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ABSTRACT: 

Cloud computing in the field of high-performance distributed computing has emerged as a new development in which 

the demand for access to resources via the Internet is presented in distributed servers that dynamically scale are 

acceptable. One of the important research issues that must be considered to achieve efficient performance is fault 

tolerance. Fault tolerance is a way to find faults and failures in a system. Predicting and reducing errors play an important 

role in increasing the performance and popularity of cloud computing. In this study, an adaptive workflow scheduling 

approach is presented to increase fault tolerance in cloud computing. The present approach calculates the probability of 

failure for each resource according to the execution time of tasks on the resources. In the present method, a deadline is 

set for each of the tasks. If the task is not completed within the specified time, the probability of failure in the source 

increases and subsequent tasks are not sent to the desired source. The simulation results of the proposed method show 

that the proposed idea can work well on workflows and improve service quality factors. 
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1.  INTRODUCTION 

The advent of cloud computing is considered to be 

the biggest change in information technology. This 

change has attracted the attention of everyone, from 

people in the community to large corporations. Today, 

the popularity of cloud computing is so widely accepted 

that organizations are moving their traditional 

information processing systems to cloud services to 

store large amounts of data [1], [2]. 

Cloud computing has emerged as a demand-based 

computing services model for use by small-scale users 

and large-scale scientific and commercial applications. 

This model is defined as a model for accessing a network 

with a shared set of configurable computing resources 

(e.g., networks, servers, storage space, applications, and 

services) that can be quickly and efficiently defined. 

Minimize managerial effort or service provider 

interaction, access to demand, resource independence, 

fast flexibility and always availability are the basic 

features of cloud computing [3], [4]. 

Due to the popularity of cloud computing among 

users and service providers, this environment has been 

very popular in the last decade. The presence of users 

and service providers from different places and with 

heterogeneous systems in this medium have caused 

many challenges. In cloud computing, fault tolerance is 

an important problem and resource failure time is one of 

the metrics that affect performance, throughput, 

response time and system and network performance [5]. 

 Load balance fault tolerance is one of the main 

challenges in cloud computing that is required to 

distribute network load evenly across all nodes. This 

load is the amount of work that a computing system 

does, which can be classified as network load, storage 

capacity, memory capacity, and CPU load [6]. 

Error tolerance is a way to find faults and failures in 

a system. If an error occurs or there is a hardware failure 

or software defect, the system should also work 

properly. Malfunctions must be controlled in a dynamic 

way for reliable cloud computing. It will also provide 

availability and reliability against hardware and software 

failures of the system in the organization [7], [8]. 

Predicting and reducing errors has two types of 

techniques: active and passive. Active fault tolerance 
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policy, avoiding fault recovery by anticipating and 

actively replacing a suspicious component to detect it 

before a fault occurs. Passive fault tolerance reduces the 

impact of failures on executable programs when 

effective failures occur [9]. 

Therefore, in this study, an adaptive workflow 

scheduling approach is proposed to increase fault 

tolerance in cloud computing. The present approach 

calculates the probability of failure for each resource 

according to the execution time of tasks on the resources. 

In fact, in the present method, a time limit is set for each 

of the tasks. If the task is not completed within the 

specified time limit, the probability of failure in the 

source increases and the next tasks are not sent to the 

desired source. 

In the proposed method, the input flow is timed 

through a resource management unit. At this stage, 

according to the characteristics of the resources, the 

tasks are assigned to the nearest source in terms of 

service quality factors to be executed. The scheduling 

plan is then provided to a task management unit to set a 

time limit for each task, as mentioned, according to the 

number of instructions for each task, and to review the 

time frame for performing previous tasks in the 

resources. Slowly If a resource task is running for more 

than the specified time, the probability of resource 

failure increases. 

 Thus, the task management unit calculates a failure 

probability for each resource. Based on the probability 

of failure, the tasks are then sent to the resources, which 

are virtual machines, to complete the continuation of the 

task execution process. The main innovation in the 

present study is the addition of a task management unit 

which, according to the number of instructions for each 

task and the characteristics of the resources, assigns an 

adaptive time limit to each task to be performed in each 

resource. Then, according to the history of performing 

tasks in the resources, the probability of failure for each 

resource is calculated. 

 

2.  LITERATURE REVIEW 

Fault tolerance provides complete and permanent 

operation even when incomplete components are 

present. It is the continuation of work satisfactorily in 

the face of obstacles, art and science that creates the 

computational system. The fault tolerance system does 

not allow one or more types of errors to occur, including 

momentary, definitive or permanent hardware or 

software failures, design errors, operational errors, or 

damage caused by the program itself or physical 

damage. In a real-time cloud application, these 

operations are performed remotely in the computational 

node and the probability of error occurs [10]. These 

events emphasize the need for fault tolerance technology 

to achieve the reliability of real-time computing in the 

cloud infrastructure. 

Abu Hamama et al. have proposed a comprehensive 

framework that incorporates a number of error tolerance 

methods to improve the reliability of cloud 

environments for hosting applications in real time, if 

reliability is achieved and access conditions are 

provided. Then the real-time fault tolerance scheduling 

algorithm is proposed to minimize the number of 

missing deadlines, and the amount of load imbalance 

[11]. 

Yan et al. presented the uncertainty model by 

estimating task execution time and a contrast-task 

assignment mechanism that strategically uses two error-

tolerant task scheduling models, while considering 

uncertainty. In addition, an overlap mechanism has been 

used to improve the use of cloud resources. Based on 

two mechanisms, a dynamic innovation-based 

scheduling and scheduling algorithm based on Dynamic 

Innovation (DEFT) is proposed for scheduling real-time 

tasks in the cloud in which system performance 

fluctuations must be considered. The purpose of DEFT 

is to achieve both fault tolerance and resource utilization 

[12]. 

Ding et al. presented a flexible common error 

scheduling algorithm for cloud workflow (FTESW). 

After analyzing the initial scheduling constraints, 

backup in cloud systems due to interdependence 

between tasks in the workflow is presented, a tensile 

mechanism in the field of fault tolerance is designed to 

dynamically adjust resources based on resource requests 

by adopting resource migration technology, FTESW is 

then proposed to achieve both fault tolerance and full 

resource utilization for workflow in cloud systems. To 

evaluate the effectiveness of the proposed FTESW, a 

series of simulation experiments were performed on 

both randomly generated workflows and real-world 

workflows [13]. 

Talvani et al. have effectively evaluated and 

processed barriers to gain robustness and reliability in 

cloud computing. Various error detection methods and 

architectural models have been proposed to increase 

cloud fault tolerance. Given this fact, this article focuses 

on solving the problem of error in cloud computing. This 

research, in order to identify the work that has been done 

in this field, shows the basic concept of fault tolerance 

that has been done by different researchers and different 

algorithms to solve the problem of fault tolerance in 

cloud computing [14]. 

 

3.  METHODOLOGY 

As mentioned, in this study, in order to present the 

error tolerance approach in cloud infrastructure, an 

approach of workflow distribution and adaptive 

scheduling based on task execution time in resources has 

been used, which will be described in detail in the 

following method. 
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3.1.  Workflow 

As cloud end users use host applications, the 

workload includes tasks that dynamically go to the 

central scheduler. Each task contains a set of tasks that 

is a set of 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} with 𝑛 tasks. Each of the 

tasks has a time limit or deadline to be performed, which 

in case of exceeding this deadline, the performance of 

the task and its related tasks will be adversely affected. 

In this research, we use the non-distance directional 

graph (DAG) to show the workflow provided by the 

customer to cloud systems with 𝐷𝑒𝑎𝑑𝐿  software 

deadline. A 𝐷𝐴𝐺 𝑉 = (𝑇, 𝐸) contains 𝑛 tasks that are 

connected through control and data flow. 

 

𝐸 = {(𝑡𝑖, 𝑡𝑗, 𝐷𝑎𝑡𝑎𝑖𝑗 , 𝐶𝑜𝑛𝑡𝑖𝑗)|(𝑡𝑖 , 𝑡𝑗) ∈ 𝑇 × 𝑇, 𝑖 ≠ 𝑗}   (1) 

 

Where, 𝐷𝑎𝑡𝑎𝑖𝑗  represents the amount of data to be 

transferred from 𝑡𝑖 to 𝑡𝑗, and 𝐶𝑜𝑛𝑡𝑖𝑗 represents the 

control relationship, such as the loop and the selected 

structure, between 𝑡𝑖 and 𝑡𝑗. The size of each 𝑡𝑖 task is 

measured by millions of 𝑀𝐼𝑖  instructions that affect its 

execution time. We also use 𝑝𝑟𝑒𝑑(𝑡𝑖) and 𝑠𝑢𝑐𝑐(𝑡𝑖) to 

indicate the previous and next set of tasks of task 𝑡𝑖, 

which means that 𝑝𝑟𝑒𝑑(𝑡𝑖) must be completed before 

starting 𝑡𝑖. An example of a workflow is shown in Fig. 

1. 

 

 
Fig. 1. Example of a non-rotating directional graph of a 

workflow. 

 

For each task 𝑡𝑖 sent in the workflow, two versions 

are provided as 𝑡𝑖
𝑃 and 𝑡𝑖

𝐵 for the initial version and the 

backup, respectively. They run on different hosts for 

fault tolerance. 𝑣𝑚(𝑡𝑖
𝑃) and 𝑣𝑚(𝑡𝑖

𝐵) are used to 

represent virtual machines containing 𝑡𝑖
𝑃 and 𝑡𝑖

𝐵, while 

ℎ(𝑡𝑖
𝑃) and ℎ(𝑡𝑖

𝐵) are hosts, respectively. The task 

execution time 𝑡𝑖 in the 𝑣𝑚𝑘𝑙  virtual machine is 

calculated as 𝑒𝑡𝑘𝑙(𝑡𝑖) as the ratio of the task size to the 

processing power of the virtual machine. For example, 

𝑣𝑚(𝑡𝑖
𝑃) = 𝑣𝑚𝑘𝑙, 𝑒𝑡𝑘𝑙(𝑡𝑖

𝑃) =
𝑀𝐼𝑖

𝑣𝑝𝑘𝑙
 means that the initial 

version of 𝑡𝑖 is scheduled in the 𝑣𝑚𝑘𝑙 , virtual machine 

hosted on ℎ𝑘, and has an execution time of 𝑒𝑡𝑘𝑙(𝑡𝑖
𝑃) of 

𝑀𝐼𝑖

𝑣𝑝𝑘𝑙
. In addition, the time used to transfer 𝐷𝑎𝑡𝑎𝑖𝑗  can be 

stated as follows: 

𝑇𝑇𝐷𝑗,𝑋
𝑖,𝑋 = {

0                                     𝑖𝑓   ℎ(𝑡𝑖
𝑋) = ℎ(𝑡𝑗

𝑋)
𝐷𝑎𝑡𝑎𝑖𝑗

𝐵𝑊
ℎ(𝑡𝑖

𝑋)ℎ(𝑡𝑗
𝑋)

             𝑖𝑓    ℎ(𝑡𝑖
𝑋) ≠ ℎ(𝑡𝑗

𝑋) (2) 

 

3.2.  Fault Model 

Tasks will fail and stop running when an error occurs 

in the processor unit in which they are located. In this 

study, we focus on host failure. A host fails when all the 

virtual machines in that host can no longer work and 

cannot complete the copies of the tasks in the virtual 

machines. Errors can be temporary or permanent, and it 

is assumed that the error is in one independent host and 

affects only one host. The maximum number of hosts 

that are expected to fail at any given time is assumed to 

be one. This means that if the original version of a task 

fails, the backup can always be completed before 

another host fails. For each task, backup is done after 

scheduling the initial version. However, it is not 

necessary to back up all tasks in a workflow after 

scheduling initial versions of all tasks in the same 

workflow. It is also assumed that the minimum value 

required for the average error time (MTTF) is always 

greater than or equal to the maximum execution time of 

a virtual machine from the same host. 

There is an error detection mechanism such as an 

error signal and an acceptance test to detect errors. If an 

error is detected in an initial version, the backup will be 

executed and new tasks will not be sent to the host that 

received the error. If the completion of the initial version 

is successful, the resources will be restored by deleting 

the backup. Restoring resources is essential so that 

backup time can be allocated to new tasks. 

 

3.3.  Predict Fault 

Predicting an error in a host can speed up the 

completion of tasks and prevent new tasks from being 

sent to hosts suspected of error. In this module, error 

prediction is based on the average time of error, which 

was introduced in the previous section. As mentioned, 

the minimum value required for the average error time 

is always greater than or equal to the maximum 

execution time of a virtual machine from the same host. 

Given that the virtual machines are heterogeneously 

distributed in one host, it can be said that the minimum 

value required for the average error time is always 

greater than or equal to the maximum execution time in 

the slowest virtual machine of the same host. By 

assigning a task to a virtual machine from a host, the 

average amount of error time is determined based on the 

number of instructions in each task and the processing 

power of the virtual machines in the host, based on 

Equation 3 for each task. 

 

𝑀𝑇𝑇𝐹𝑘𝑙 = min {
𝑣𝑝𝑘𝑙

𝑀𝐼𝑖
}                                                                 (3) 

Subject to 
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𝑣𝑝11 ≤ 𝑣𝑝12 ≤ 𝑣𝑝13, … 

𝑀𝑇𝑇𝐹𝑘𝑙 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 

𝑀𝐼𝑖 ≥ 0 

 

The scheduler includes a workflow analyzer, a 

prototype controller, a backup controller, a resource 

manager, a task manager, and an error forecasting 

module. When a workflow is entered, the scheduler 

determines whether it is first accepted in collaboration 

with the workflow analyst and resource manager. For the 

accepted workflow, the workflow analyst analyzes the 

relationship and prioritizes scheduling among tasks. A 

backup is then made by the backup controller. The fault-

tolerant scheduler is then connected by the main 

controller and the backup controller. If active resources 

fail to meet the schedule request, the resource manager 

switches some hosts from sleep to active to increase 

active resources. In addition, the host reports 

information about its status, including the status of 

scheduled tasks, the next access time to each active 

virtual machine for other tasks, and the resource usage 

of each active host, directly to the scheduler, and the 

resource manager and records the status of all hosts in 

cloud systems. If the initial version of a task is 

successful, the initial version success information is sent 

to the resource manager. The resource manager then 

notifies the virtual machine to which it has sent the 

backup of the assigned task to cancel the backup. 

Otherwise, the resource manager will not notify the 

virtual machine to cancel the backup, and scheduling 

backups will normally be performed for fault tolerance. 

In addition, if the host is in low workflow mode and 

some virtual machines remain idle for a long time, the 

resource manager decides that some virtual machines 

should be used to improve resource utilization and be 

deleted or transferred to other hosts. Since cloud systems 

resources are shared among all customers and 

workflows are dynamically sent to cloud systems at 

runtime, the above process for each stream something is 

repeated. 

Each workflow is given to the task manager as a set 

of tasks, so that the task manager can create backups and 

backups of each task and provide their information to the 

resource manager for allocation to the machine and 

sends virtual error prediction modules to calculate the 

average error value. The initial version of each task is 

assigned to one of the virtual machines in the host, 

followed by the task manager backing up the task. The 

task backup is also sent by the resource manager to 

another active virtual machine on the other host. When 

the initial version of a task starts working in a virtual 

machine, time is allotted for that task. If the execution of 

the initial version of the task in the virtual machine is 

completed successfully by the time of the average error, 

the error forecasting module sends the command to 

cancel the execution of the backup to the task manager. 

The Task Manager also records the success information 

of the original version on the target host and cancels the 

backup. The task manager also sends information about 

the success and cancellation of the backup to the 

resource manager to prevent the backup from running on 

another virtual machine on another host. 

If the execution of the initial version of the task in 

the virtual machine is not completed successfully by the 

time of the average error, the error forecasting module 

sends the command to stop the execution of the initial 

version in the current virtual machine and transfer it to 

another virtual machine in the same host. Slowly The 

error prediction module waits until the time limit set for 

task i expires. If the execution of the initial version of 

the task in the current host virtual machines is completed 

by the end of the deadline for task i, the error prediction 

module sends the command to cancel the backup to the 

task manager. Otherwise, the error forecasting module 

sends a backup command to the task manager by 

imposing a penalty on the present host. Due to the 

penalty imposed on the current host, new tasks will not 

be transferred to this host and the current host, despite 

the fact that there may be active virtual machines in that 

host, in the queue of hosts that if they make a mistake, 

they will be placed. Assignment of tasks to these hosts 

is delayed until the completion of tasks related to the 

current workflow and the arrival of a new workflow. 

 

4.  RESULTS AND DISCUSSION 

In order to implement the proposed method, 

according to the previous chapters, in this dissertation, 

20 tasks have been used in the form of a workflow. In 

order to assign these tasks to run in the cloud, we used 5 

hosts with 15 virtual machines. The method is simulated 

in MATLAB software version 2015. Tasks that reach the 

cloud environment are workflows in which tasks can 

communicate with each other. Therefore, due to the 

relationship between tasks, the discussion of data 

transfer and priority in execution occurs, which is one of 

the main discussions in the cloud environment in order 

to serve the tasks. As mentioned, the workflow includes 

a number of tasks in line with a specific goal, which, 

based on the priorities between the tasks, the order of 

execution of these tasks, has a decisive role in the 

implementation of the entire workflow. Fig. 2 shows an 

example of the workflow sent to the cloud environment. 
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Fig. 2. Workflow. 

 

As shown in Fig. 2, the current workflow has 20 

tasks, some of which are related to other tasks. The 

margins between tasks are directional, indicating the 

priority and lag of tasks in estimating the overall goal of 

the workflow. 

Due to the fact that the proposed method aims to 

increase the fault tolerance in the cloud environment, it 

tries to optimize the main factors in the quality of 

service, so first prepare and maintain a copy of the 

received tasks as a backup. Tasks that reach the cloud 

are identified based on the number of instructions in 

each task, which is the instruction measurement scale of 

instructions, million instructions per second (MIPS). In 

addition, each resource has processing power that is 

released from service providers. Therefore, the task 

execution time in the virtual machine can be calculated 

as the ratio of the task size to the processing power of 

the virtual machine. In addition, the time used to transfer 

data while performing tasks between two virtual 

machines can be calculated using Equation 2. Therefore, 

Table 1 shows the specifications of the original and 

backup versions, the time required to perform the task 

and the time required to perform the previous task, if 

any, the time required to transfer data between virtual 

machines based on the amount of data. 

 

Table 1. Real-time Execution of Tasks. 

Task 𝑡𝑖
𝑃 𝑡𝑖

𝐵 𝑣𝑝𝑘𝑙  𝑒𝑡𝑘𝑙 𝑒𝑡𝑘𝑃𝑟𝑒𝑑 TTD 

1 70 70 0.1818 0.5343 0.2357 279 

6 49 49 0 0.0297 0.1467 334 

7 52 52 0.2365 0.1087 0.1413 368 

8 68 68 0.0101 0.1757 0.1521 447 

9 80 80 0.0850 0.2944 0.1626 492 

10 53 53 0.1755 0.1185 0.1370 387 

14 27 27 0 0.0915 1.5 18 

15 5 5 0.1417 0.0117 0.0725 69 

As shown in Table 1, the execution time of the 

related tasks is calculated according to the items in the 

workflow. 

 

4.1.  Implement Adaptive Fault Tolerance 

Scheduling  

As mentioned in the previous chapter, in the 

proposed method, when a workflow is entered, it first 

approves or rejects the task acceptance scheduler 

according to the number of virtual machines and the 

connections between the tasks. After confirming the 

acceptance of the workflow, a backup of the tasks is 

prepared by the task controller. The scheduler sends 

each version to a virtual machine to run. If the initial 

version of a task is successful, the initial version success 

information is sent to the resource manager. The 

resource manager then notifies the virtual machine to 

which it has sent the backup of the assigned task to 

cancel the backup. Otherwise, the resource manager will 

not notify the virtual machine to cancel the backup, and 

scheduling backups will normally be performed for fault 

tolerance. Since cloud systems resources are shared 

among all customers and workflows are dynamically 

sent to cloud systems at runtime, the above process for 

each stream something is repeated. In the continuation 

of this chapter, according to the implementation of the 

proposed method, the main factors that affect the quality 

of service are calculated in order to evaluate the 

performance of the proposed idea. 

 

4.2.  Implementation of Fault Tolerance 

In the proposed method as mentioned in the previous 

chapter, the proposed method of predicting an error in a 

host can expedite the completion of tasks and not send 

new tasks to hosts suspected of error. In this module, 

error prediction is based on the average time of error, 

which was introduced in the previous section. As 

mentioned, the minimum value required for the average 

error time is always greater than or equal to the 

maximum execution time of a virtual machine from the 

same host. Given that virtual machines are 

heterogeneously distributed across a host, it can be said 

that the minimum value required for the mean error time 

is always greater than or equal to the maximum 

execution time of the slowest virtual machine from the 

same host. In order to implement the error according to 

the optimization model specified in Equation 3, the fault 

tolerance rate and error prediction in cloud resources are 

shown in Table 2. 

As shown in Fig. 3, the error tolerance rate increases 

at a slower rate due to the assignment of tasks and the 

use of backups. 
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Table 2. An example of fault tolerance calculation rate. 

VM Fault Tolerance Rate Fault Prediction 

1 0.833 0.2356 

2 0.833 0.07633 

3 0.875 0.1572 

4 0.9167 0.108 

5 0.9167 0.2744 

6 1 0.1467 

7 1 0 

8 1 0.1521 

 

 
Fig. 3. Diagram of fault tolerance rate in the proposed 

method. 

 

4.3.  Implement the Cost in the Proposed Method 

According to the proposed method, the cost of 

completing tasks in resources consists of costs related to 

processing and costs related to the transfer of 

information in the network between resources while 

performing related tasks. Therefore, it can be noted that 

the processing cost for a given task depends on the task 

volume and the fixed cost (processor price per 

instruction). Also, in order to calculate the cost of data 

transfer in the cloud network between resources, the 

relationship between tasks can be used to calculate the 

volume of information sent in the network and the cost 

of this information. Table 3 shows the costs associated 

with completing tasks in each resource in the cloud 

environment. 

 

Table 3. The calculated cost of completing tasks in 

cloud resources. 

VM 𝐶𝑡𝑜𝑡𝑎𝑙 

1 0.0585994181021479 

2 0.0189793098978603 

3 0.0391018838637520 

4 0.268519276434928 

5 0.0682357081722127 

6 0.0364755060581933 

7 0 

8 0.0378227500156913 

 

As shown in Table 3, the cost of performing tasks in 

the resources to which the independent tasks are 

assigned is less than the resources in the dependent 

resources. Resources on which the cost of performing 

tasks is zero are resources to which no task has been 

submitted; these resources are the same resources that 

have been penalized by the proposed method and will 

not be assigned a task until the end of the workflow. Fig. 

4 shows the cost-completion task chart in the resources. 

 

 
Fig. 4. Cost of completing tasks in each resource. 

 

Also, in order to show the total costs in the resources 

to perform the tasks in the proposed method, the 

cumulative cost function is used, the diagram of the 

cumulative cost function is shown in Fig. 5. 

 

 
Fig. 5. Cumulative function diagram of the cost of 

completing tasks in all resources. 

 

As shown in Fig. 5, the cost of completing tasks in 

all sources has increased slightly, and finally for 20 

virtual machines in 4 hosts, this cost has reached 1.25. 

 

4.4.  Implement Energy in Cloud Resources 

As mentioned in the previous chapter, due to the fact 

that virtual machines are heterogeneous in the proposed 

method, the energy required to perform tasks varies from 

source to source. Therefore, in each fixed source, energy 

consumption will be different from other sources. Fig. 6 

shows the energy consumption diagram in the proposed 

method. 
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Fig. 6. Energy consumption in cloud resources. 

 

As shown in Fig. 6, resources where independent 

tasks are loaded consume less energy, while energy 

consumption in resources with dependent tasks is higher. 

 

4.5.  Completion of Tasks in the Proposed Method 

In order to implement the task execution time in the 

proposed method, the total task completion time in the 

cloud environment includes the task execution time and 

the transmission time in the network. Therefore, the time 

of completion of tasks in the cloud environment is 

directly related to independent and dependent tasks. In 

other words, resources that need to exchange 

information with other sources need more time to 

complete tasks. Naturally, there will be more delays in 

completing tasks in such resources. Fig. 7 shows the 

completion time chart in each resource. Fig. 8 also 

shows the delay diagram in the proposed method. 

 

 
Fig. 7. Completion of tasks in resources. 

 

 
Fig. 8. Delay diagram in the proposed method. 

 

Also, in order to calculate the completion time of all 

tasks in all resources, the cumulative time function is 

used, which summarizes the time spent in each resource 

and shows it graphically during the completion of tasks 

in the resources. Fig. 9 shows the cumulative function 

diagram of task completion time across resources. 

 

 
Fig. 9. Makespan cumulative function diagram. 

 

As shown in Fig. 9, the task completion time, which 

increases due to the availability of resources with 

dependent tasks, eventually reaches 9.5 seconds for a 30-

task workflow at 20 sources in 4 hosts. 

 

4.6.  Comparing the Proposed Method with the 

Previous Work 

In order to compare the proposed method with the 

previous method, in this section we compare the 

proposed method with other scheduling methods in the 

basic article. This comparison is first based on the 

criterion (HAT). This criterion indicates the number of 

active hosts when assigning tasks to virtual machines. 

Fig. 10 shows a comparison between the proposed 

method and the previous methods in terms of HAT 

criteria. 

 

 
Fig. 10. Comparison of the proposed method with 

previous methods in terms of HAT criteria. 
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As shown in Fig. 10, the number of active hosts in 

the proposed method is less than the other methods in 

the basic article, and the amount of energy consumed 

will be less according to the proposed method. 

Another criterion used in this dissertation for 

comparison is the criterion (CCR), which is the average 

cost of transferring tasks over the cost of performing 

tasks, which is compared in Fig. 11 between the 

proposed method and previous methods in terms of The 

CCR criterion. 

 

 
Fig. 11. Comparison of the proposed method with 

previous methods in terms of CCR criteria. 

 

 As shown in Fig. 11, the transfer cost per 

implementation of the proposed method is lower than 

other methods in the base article. Therefore, it can be 

said that the performance of the proposed method has 

been better in allocating tasks to resources and reducing 

the time and cost of completing the entire work and error 

tolerance. 

 

5.  CONCLUSION 

In the cloud environment, computing resources need 

to be timed so that both providers get the most out of 

their resources and users get the applications they need 

at the least time and cost. On the other hand, given that 

the cloud environment is heterogeneous and needs and 

demands are changing at all times, a good decision to 

schedule the workflow in the cloud environment is 

complex and vital at the same time. Therefore, in this 

study, an adaptive workflow scheduling approach is 

proposed to increase fault tolerance in cloud computing. 

The present approach calculates the probability of 

failures for each resource according to the execution 

time of tasks on the resources. In fact, in the present 

method, a time limit is set for each of the tasks. If the 

task is not completed within the specified time limit, the 

probability of failure in the source increases and the next 

tasks are not sent to the desired source. The simulation 

results show that the proposed method, in addition to 

increasing error tolerance, also improves other factors 

affecting service quality. 
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