𝑠
𝑈 and 𝑅𝑙,𝑡,𝑠

𝐷  are the amount of scheduled reserve 

and 𝑟𝑙,𝑡,𝑠
𝑈 and 𝑟𝑙,𝑡,𝑠

𝐷  are the amount of Increasing and 

decreasing operational reserve for the l-th load at time t 

and scenario s. Theses constraints for both active and 

reactive loads are as follows: 

 

𝑃𝑙,𝑡
𝑚𝑖𝑛 ≤ 𝑃𝑙,𝑡 ≤ 𝑃𝑙,𝑡

𝑚𝑎𝑥  (77) 

0 ≤ 𝑅𝑙,𝑡
𝑈 ≤ 𝑃𝑙,𝑡 − 𝑃𝑙,𝑡

𝑚𝑖𝑛  (78) 

0 ≤ 𝑅𝑙,𝑡
𝐷 ≤ 𝑃𝑙,𝑡

𝑚𝑎𝑥 − 𝑃𝑙,𝑡 (79) 

 

𝑅𝑙,𝑡
𝑈  and 𝑅𝑙,𝑡

𝐷  are the amount of incremental and 

decremental scheduled reserve for l group load at time t. 

(80) shows the relationship between the amount of 

scheduled load of customers and the considered reserved 

load (due to an increase or decrease of load) for each 

scenario. 

 

𝑃𝑙,𝑡 = 𝑃𝑙,𝑡,𝑠 − 𝑟𝑙,𝑡,𝑠
𝑈 + 𝑟𝑙,𝑡,𝑠

𝐷  (80) 

 

𝑟𝑙,𝑡,𝑠
𝐷  and 𝑟𝑙,𝑡,𝑠 

𝑈 are the amount of time that is scheduled 

in time t and scenario s according to the DR program as 

a decrease or increase reservation. 

 

2.4.8. Restriction of emergency shutdown 

The following relationships describe the limitation of 

active and reactive emergency loads. 

 

0 ≤ 𝑃𝑙,𝑡,𝑠
𝑠ℎ𝑒𝑑 ≤ 𝑃𝑙,𝑡 (81) 

𝑄𝑙,𝑡,𝑠
𝑠ℎ𝑒𝑑 = tan 𝜃 . 𝑃𝑙,𝑡,𝑠

𝑠ℎ𝑒𝑑  (82) 

 

𝑃𝑙,𝑡,𝑠
𝑠ℎ𝑒𝑑  Indicates the amount of active power outage (kW) 

in the non-flexible (non-elasticity) loads in the l group 

of the load times at time t and scenario s. 

 

2.4.9. Piecewise Linear AC Power Flow 

In the previous section, AC power flow constraints 

are nonlinear and must be linearized to fit the linear 

programming model. The following equations provide a 

linear approximation of the AC power flow in which 

voltage and reactive power are modeled. 

 

𝑃𝑛,𝑚,𝑡,𝑠 = 𝐺𝑛,𝑚. [𝑉𝑛,𝑡,𝑠 − 𝑉𝑚,𝑡,𝑠 − 𝜔𝑛,𝑚,𝑡,𝑠 + 1] −

𝑚(𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠)                                                      (83) 

𝑄𝑛,𝑚,𝑡,𝑠 = −𝐵𝑛,𝑚. [𝑉𝑛.𝑡.𝑠 − 𝑉𝑚.𝑡.𝑠 + 𝜔𝑛,𝑚.𝑡.𝑠 + 1] −

𝐺𝑛,𝑚. (𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠)                                     (84) 

 

Over a typical range of voltage angle i.e., |𝛿𝑛,𝑡,𝑠 −

𝛿𝑚,𝑡,𝑠| ≤ 10°, 𝜔𝑛,𝑚.𝑡.𝑠 represents the piecewise linear 

approximation of cos(𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠) [22]. 

𝜔𝑛,𝑚.𝑡.𝑠 = 𝑑𝑛,𝑚,𝑡,𝑠. (𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠) + 𝑒𝑛,𝑚.𝑡.𝑠      (85) 

In the above relation, 𝑑𝑛,𝑚.𝑡.𝑠 and 𝑒𝑛,𝑚.𝑡.𝑠  are selected 

so that 𝜔𝑛,𝑚.𝑡.𝑠 and cos (𝛿𝑛,𝑡,𝑠 − 𝛿𝑚,𝑡,𝑠) intersect at the 

breakpoint. The approximation errors associated with 

this model can be found in [23]. 

 

3.  SIMULATION AND NUMERICAL RESULTS 
The micro-grid structure of the test is shown in Fig 

1. The network is a low voltage network that consists of 
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several radial branches and is operated in island mode. 

On the production side, the micro-grid has five 

controllable distributed units, including two micro-

turbines, two fuel cells and a gas generator, and three 

renewable units, including two solar panels and a wind 

turbine. 

 The information about the production units is given 

in Table 2. The recommended optimization time horizon 

is 24 hours. In order to model the uncertainties in the 

proposed model, based on the corresponding probability 

density functions, 2000 initial scenarios have been 

generated for the output power of wind and solar units 

and the participation rate of responsive loads. 

 

 

Table 2 Technical information of distributed generations [1]. 

𝑚𝑝 Emission 

(
𝑘𝑔

𝑘𝑊ℎ
⁄ ) 

𝜏𝑅−𝑁𝑆 

(cent) 
𝜏𝑅−𝐷 
(cent) 

𝜏𝑅−𝑈 
(cent) 

𝑃𝑚𝑎𝑥 

(kW) 
𝑃𝑚𝑖𝑛 
(kW) 

SDC 
(cent) 

SUC 

(cent) 
B 

(cent/kWh) 
A 

(cent/kWh) 

Title 

0.01 0.92 1.9 1.9 1.9 170 40 8 11.2 8.32 315.2 DG1 

0.52 0.61 2.3 2.3 2.3 160 30 7 8.5 5.52 195.1 DG2 

0.27 0.31 1.7 1.7 1.7 140 25 10 17.5 15.52 362.2 DG3 

0.27 0.31 1.7 1.7 1.7 140 25 10 17.5 15.52 362.2 DG4 

0.52 0.61 2.3 2.3 2.3 160 30 7 8.5 5.52 195.1 DG5 

 

 

 
Fig. 1. Single line diagram of the studied micro-grid. 

 

In the next step, by implementing the scenario 

reduction algorithm, the scenarios are reduced to 30 

scenarios. Reduced scenarios are used to Mixed-Integer 

Linear Programming (MILP) to achieve maximum 

operating profit by ensuring voltage and frequency 

security. The optimization problem designed by the 

CPLEX algorithm has been solved in GAMS software. 

The predicted hourly output power for wind and solar 

units is also shown for various scenarios in Fig 2 and Fig 

3. The power factor of the solar unit is assumed to be 1 

and the power factor of the wind unit is 0.95. 

  
Fig. 2. Prediction power of wind unit in different 

scenarios. 

  

 
Fig. 3. Prediction power of each solar unit in different 

scenarios. 
 

According to Fig 1, the micro-grid consists of 10 

balanced three phases loads. The complete model of 

responsive load management (all three types of 

responsive loads sensitive to voltage, frequency, and 

price) has been applied in this network. The power factor 

of loads is assumed to be 0.95 lag. The loads are equally 

distributed between phases. The cost of up and down 

reserves on the load side is assumed to be 2.3 cents / kW 

and 1.9 cents / kW, respectively. The cost of producing 
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wind turbines and solar panels is 12.2 cents / kWh and 

62.1 cents / kWh, respectively. The value of lost load 

(VOLL) is also assumed to be 1000 cents / kWh. The 

curve of total hourly variations in the total load of the 

micro-grid and the electricity tariff is shown in Fig 4 and 

Fig 5.  

According to Fig 4, in this study, the load is divided 

into three periods: 1: 00-5: 00, low load period, 11:00-

15:00 and 19: 00-22: 00, full load period, and 6: 00-10: 

00 and 16: 00-18: 00 and 23: 00-00: 00 are considered 

the intermediate period. The rated voltage and frequency 

of the studied micro-grid are assumed to be 380V and 

50HZ, respectively. The allowable deviation of bus 

voltage and micro-grid frequency is ± 10% and ± 1%, 

respectively. 

 
Fig. 4. Curve variations of the total load of the micro-

grid in 24 hours of programming and different 

scenarios. 

 

 
Fig. 5. Electricity tariff variation curve in 24 hours of 

programming. 

 

The optimization results, including the expected 

MGO profit, the cost of paying customers, the cost of 

producing distributed generation units, the emission of 

greenhouse gases, and the cost of EENS for various 

tests, are shown in Table 3. This table shows the 

economic, environmental, and reliability results of the 

proposed model. According to the results of this table in 

the first test, despite the high payment of customers, the 

amount of operating profit is also at its lowest value. In 

other words, in this test, MGO has to use expensive units 

to supply the load, especially during peak-load hours. 

 In the second test, with the participation of 

responsive loads and reduction of the network peak, the 

amount of customer's payments for the consumed load 

has decreased. In this test, the total customers earned 

2728.3 cents from participating in DR programs. 

Therefore, the net payment of customers has been 

reduced to 119872.05 cents. In other words, the net 

payment of customers has decreased by 9.25% 

compared to the first test. Despite MGO's declining 

revenue from customers and pay for loads participation 

in the DR program, the operator's expected profit has 

reached 40,521.4 cents.  It has raised to 52.22% 

compared with the first test. In addition to the economic 

debate, the value of lost load has significantly decreased 

and the reliability of the power supply has also 

increased. Greenhouse gas emissions have also been 

reduced by more than 340 kg/Day. 

 

 
(a) 

 

 
(b) 

 
 (C) 

Fig. 6. Load curve variations in different tests: a) 

Average load curve variations with DR participation. b) 

Average load curve variations with DR and V2G 

participation. c) Average load curve variations in three 

tests. 

 

 But in the third test, with the simultaneous 

participation of responsive loads and electrical feed, the 

peak load value decreased significantly, resulting in a 

reduction in customer's payments for electricity to 

118,120.1 cents. With the participation of responsive 
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loads and V2G capability of electric vehicles, the 

customers have earned a total of 2006.8 and 5100 cents. 

Therefore, the net payment of customers has been 

reduced to 111013.3 cents. 

 In other words, the net payment of customers has 

decreased by 17.9% compared to the first test. Despite 

MGO's declining revenue from customers and the high 

cost of participating in DR and V2G electric vehicles, 

the operator's expected profit has reached 50,712.1 

cents, up 90.5% from the first test, almost doubling. In 

addition to the economic issue, the amount of load lost 

has been greatly reduced to almost zero, and the 

reliability of the power supply has been greatly 

increased. Greenhouse gas emissions have also been 

reduced by more than 1,380 kg/Day. 

 

Table 3. Numerical results of various tests. 

Third 

test 
Second 

test 
First test Title 

118120.1 122523 130872.05 Payment of 

customers for 

electricity 

consumption 

(𝑐𝑒𝑛𝑡 𝐷𝑎𝑦⁄ ) 

2006.8 2728.3 0 The income of 

customers to 

participate in 

the DR 

program 

(𝑐𝑒𝑛𝑡 𝐷𝑎𝑦⁄ ) 

5100 0 0 The income of 

subscribers for 

V2G  vehicle 

participation 

(𝑐𝑒𝑛𝑡 𝐷𝑎𝑦⁄ ) 

60220 77252 88524 The production 

cost of units 

(𝑐𝑒𝑛𝑡 𝐷𝑎𝑦⁄ ) 

81.20 2021.3 15728.2 Cost of lost 

load ( 
𝑐𝑒𝑛𝑡

𝐷𝑎𝑦⁄ )  

5200.2 6242.3 6528.3 Greenhouse 

gas emissions 

(
𝑘𝑔

𝐷𝑎𝑦⁄ ) 

111013.3 119794.7 130872.05 Net customers 

Payment 

(𝑐𝑒𝑛𝑡 𝐷𝑎𝑦⁄ ) 

50712.1 40521.4 26619.85 MGO’s 

expected profit 

(𝑐𝑒𝑛𝑡 𝐷𝑎𝑦⁄ ) 

As can be seen from the results of this table, with the 

participation of customers in demand response and EVs 

charge and discharge control, on the one hand, 

customers pay and on the other hand, MGO's profit has 

increased. This increase is because of the decrease in 

load during heavy load hours due to participation in 

demand response programs and optimal charge and 

discharge of EVs and as a result of not using expensive 

units. In the following, the superiority of the proposed 

model in terms of security and technology is shown. 

Changes in network frequency at different times and 

scenarios and for three tests are shown in Fig 7. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7. Micro-grid frequency variations in different 

scenarios a) test 1 b) test 2 c) test 3. 

 

As shown in Fig 7, in the first test, the frequency 

variations are very large and close to the allowable range 

(49.5-50.5). Even in some of the specific scenarios 

mentioned below, the system frequency is out of range. 

Using the DR tool, the frequency variations have been 

reduced and it is in the range of 50.2 to 49.8. However, 

variations in the micro-grid frequency are still high from 

low load to peak load hours. In the third test, using the 
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same DR and V2G strategies, the system frequency is 

very close to the nominal value and is limited to the 

range of 49.95 to 50.1. The highest frequency drop 

(worst case scenario) occurred in Scenario 10. In this 

scenario, the level of demand and the amount of RESs 

produced have the highest and lowest values, 

respectively. 

 On the other hand, the highest jump for the system 

frequency occurred in Scenario 25. In this scenario, the 

demand is the lowest and the production of RESs is the 

highest. According to these figures, with the 

participation of final consumers and electric vehicles in 

the micro-grid operation management program, the 

system frequency has fewer variations.  

 The average values of frequency variations in the 

tests and at different hours are shown in Fig 8. 

According to this figure, without DR and V2G 

management, the system frequency is allowed on the eve 

of leaving the range and the stability margin is very 

limited. 

 With the participation of final consumers and 

electric vehicles during the low load period, despite the 

increase in load due to peak hours and EVs charging, the 

average frequency has approached the nominal value. In 

the third test, with the charge management of electric 

vehicles along with the responsive loads in the micro-

grid utilization management program, the system 

frequency is very close to the nominal value and its 

fluctuations are greatly reduced at all hours. 

 

 
Fig. 8. Variations in the average amount of micro-grid 

frequency at different hours. 

 

As can be seen from these results, according to the 

frequency security target in the proposed model, the 

micro-grid frequency value for all scenarios is set within 

the allowable range of the nominal frequency. This 

important goal has been achieved by managing 

distributed production, DR resources, EVs charge, and 

discharge control, and by reconciling economic and 

technical goals. 

 To observe the significant effect of the proposed 

strategy, the rate of micro-grid frequency mutation 

relative to the nominal value is stated in Table 4 and the 

statistical analysis of frequency variations is provided in 

Table 5. It should be noted that the allowable deviation 

of the micro-grid frequency is ±1%, i.e., ±0.5 HZ. 

Table 4. Maximum up and down frequencies in 

different tests. 

Frequency 

variations 

(HZ) 

(From low 

to full load 

hours) 

Maximum 

down 

frequency 

(Hz) (full 

load hours) 

Maximum 

up 

frequency 

(Hz) 

 (Low load 

hours) 

Title 

0.83 49.62 50.45 First 

test 

0.42 49.81 50.23 Second 

test 

0.1 49.96 50.06 Third 

test 

 

Table 5. Standard deviation and variance of frequency 

in different tests. 

Total 

frequency 

error 

deviations 

at different 

hours(Hz) 

Frequency 

variance 
Frequency 

standard 

deviation(Hz) 

Title 

5.7267 0.0787 0.2806 First 

test 
2.91 0.0202 0.142 Second 

test 
0.7551 0.0013 0.035 Third 

test 
 

 Scenarios 25 and 10, in which the frequency 

deviations are the highest and lowest values (worst case 

scenario), are considered as candidates. The results of 

the frequency deviation for these two scenarios are given 

in Table 6 to Table 9. The frequency variations of the 

system for two candidate scenarios and 24 hours of 

programming are shown in Fig 9 and Fig 10. 

 

 
Fig. 9. System frequency variations for scenario 10. 
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Table 6. Maximum up and down frequency in different 

tests for Scenario 10. 

Frequency 

variations 

(HZ) 

(From low 

to full load 

hours) 

Maximum 

down 

frequency 

(Hz) (full 

load hours) 

Maximum 

up 

frequency 

(Hz) 

 (Low load 

hours) 

Title 

0.932 49.4579 50.3898 First 

test 

0.4108 49.7891 50.199 Second 

test 

0.115 49.88 49.995 Third 

test 

 

Table 7. Standard deviation and variance of frequency 

in various tests for Scenario 10. 

Total 

frequency 

error 

deviations 

at different 

hours(Hz) 

Frequency 

variance 
Frequency 

standard 

deviation(Hz) 

Title 

6.7617 0.0867 0.2944 First 

test 
3.2076 0.0207 0.1438 Second 

test 
1.06 0.0016 0.0398 Third 

test 
 

 
Fig. 10. System frequency variations for Scenario 25. 

 

Table 8. Maximum up and down frequency in different 

tests for Scenario 25. 

Frequency 

variations 

(HZ) 

(From low 

to full load 

hours) 

Maximum 

down 

frequency 

(Hz) (full 

load hours) 

Maximum 

up 

frequency 

(Hz) 

 (Low load 

hours) 

Title 

0.9151 49.698 50.614 First 

test 

0.4351 49.831 50.266 Second 

test 

0.1453 49.962 50.106 Third 

test 

Table 9. Standard deviation and variance of frequency 

in various tests for Scenario 25. 

Total 

frequency 

error 

deviations 

at different 

hours(Hz) 

Frequency 

variance 
Frequency 

standard 

deviation(Hz) 

Title 

5.8798 0.0811 0.2848 First 

test 
2.8281 0.0209 0.1446 Second 

test 
0.8487 0.0016 0.0402 Third 

test 
 

According to these figures and tables, in these two 

special scenarios, the frequency remains in the allowable 

range for the second and third frequency tests. In other 

words, in the worst-case scenario, the proposed strategy 

has been able to maintain frequency security. With 

simultaneous and correct DR management and charging 

and discharging of electric vehicles, the frequency 

adjustment is much more accurate. This difference is 

quite evident in the results of the second and third tests. 

The frequency in the first test is out of range. With the 

proposed strategy in the third test for responsive loads 

and electric vehicles, the load is transferred from peak 

hours to non-peak hours, especially low load hours and 

in addition to a significant reduction in the cost of 

operating and producing environmental pollutants, the 

rate of frequency variations has also been greatly 

reduced and very close to the nominal value. These 

results show the very acceptable safety and stability 

margins of the system frequency, which is quite clear 

from the results of the tables. 

In addition to being used in normal situations, in a 

critical situation, the proposed method can ensure the 

security of voltage and frequency by compromising 

economic and security goals. In other words, the 

proposed method at the time of the disturbance also 

provides voltage and frequency security. This 

disturbance can be a sudden exit of one of the units or a 

sudden change in the production or consumption 

capacity of the micro-grid. To evaluate the proposed 

method in critical conditions, according to the N-1 

criterion, the DG1 production unit is taken out of the 

circuit and the frequency response of the system in these 

conditions is examined for different tests. The results of 

the frequency response for both scenarios 10 and 25 are 

shown in Fig 11 and Fig 12. 
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Fig. 11. System frequency variations for scenario 10 in 

critical situations. 

 

Table 10. Maximum up and down frequency in 

different tests for Scenario 10 in critical situations. 

Frequency 

variations 

(HZ) 

(From low 

to full load 

hours) 

Maximum 

down 

frequency 

(Hz) (full 

load hours) 

Maximum 

up 

frequency 

(Hz) 

 (Low load 

hours) 

Title 

0.81 49.3 50.11 First 

test 

0.44 49.55 49.99 Second 

test 

0.14 49.8 49.94 Third 

test 

 

Table 11. Standard deviation and variance of frequency 

in various tests for Scenario 10 in critical situations. 

Total 

frequency 

error 

deviations 

at different 

hours(Hz) 

Frequency 

variance 
Frequency 

standard 

deviation(Hz) 

Title 

9.01 0.077 0.2775 First 

test 

6.27 0.0224 0.1497 Second 

test 

2.33 0.0015 0.0383 Third 

test 

 

 
Fig. 12. System frequency variations for Scenario 25 in 

critical situations. 

 

Table 12. Maximum up and down frequency in 

different tests for Scenario 25 in critical situations. 

Frequency 

variations 

(HZ) 

(From low 

to full load 

hours) 

Maximum 

down 

frequency 

(Hz) (full 

load hours) 

Maximum 

up 

frequency 

(Hz) 

 (Low load 

hours) 

Title 

0.96 49.44 50.4 First 

test 

0.47 49.69 50.16 Second 

test 

0.13 49.88 50.01 Third 

test 

 

Table 13 Standard deviation and variance of frequency 

in various tests for Scenario 25 in critical situations. 

Total 

frequency 

error 

deviations 

at different 

hours(Hz) 

Frequency 

variance 
Frequency 

standard 

deviation(Hz) 

title 

5.8798 0.0836 0.2892 First 

test 

2.8281 0.0208 0.1443 Second 

test 

0.8487 0.0011 0.0336 Third 

test 

 

 Since scenarios 10 and 25 are the worst possible 

scenario in the normal condition, with the occurrence 

disturbance, the possibility of micro-grid instability is 

very likely, especially in scenario 10. According to the 

above results, with the outage of DG1 and the decrease 

in micro-grid production capacity, the frequency 

response of the system, especially in scenario 10, which 

has the highest peak load and the lowest amount of 

renewable resources production, has become very 

critical so that, in full load period, the system frequency 

is out of the allowable range and the frequency security 

is disrupted. Since in tests 2 and 3, the system frequency 

security was in good condition and the micro-grid 

stability margin was high, with the outage of the DG1, 

the frequency is still within the allowable range. 

According to the results, especially in the third test with 

V2G and G2V management, along with DR 

management, the margin of safety and stability of the 

system frequency is still in the desired value. 

 The level of reactive power in the buses determines 

the amount of voltage. In buses with DG, If the reactive 

power injection rate decreases, the voltage magnitude 

will also be reduced. In load buses, If the amount of 

demand changes, the amount of reactive power will 

change, and the voltage at that bus will change. 
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However, it should be noted that the reactive power 

injected or absorbed by a production unit or a 

consumption load can also affect the voltage of adjacent 

buses. The proposed strategy is designed in such a way 

that in addition to frequency security, it also ensures 

network voltage security. In other words, by 

compromising between different goals, the reactive 

power of distributed generations is adjusted so that the 

bus voltage has the lowest drop. Similar to frequency 

security, the operator is also able to improve bus voltage 

by using two tools for managing responsive loads and 

managing to charge and discharging electric vehicles. 

 Fig 13 shows the load distribution at different buses. 

At a time of day when the load is at its peak, the voltage 

of the buses has the highest drop. For this reason, the 

peak hour, which is 21 o'clock according to Fig 6, has 

been selected as the sample hour to check the bus 

voltage. 

 

 
Fig. 13. Percentage distribution of total micro-grid load 

per hour at different buses. 

 

As explained earlier, in Scenario 10, the amount of 

renewable resource production is the lowest and the load 

is the highest possible. Fig 14 shows the voltage 

variations of the micro-grid buses in Scenario 10 and at 

9 pm, the network peak hour. In this case, the micro-grid 

has the highest voltage drop. 

 

 
Fig. 14. Variations in the voltage of the micro-grid 

buses in scenario 10 and at 21:00 (normal conditions). 

 

 As shown in Fig 14, without managing responsive 

loads and electric vehicles in the first test, the bus 

voltage drop is high. This voltage drop is especially high 

at the end buses of branches and buses that do not have 

scattered products so that in 3 buses of the network, the 

voltage exceeds the allowable value. It should be noted 

that the allowable amount of voltage drop in the micro-

grid is ±10% and the base voltage value of 380V is 

considered. Therefore, the allowable value of the voltage 

drop is ± 0.1pu. 

Applying responsive loads leads to improving the 

grid voltage and the voltage of all buses are within the 

allowable range. In the third test, with the charge 

management of electric vehicles, in addition to reducing 

the charge in peak hours, a large part of the load is also 

provided by V2G electric vehicles. Therefore, as it is 

known, with the simultaneous management of 

responsive loads and charging and discharging of 

electric vehicles, the amount of voltage drop has been 

greatly reduced and the voltage stability margin has been 

greatly increased. 

 Similar to the previous section, in critical situations, 

and the occurrence of disturbances, the voltage status of 

micro-grid buses has been investigated. As the DG1 

outage, the voltage drop of bus 1 increases. As the 

voltage drop of bus 1 increases, the other connected 

buses also increase their voltage drop. The voltage 

results of the buses in critical conditions and the outage 

of the DG1 unit for scenario 10 and at 21:00 are shown 

in Fig 15. According to this figure, in the first test, the 

micro-grid voltage is unstable and in many cases, the 

value of the voltage range exceeds the allowable value. 

Therefore, without the proposed strategy, the 

continuation of the micro-grid will be disrupted. By 

applying responsive loads in the second test, the voltage 

drop is reduced but the voltage safety margin is still low. 

In the third test, with the simultaneous use and 

management of responsive loads and V2G mode of 

electric vehicles, in addition to reducing the voltage 

drop, the voltage safety is also maintained to the desired 

level. Fig 14 and Fig 15 illustrate the optimal 

performance of the proposed strategy in maintaining 

network voltage safety under normal and critical 

conditions. 

 

 
Fig. 15. Variations in the voltage of the micro-grid 

buses in scenario 10 and at 21:00 (critical conditions). 
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4.  CONCLUSION 

4.1.  Summery 

This paper addresses the issue of optimizing multi-

objective economic and security goals for micro-grids 

based on distributed generations, along with charge and 

discharge management of electric vehicles and 

responsive loads. To smooth the daily load curve, the 

shift of energy consumption from peak hours to other 

hours has been used with responsive load management 

tools and the strategy of controlling the charge and 

discharge of electric vehicles. With the simultaneous 

participation of responsive loads and electric vehicles, 

the load curve is modified and leveled. With the 

simultaneous participation of responsible loads and 

electric vehicles, the load curve is modified and flatted. 

Net customer payments decreased by 17.9%. Despite 

MGO's declining revenue from customers and paying 

for the participation of loads in the DR program and 

electric vehicles in the V2G program, the expected profit 

of the operator has increased by 90.5% and has almost 

doubled. In addition to the economic debate, the value 

of lost load has been greatly reduced to almost zero, and 

the reliability of the power supply has been greatly 

increased. Greenhouse gas emissions have also been 

reduced by more than 1,380 kg/Day. According to the 

results of voltage and frequency security, both were 

analyzed in the worst-case scenario for both normal and 

critical states. The proposed strategy has well-

maintained voltage and frequency security and 

maintained a stable margin in the desired value. In 

summary, this paper introduces a management strategy 

for managing the penetration of electric vehicles along 

with responsive loads. The strategy pursued several 

goals, including reducing energy and load costs, 

reducing the cost of charging EVs, and improving 

network parameters and security, such as voltage and 

frequency. Based on the results, the proposed approach 

has been able to turn the challenge of electric vehicle 

penetration into an opportunity to improve network 

parameters and even reduce energy costs. By managing 

the EVs charge at low load and intermediate load and 

using the remaining energy in the EVs battery during 

heavy hours, along with the demand management 

program, the cost of energy supply is greatly reduced 

and the load characteristic is flattened. On the other 

hand, the decrease in network peak and load distribution 

at different hours along with the management of 

responsive loads, has improved voltage and frequency 

security, especially in the end buses of each branch. The 

results confirm the effectiveness of the proposed 

approach. 

 

4.2.  Future work 

Some challenges and future research are discussed 

below. 

 Allocating of distributed generations 

and charging stations for electric 

vehicles in the network: The high 

penetration of electric vehicles and their 

performance, whether in the form of V2G 

or G2V, along with distributed generation, 

requires changes in the distribution 

network. The location of smart parking lots 

and charging stations and the installation of 

distributed generation with economic and 

stability goals, with the least change in the 

network, are the research topics of recent 

years. 

 

 New control strategies to improve micro-

grid stability: IIDGs usually have high 

response speeds and low inertia; therefore, 

the stability of these types of DGs is easily 

affected by disturbance. Introducing a new 

control strategy to increase micro-grid 

stability with proper charge and discharge 

management of electric vehicles is one of 

the research topics in the coming years. 

 

 Optimal micro-grid design methods: All 

topics covered during this study are 

categorized in the field of operation 

studies. In the field of planning, the 

research gap is quite felt. Micro-grid 

stability analysis can be used for optimal 

and reliable micro-grid design. For 

example, energy storage DGs are very 

effective in maintaining micro-grid 

stability, but the capacity of these resources 

is debatable. Location of DGs, location of 

smart parking lots, optimal capacity of 

micro-grid equipment, etc. is also among 

the topics in this area. 

 

 Optimal operation of energy hub with 

the management of economic and 

environmental loads: Gas carriers along 

with electricity carriers have developed a 

lot in recent years. Since most of the load 

consumption of micro-grids is thermal load 

and considering the development of CHP 

products, providing a probabilistic model 

for energy management in the short term to 

achieve the minimum operating cost in a 

micro-grid modeled as an energy hub along 

with environmental issues can be one of the 

objectives of the research in the future. Due 

to the random behavior of wind and solar 

energy, accurate prediction of the potential 

of distributed generation based on 

renewable energy is not possible and is 
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always associated with uncertainty errors 

in the planning of the next day. 

 

 High penetration of micro-grids and 

renewable resources in the power 

network structure: The increasing growth 

of renewable resources and consequently 

the high penetration of micro-grids in the 

power grid structure in the coming years 

are undeniable. The behavior of the power 

grid with the high penetration of micro-

grids could be one of the future researches. 

 
Practical evaluation of the results of this research is 

currently not possible in Iran. Since the electricity 

networks in the distribution and purchase of electricity 

are not private in the first place and secondly, the 

distribution networks are not smart and these two 

conditions must be met for the practical implementation 

of the project. 

 

ABBREVIATIONS 

MG   Micro-grid 

MGO  Micro-grid operator 

DR   Demand response 

DG   Distributed generation 

RES  Renewable energy source 

BEV  Battery electric vehicle 

WT   Wind turbine 

PV   Photo-voltaic (solar-power) 

PHEV  Plug-in hybrid electric vehicle 

SOC  State of charge 

G2V  Grid-to-vehicle 

V2G  Vehicle-to-grid 
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