
Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

25

Paper type: Research paper

DOI: https://doi.org/10.52547/mjee.15.3.25

How to cite this paper: A. R. Pirhoseinlo, N. Osati Eraghi and J. Akbari Torkestani, “Adaptive Workflow Scheduling

to Increase Fault Tolerance in Cloud Computing”, Majlesi Journal of Electrical Engineering, Vol. 15, No. 3, pp. 25-

33, 2021.

Adaptive Workflow Scheduling to Increase Fault Tolerance

in Cloud Computing

Abdolreza Pirhoseinlo1, Nafiseh Osati Eraghi2*, Javad Akbari Torkestani3

1- Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

Email: a.pirhoseinlo@gmail.com

2- Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

Email: n-osati@iau-arak.ac.ir (Corresponding author)

3- Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

Email: j-akbari@iau-arak.ac.ir

Received: September 2020 Revised: January 2021 Accepted: March 2021

ABSTRACT:

Cloud computing in the field of high-performance distributed computing has emerged as a new development in which

the demand for access to resources via the Internet is presented in distributed servers that dynamically scale are

acceptable. One of the important research issues that must be considered to achieve efficient performance is fault

tolerance. Fault tolerance is a way to find faults and failures in a system. Predicting and reducing errors play an important

role in increasing the performance and popularity of cloud computing. In this study, an adaptive workflow scheduling

approach is presented to increase fault tolerance in cloud computing. The present approach calculates the probability of

failure for each resource according to the execution time of tasks on the resources. In the present method, a deadline is

set for each of the tasks. If the task is not completed within the specified time, the probability of failure in the source

increases and subsequent tasks are not sent to the desired source. The simulation results of the proposed method show

that the proposed idea can work well on workflows and improve service quality factors.

KEYWORDS: Cloud Computing, Fault Tolerance, Scheduling.

1. INTRODUCTION

The advent of cloud computing is considered to be

the biggest change in information technology. This

change has attracted the attention of everyone, from

people in the community to large corporations. Today,

the popularity of cloud computing is so widely accepted

that organizations are moving their traditional

information processing systems to cloud services to

store large amounts of data [1], [2].

Cloud computing has emerged as a demand-based

computing services model for use by small-scale users

and large-scale scientific and commercial applications.

This model is defined as a model for accessing a network

with a shared set of configurable computing resources

(e.g., networks, servers, storage space, applications, and

services) that can be quickly and efficiently defined.

Minimize managerial effort or service provider

interaction, access to demand, resource independence,

fast flexibility and always availability are the basic

features of cloud computing [3], [4].

Due to the popularity of cloud computing among

users and service providers, this environment has been

very popular in the last decade. The presence of users

and service providers from different places and with

heterogeneous systems in this medium have caused

many challenges. In cloud computing, fault tolerance is

an important problem and resource failure time is one of

the metrics that affect performance, throughput,

response time and system and network performance [5].

 Load balance fault tolerance is one of the main

challenges in cloud computing that is required to

distribute network load evenly across all nodes. This

load is the amount of work that a computing system

does, which can be classified as network load, storage

capacity, memory capacity, and CPU load [6].

Error tolerance is a way to find faults and failures in

a system. If an error occurs or there is a hardware failure

or software defect, the system should also work

properly. Malfunctions must be controlled in a dynamic

way for reliable cloud computing. It will also provide

availability and reliability against hardware and software

failures of the system in the organization [7], [8].

Predicting and reducing errors has two types of

techniques: active and passive. Active fault tolerance

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

26

policy, avoiding fault recovery by anticipating and

actively replacing a suspicious component to detect it

before a fault occurs. Passive fault tolerance reduces the

impact of failures on executable programs when

effective failures occur [9].

Therefore, in this study, an adaptive workflow

scheduling approach is proposed to increase fault

tolerance in cloud computing. The present approach

calculates the probability of failure for each resource

according to the execution time of tasks on the resources.

In fact, in the present method, a time limit is set for each

of the tasks. If the task is not completed within the

specified time limit, the probability of failure in the

source increases and the next tasks are not sent to the

desired source.

In the proposed method, the input flow is timed

through a resource management unit. At this stage,

according to the characteristics of the resources, the

tasks are assigned to the nearest source in terms of

service quality factors to be executed. The scheduling

plan is then provided to a task management unit to set a

time limit for each task, as mentioned, according to the

number of instructions for each task, and to review the

time frame for performing previous tasks in the

resources. Slowly If a resource task is running for more

than the specified time, the probability of resource

failure increases.

 Thus, the task management unit calculates a failure

probability for each resource. Based on the probability

of failure, the tasks are then sent to the resources, which

are virtual machines, to complete the continuation of the

task execution process. The main innovation in the

present study is the addition of a task management unit

which, according to the number of instructions for each

task and the characteristics of the resources, assigns an

adaptive time limit to each task to be performed in each

resource. Then, according to the history of performing

tasks in the resources, the probability of failure for each

resource is calculated.

2. LITERATURE REVIEW

Fault tolerance provides complete and permanent

operation even when incomplete components are

present. It is the continuation of work satisfactorily in

the face of obstacles, art and science that creates the

computational system. The fault tolerance system does

not allow one or more types of errors to occur, including

momentary, definitive or permanent hardware or

software failures, design errors, operational errors, or

damage caused by the program itself or physical

damage. In a real-time cloud application, these

operations are performed remotely in the computational

node and the probability of error occurs [10]. These

events emphasize the need for fault tolerance technology

to achieve the reliability of real-time computing in the

cloud infrastructure.

Abu Hamama et al. have proposed a comprehensive

framework that incorporates a number of error tolerance

methods to improve the reliability of cloud

environments for hosting applications in real time, if

reliability is achieved and access conditions are

provided. Then the real-time fault tolerance scheduling

algorithm is proposed to minimize the number of

missing deadlines, and the amount of load imbalance

[11].

Yan et al. presented the uncertainty model by

estimating task execution time and a contrast-task

assignment mechanism that strategically uses two error-

tolerant task scheduling models, while considering

uncertainty. In addition, an overlap mechanism has been

used to improve the use of cloud resources. Based on

two mechanisms, a dynamic innovation-based

scheduling and scheduling algorithm based on Dynamic

Innovation (DEFT) is proposed for scheduling real-time

tasks in the cloud in which system performance

fluctuations must be considered. The purpose of DEFT

is to achieve both fault tolerance and resource utilization

[12].

Ding et al. presented a flexible common error

scheduling algorithm for cloud workflow (FTESW).

After analyzing the initial scheduling constraints,

backup in cloud systems due to interdependence

between tasks in the workflow is presented, a tensile

mechanism in the field of fault tolerance is designed to

dynamically adjust resources based on resource requests

by adopting resource migration technology, FTESW is

then proposed to achieve both fault tolerance and full

resource utilization for workflow in cloud systems. To

evaluate the effectiveness of the proposed FTESW, a

series of simulation experiments were performed on

both randomly generated workflows and real-world

workflows [13].

Talvani et al. have effectively evaluated and

processed barriers to gain robustness and reliability in

cloud computing. Various error detection methods and

architectural models have been proposed to increase

cloud fault tolerance. Given this fact, this article focuses

on solving the problem of error in cloud computing. This

research, in order to identify the work that has been done

in this field, shows the basic concept of fault tolerance

that has been done by different researchers and different

algorithms to solve the problem of fault tolerance in

cloud computing [14].

3. METHODOLOGY

As mentioned, in this study, in order to present the

error tolerance approach in cloud infrastructure, an

approach of workflow distribution and adaptive

scheduling based on task execution time in resources has

been used, which will be described in detail in the

following method.

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

27

3.1. Workflow

As cloud end users use host applications, the

workload includes tasks that dynamically go to the

central scheduler. Each task contains a set of tasks that

is a set of 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} with 𝑛 tasks. Each of the

tasks has a time limit or deadline to be performed, which

in case of exceeding this deadline, the performance of

the task and its related tasks will be adversely affected.

In this research, we use the non-distance directional

graph (DAG) to show the workflow provided by the

customer to cloud systems with 𝐷𝑒𝑎𝑑𝐿 software

deadline. A 𝐷𝐴𝐺 𝑉 = (𝑇, 𝐸) contains 𝑛 tasks that are

connected through control and data flow.

𝐸 = {(𝑡𝑖, 𝑡𝑗, 𝐷𝑎𝑡𝑎𝑖𝑗 , 𝐶𝑜𝑛𝑡𝑖𝑗)|(𝑡𝑖 , 𝑡𝑗) ∈ 𝑇 × 𝑇, 𝑖 ≠ 𝑗} (1)

Where, 𝐷𝑎𝑡𝑎𝑖𝑗 represents the amount of data to be

transferred from 𝑡𝑖 to 𝑡𝑗, and 𝐶𝑜𝑛𝑡𝑖𝑗 represents the

control relationship, such as the loop and the selected

structure, between 𝑡𝑖 and 𝑡𝑗. The size of each 𝑡𝑖 task is

measured by millions of 𝑀𝐼𝑖 instructions that affect its

execution time. We also use 𝑝𝑟𝑒𝑑(𝑡𝑖) and 𝑠𝑢𝑐𝑐(𝑡𝑖) to

indicate the previous and next set of tasks of task 𝑡𝑖,

which means that 𝑝𝑟𝑒𝑑(𝑡𝑖) must be completed before

starting 𝑡𝑖. An example of a workflow is shown in Fig.

1.

Fig. 1. Example of a non-rotating directional graph of a

workflow.

For each task 𝑡𝑖 sent in the workflow, two versions

are provided as 𝑡𝑖
𝑃 and 𝑡𝑖

𝐵 for the initial version and the

backup, respectively. They run on different hosts for

fault tolerance. 𝑣𝑚(𝑡𝑖
𝑃) and 𝑣𝑚(𝑡𝑖

𝐵) are used to

represent virtual machines containing 𝑡𝑖
𝑃 and 𝑡𝑖

𝐵, while

ℎ(𝑡𝑖
𝑃) and ℎ(𝑡𝑖

𝐵) are hosts, respectively. The task

execution time 𝑡𝑖 in the 𝑣𝑚𝑘𝑙 virtual machine is

calculated as 𝑒𝑡𝑘𝑙(𝑡𝑖) as the ratio of the task size to the

processing power of the virtual machine. For example,

𝑣𝑚(𝑡𝑖
𝑃) = 𝑣𝑚𝑘𝑙, 𝑒𝑡𝑘𝑙(𝑡𝑖

𝑃) =
𝑀𝐼𝑖

𝑣𝑝𝑘𝑙
 means that the initial

version of 𝑡𝑖 is scheduled in the 𝑣𝑚𝑘𝑙 , virtual machine

hosted on ℎ𝑘, and has an execution time of 𝑒𝑡𝑘𝑙(𝑡𝑖
𝑃) of

𝑀𝐼𝑖

𝑣𝑝𝑘𝑙
. In addition, the time used to transfer 𝐷𝑎𝑡𝑎𝑖𝑗 can be

stated as follows:

𝑇𝑇𝐷𝑗,𝑋
𝑖,𝑋 = {

0 𝑖𝑓 ℎ(𝑡𝑖
𝑋) = ℎ(𝑡𝑗

𝑋)
𝐷𝑎𝑡𝑎𝑖𝑗

𝐵𝑊
ℎ(𝑡𝑖

𝑋)ℎ(𝑡𝑗
𝑋)

 𝑖𝑓 ℎ(𝑡𝑖
𝑋) ≠ ℎ(𝑡𝑗

𝑋) (2)

3.2. Fault Model

Tasks will fail and stop running when an error occurs

in the processor unit in which they are located. In this

study, we focus on host failure. A host fails when all the

virtual machines in that host can no longer work and

cannot complete the copies of the tasks in the virtual

machines. Errors can be temporary or permanent, and it

is assumed that the error is in one independent host and

affects only one host. The maximum number of hosts

that are expected to fail at any given time is assumed to

be one. This means that if the original version of a task

fails, the backup can always be completed before

another host fails. For each task, backup is done after

scheduling the initial version. However, it is not

necessary to back up all tasks in a workflow after

scheduling initial versions of all tasks in the same

workflow. It is also assumed that the minimum value

required for the average error time (MTTF) is always

greater than or equal to the maximum execution time of

a virtual machine from the same host.

There is an error detection mechanism such as an

error signal and an acceptance test to detect errors. If an

error is detected in an initial version, the backup will be

executed and new tasks will not be sent to the host that

received the error. If the completion of the initial version

is successful, the resources will be restored by deleting

the backup. Restoring resources is essential so that

backup time can be allocated to new tasks.

3.3. Predict Fault

Predicting an error in a host can speed up the

completion of tasks and prevent new tasks from being

sent to hosts suspected of error. In this module, error

prediction is based on the average time of error, which

was introduced in the previous section. As mentioned,

the minimum value required for the average error time

is always greater than or equal to the maximum

execution time of a virtual machine from the same host.

Given that the virtual machines are heterogeneously

distributed in one host, it can be said that the minimum

value required for the average error time is always

greater than or equal to the maximum execution time in

the slowest virtual machine of the same host. By

assigning a task to a virtual machine from a host, the

average amount of error time is determined based on the

number of instructions in each task and the processing

power of the virtual machines in the host, based on

Equation 3 for each task.

𝑀𝑇𝑇𝐹𝑘𝑙 = min {
𝑣𝑝𝑘𝑙

𝑀𝐼𝑖
} (3)

Subject to

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

28

𝑣𝑝11 ≤ 𝑣𝑝12 ≤ 𝑣𝑝13, …

𝑀𝑇𝑇𝐹𝑘𝑙 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖

𝑀𝐼𝑖 ≥ 0

The scheduler includes a workflow analyzer, a

prototype controller, a backup controller, a resource

manager, a task manager, and an error forecasting

module. When a workflow is entered, the scheduler

determines whether it is first accepted in collaboration

with the workflow analyst and resource manager. For the

accepted workflow, the workflow analyst analyzes the

relationship and prioritizes scheduling among tasks. A

backup is then made by the backup controller. The fault-

tolerant scheduler is then connected by the main

controller and the backup controller. If active resources

fail to meet the schedule request, the resource manager

switches some hosts from sleep to active to increase

active resources. In addition, the host reports

information about its status, including the status of

scheduled tasks, the next access time to each active

virtual machine for other tasks, and the resource usage

of each active host, directly to the scheduler, and the

resource manager and records the status of all hosts in

cloud systems. If the initial version of a task is

successful, the initial version success information is sent

to the resource manager. The resource manager then

notifies the virtual machine to which it has sent the

backup of the assigned task to cancel the backup.

Otherwise, the resource manager will not notify the

virtual machine to cancel the backup, and scheduling

backups will normally be performed for fault tolerance.

In addition, if the host is in low workflow mode and

some virtual machines remain idle for a long time, the

resource manager decides that some virtual machines

should be used to improve resource utilization and be

deleted or transferred to other hosts. Since cloud systems

resources are shared among all customers and

workflows are dynamically sent to cloud systems at

runtime, the above process for each stream something is

repeated.

Each workflow is given to the task manager as a set

of tasks, so that the task manager can create backups and

backups of each task and provide their information to the

resource manager for allocation to the machine and

sends virtual error prediction modules to calculate the

average error value. The initial version of each task is

assigned to one of the virtual machines in the host,

followed by the task manager backing up the task. The

task backup is also sent by the resource manager to

another active virtual machine on the other host. When

the initial version of a task starts working in a virtual

machine, time is allotted for that task. If the execution of

the initial version of the task in the virtual machine is

completed successfully by the time of the average error,

the error forecasting module sends the command to

cancel the execution of the backup to the task manager.

The Task Manager also records the success information

of the original version on the target host and cancels the

backup. The task manager also sends information about

the success and cancellation of the backup to the

resource manager to prevent the backup from running on

another virtual machine on another host.

If the execution of the initial version of the task in

the virtual machine is not completed successfully by the

time of the average error, the error forecasting module

sends the command to stop the execution of the initial

version in the current virtual machine and transfer it to

another virtual machine in the same host. Slowly The

error prediction module waits until the time limit set for

task i expires. If the execution of the initial version of

the task in the current host virtual machines is completed

by the end of the deadline for task i, the error prediction

module sends the command to cancel the backup to the

task manager. Otherwise, the error forecasting module

sends a backup command to the task manager by

imposing a penalty on the present host. Due to the

penalty imposed on the current host, new tasks will not

be transferred to this host and the current host, despite

the fact that there may be active virtual machines in that

host, in the queue of hosts that if they make a mistake,

they will be placed. Assignment of tasks to these hosts

is delayed until the completion of tasks related to the

current workflow and the arrival of a new workflow.

4. RESULTS AND DISCUSSION

In order to implement the proposed method,

according to the previous chapters, in this dissertation,

20 tasks have been used in the form of a workflow. In

order to assign these tasks to run in the cloud, we used 5

hosts with 15 virtual machines. The method is simulated

in MATLAB software version 2015. Tasks that reach the

cloud environment are workflows in which tasks can

communicate with each other. Therefore, due to the

relationship between tasks, the discussion of data

transfer and priority in execution occurs, which is one of

the main discussions in the cloud environment in order

to serve the tasks. As mentioned, the workflow includes

a number of tasks in line with a specific goal, which,

based on the priorities between the tasks, the order of

execution of these tasks, has a decisive role in the

implementation of the entire workflow. Fig. 2 shows an

example of the workflow sent to the cloud environment.

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

29

Fig. 2. Workflow.

As shown in Fig. 2, the current workflow has 20

tasks, some of which are related to other tasks. The

margins between tasks are directional, indicating the

priority and lag of tasks in estimating the overall goal of

the workflow.

Due to the fact that the proposed method aims to

increase the fault tolerance in the cloud environment, it

tries to optimize the main factors in the quality of

service, so first prepare and maintain a copy of the

received tasks as a backup. Tasks that reach the cloud

are identified based on the number of instructions in

each task, which is the instruction measurement scale of

instructions, million instructions per second (MIPS). In

addition, each resource has processing power that is

released from service providers. Therefore, the task

execution time in the virtual machine can be calculated

as the ratio of the task size to the processing power of

the virtual machine. In addition, the time used to transfer

data while performing tasks between two virtual

machines can be calculated using Equation 2. Therefore,

Table 1 shows the specifications of the original and

backup versions, the time required to perform the task

and the time required to perform the previous task, if

any, the time required to transfer data between virtual

machines based on the amount of data.

Table 1. Real-time Execution of Tasks.

Task 𝑡𝑖
𝑃 𝑡𝑖

𝐵 𝑣𝑝𝑘𝑙 𝑒𝑡𝑘𝑙 𝑒𝑡𝑘𝑃𝑟𝑒𝑑 TTD

1 70 70 0.1818 0.5343 0.2357 279

6 49 49 0 0.0297 0.1467 334

7 52 52 0.2365 0.1087 0.1413 368

8 68 68 0.0101 0.1757 0.1521 447

9 80 80 0.0850 0.2944 0.1626 492

10 53 53 0.1755 0.1185 0.1370 387

14 27 27 0 0.0915 1.5 18

15 5 5 0.1417 0.0117 0.0725 69

As shown in Table 1, the execution time of the

related tasks is calculated according to the items in the

workflow.

4.1. Implement Adaptive Fault Tolerance

Scheduling

As mentioned in the previous chapter, in the

proposed method, when a workflow is entered, it first

approves or rejects the task acceptance scheduler

according to the number of virtual machines and the

connections between the tasks. After confirming the

acceptance of the workflow, a backup of the tasks is

prepared by the task controller. The scheduler sends

each version to a virtual machine to run. If the initial

version of a task is successful, the initial version success

information is sent to the resource manager. The

resource manager then notifies the virtual machine to

which it has sent the backup of the assigned task to

cancel the backup. Otherwise, the resource manager will

not notify the virtual machine to cancel the backup, and

scheduling backups will normally be performed for fault

tolerance. Since cloud systems resources are shared

among all customers and workflows are dynamically

sent to cloud systems at runtime, the above process for

each stream something is repeated. In the continuation

of this chapter, according to the implementation of the

proposed method, the main factors that affect the quality

of service are calculated in order to evaluate the

performance of the proposed idea.

4.2. Implementation of Fault Tolerance

In the proposed method as mentioned in the previous

chapter, the proposed method of predicting an error in a

host can expedite the completion of tasks and not send

new tasks to hosts suspected of error. In this module,

error prediction is based on the average time of error,

which was introduced in the previous section. As

mentioned, the minimum value required for the average

error time is always greater than or equal to the

maximum execution time of a virtual machine from the

same host. Given that virtual machines are

heterogeneously distributed across a host, it can be said

that the minimum value required for the mean error time

is always greater than or equal to the maximum

execution time of the slowest virtual machine from the

same host. In order to implement the error according to

the optimization model specified in Equation 3, the fault

tolerance rate and error prediction in cloud resources are

shown in Table 2.

As shown in Fig. 3, the error tolerance rate increases

at a slower rate due to the assignment of tasks and the

use of backups.

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

30

Table 2. An example of fault tolerance calculation rate.

VM Fault Tolerance Rate Fault Prediction

1 0.833 0.2356

2 0.833 0.07633

3 0.875 0.1572

4 0.9167 0.108

5 0.9167 0.2744

6 1 0.1467

7 1 0

8 1 0.1521

Fig. 3. Diagram of fault tolerance rate in the proposed

method.

4.3. Implement the Cost in the Proposed Method

According to the proposed method, the cost of

completing tasks in resources consists of costs related to

processing and costs related to the transfer of

information in the network between resources while

performing related tasks. Therefore, it can be noted that

the processing cost for a given task depends on the task

volume and the fixed cost (processor price per

instruction). Also, in order to calculate the cost of data

transfer in the cloud network between resources, the

relationship between tasks can be used to calculate the

volume of information sent in the network and the cost

of this information. Table 3 shows the costs associated

with completing tasks in each resource in the cloud

environment.

Table 3. The calculated cost of completing tasks in

cloud resources.

VM 𝐶𝑡𝑜𝑡𝑎𝑙

1 0.0585994181021479

2 0.0189793098978603

3 0.0391018838637520

4 0.268519276434928

5 0.0682357081722127

6 0.0364755060581933

7 0

8 0.0378227500156913

As shown in Table 3, the cost of performing tasks in

the resources to which the independent tasks are

assigned is less than the resources in the dependent

resources. Resources on which the cost of performing

tasks is zero are resources to which no task has been

submitted; these resources are the same resources that

have been penalized by the proposed method and will

not be assigned a task until the end of the workflow. Fig.

4 shows the cost-completion task chart in the resources.

Fig. 4. Cost of completing tasks in each resource.

Also, in order to show the total costs in the resources

to perform the tasks in the proposed method, the

cumulative cost function is used, the diagram of the

cumulative cost function is shown in Fig. 5.

Fig. 5. Cumulative function diagram of the cost of

completing tasks in all resources.

As shown in Fig. 5, the cost of completing tasks in

all sources has increased slightly, and finally for 20

virtual machines in 4 hosts, this cost has reached 1.25.

4.4. Implement Energy in Cloud Resources

As mentioned in the previous chapter, due to the fact

that virtual machines are heterogeneous in the proposed

method, the energy required to perform tasks varies from

source to source. Therefore, in each fixed source, energy

consumption will be different from other sources. Fig. 6

shows the energy consumption diagram in the proposed

method.

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

31

Fig. 6. Energy consumption in cloud resources.

As shown in Fig. 6, resources where independent

tasks are loaded consume less energy, while energy

consumption in resources with dependent tasks is higher.

4.5. Completion of Tasks in the Proposed Method

In order to implement the task execution time in the

proposed method, the total task completion time in the

cloud environment includes the task execution time and

the transmission time in the network. Therefore, the time

of completion of tasks in the cloud environment is

directly related to independent and dependent tasks. In

other words, resources that need to exchange

information with other sources need more time to

complete tasks. Naturally, there will be more delays in

completing tasks in such resources. Fig. 7 shows the

completion time chart in each resource. Fig. 8 also

shows the delay diagram in the proposed method.

Fig. 7. Completion of tasks in resources.

Fig. 8. Delay diagram in the proposed method.

Also, in order to calculate the completion time of all

tasks in all resources, the cumulative time function is

used, which summarizes the time spent in each resource

and shows it graphically during the completion of tasks

in the resources. Fig. 9 shows the cumulative function

diagram of task completion time across resources.

Fig. 9. Makespan cumulative function diagram.

As shown in Fig. 9, the task completion time, which

increases due to the availability of resources with

dependent tasks, eventually reaches 9.5 seconds for a 30-

task workflow at 20 sources in 4 hosts.

4.6. Comparing the Proposed Method with the

Previous Work

In order to compare the proposed method with the

previous method, in this section we compare the

proposed method with other scheduling methods in the

basic article. This comparison is first based on the

criterion (HAT). This criterion indicates the number of

active hosts when assigning tasks to virtual machines.

Fig. 10 shows a comparison between the proposed

method and the previous methods in terms of HAT

criteria.

Fig. 10. Comparison of the proposed method with

previous methods in terms of HAT criteria.

2 4 6 8 10

Proposed 1 1.14 1.33 2 4

FTESW 1.2 1.5 2.3 3.5 4.6

CCRH 1.5 2.3 3.1 4.7 6.1

Ref5 2.2 3.2 4.2 5.6 7.8

0
1
2
3
4
5
6
7
8
9

H
A

T
(1

0
4

s)

Workflow number

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

32

As shown in Fig. 10, the number of active hosts in

the proposed method is less than the other methods in

the basic article, and the amount of energy consumed

will be less according to the proposed method.

Another criterion used in this dissertation for

comparison is the criterion (CCR), which is the average

cost of transferring tasks over the cost of performing

tasks, which is compared in Fig. 11 between the

proposed method and previous methods in terms of The

CCR criterion.

Fig. 11. Comparison of the proposed method with

previous methods in terms of CCR criteria.

 As shown in Fig. 11, the transfer cost per

implementation of the proposed method is lower than

other methods in the base article. Therefore, it can be

said that the performance of the proposed method has

been better in allocating tasks to resources and reducing

the time and cost of completing the entire work and error

tolerance.

5. CONCLUSION

In the cloud environment, computing resources need

to be timed so that both providers get the most out of

their resources and users get the applications they need

at the least time and cost. On the other hand, given that

the cloud environment is heterogeneous and needs and

demands are changing at all times, a good decision to

schedule the workflow in the cloud environment is

complex and vital at the same time. Therefore, in this

study, an adaptive workflow scheduling approach is

proposed to increase fault tolerance in cloud computing.

The present approach calculates the probability of

failures for each resource according to the execution

time of tasks on the resources. In fact, in the present

method, a time limit is set for each of the tasks. If the

task is not completed within the specified time limit, the

probability of failure in the source increases and the next

tasks are not sent to the desired source. The simulation

results show that the proposed method, in addition to

increasing error tolerance, also improves other factors

affecting service quality.

REFERENCES
[1] V. Mohammadian, N. J. Navimipour, M.

Hosseinzadeh, and A. Darwesh, “Comprehensive

and Systematic Study on the Fault Tolerance

Architectures in Cloud Computing,” Journal of

Circuits, Systems and Computers, p. 2050240, Jun.

2020, doi: 10.1142/s0218126620502400.
[2] T. Welsh and E. Benkhelifa, “On Resilience in Cloud

Computing,” ACM Computing Surveys, Vol. 53, no.

3. Association for Computing Machinery, Jun. 01,

2020, doi: 10.1145/3388922.

[3] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M.

Haghparast, “A survey of fault tolerance

architecture in cloud computing,” Journal of

Network and Computer Applications, Vol. 61.

Academic Press, pp. 81–92, Feb. 01, 2016, doi:

10.1016/j.jnca.2015.10.004.

[4] S. Kumar, D. S. Rana, and S. C. Dimri, “Fault

tolerance and load balancing algorithm in cloud

computing: A survey,” International Journal of

Advanced Research in Computer and Communication

Engineering, Vol. 4, No. 7, pp. 92–96, 2015.

[5] U. Dwivedi and H. Dev, “A review on fault tolerance

techniques and algorithms in green cloud

computing,” Journal of Computational and

Theoretical Nanoscience, Vol. 15. American Scientific

Publishers, pp. 2689–2700, Sep. 01, 2018, doi:

10.1166/jctn.2018.7560.

[6] M. Hasan and M. S. Goraya, “Fault tolerance in

cloud computing environment: A systematic

survey,” Computers in Industry, vol. 99. Elsevier

B.V., pp. 156–172, Aug. 01, 2018, doi:

10.1016/j.compind.2018.03.027.

[7] D. Jain, N. Zaidi, R. Bansal, P. Kumar, and T.

Choudhury, “Inspection of fault tolerance in cloud

environment,” in Advances in Intelligent Systems and

Computing, 2018, Vol. 672, pp. 1022–1030, doi:

10.1007/978-981-10-7512-4_103.

[8] C. Kathpal and R. Garg, “Survey on Fault-

Tolerance-Aware Scheduling in Cloud

Computing,” in Lecture Notes in Networks and

Systems, Vol. 40, Springer, 2019, pp. 275–283.

[9] P. Kumari and P. Kaur, “A survey of fault tolerance

in cloud computing,” Journal of King Saud

University - Computer and Information Sciences, Oct.

2018, doi: 10.1016/j.jksuci.2018.09.021.

[10] G. Singh and S. Kinger, “A survey on fault tolerance

techniques and methods in cloud computing,”

International Journal of Engineering Research and

Technology, Vol. 2, No. 6, 2013.

A. S. Abohamama, M. F. Alrahmawy, and M. A.

Elsoud, “Improving the dependability of cloud

environment for hosting real time applications,”

Ain Shams Engineering Journal, Vol. 9, No. 4, pp.

3335–3346, Dec. 2018, doi:

10.1016/j.asej.2017.11.006.

[11] H. Yan, X. Zhu, H. Chen, H. Guo, W. Zhou, and W.

Bao, “DEFT: Dynamic Fault-Tolerant Elastic

scheduling for tasks with uncertain runtime in

2 4 6 8 10

Proposed 0.23 0.27 0.61 0.78 1.08

FTESW 0.77 0.79 0.81 0.84 0.87

CCRH 0.81 0.84 0.87 0.93 0.97

Ref5 0.86 0.89 0.96 1.04 1.1

0
0.2
0.4
0.6
0.8

1
1.2

C
C

R

Workflow Number

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

33

cloud,” Information Sciences, Vol. 477, pp. 30–46,

Mar. 2019, doi: 10.1016/j.ins.2018.10.020.

[12] Y. Ding, G. Yao, and K. Hao, “Fault-tolerant elastic

scheduling algorithm for workflow in Cloud

systems,” Information Sciences, Vol. 393, pp. 47–65,

Jul. 2017, doi: 10.1016/j.ins.2017.01.035.

[13] S. Talwani and I. Chana, “Fault tolerance techniques

for scientific applications in cloud,” in 2nd

International Conference on Telecommunication and

Networks, TEL-NET 2017, Apr. 2018, vol. 2018-

January, pp. 1–5, doi: 10.1109/TEL-

NET.2017.8343578.

