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ABSTRACT: 

Amongst the approaches proposed to estimate parameters of a chirp signal sequentially, i.e., the central frequency and 

the chirp rate, algorithms, such as Discrete Polynomial-Phase Transform (DPT) and promoted DPT, exhibit acceptable 

estimation accuracy. Algorithms intended to estimate phase parameters sequentially, diminish the order of 

polynomials in complex exponential power to lower-order polynomials, and then estimate these two parameters using 

the NLS method in a given single exponential mode. The NLS method, which uses FFT to decrease the computational 

load of frequency domain search, encounters predicaments. In this work, we assessed the bias of algorithms intended 

for estimating of phase parameters sequentially using the RBF method. The results of investigating the bias of 

estimators indicated the improved accuracy of the DPT and promoted DPT algorithms in estimation using the RBF 

method instead of NLS and also than DCFT method. 

 

KEYWORDS: Discrete Polynomial-Phase Transform (DPT), Linear Frequency Modulation (LFM), Discrete Chirp 

Fourier Transform (DCFT). 

  

1.  INTRODUCTION 

In many telecommunication applications such as 

mobile communications, radar, sound navigation 

ranging (Sonar) and etc., the transmitted signal is 

regarded as a chirp signal. In all of these applications, it 

is significant to accurately estimate the parameters of 

the noisy chirp signal from limited noisy samples of 

discrete signals [1-2]. When there is a linear correlation 

between time and frequency, the chirp signal is known 

as a Linear Frequency Modulation (LFM). LFM is 

characterized by its two main parameters, i.e., the 

central frequency and the chirp rate. LFM signals are 

widely used in military communications and various 

detection systems (radar and sonar) due to their 

considerable capacity in the frequency domain and, 

thereby, the feasibility of achieving better resolution. 

Moreover, higher-order harmonics of the frequency-

modulated chirps, which are known as Polynomial 

Phase Signals (PPS) [3], or non-linear frequency 

modulated chirps have been used in Synthetic Aperture 

Radars (SAR) [4], biomedicine [5], radio 

communications or by marine mammals [6]. The 

estimation of chirp signal parameters is a topic of 

interest with a variety of applications. Chirp signals 

with various parameters have multiple applications in 

active sonar. The estimation of chirp signal parameters 

is essential in sonar tracking. Also, SAR systems can 

produce useful and attractive images in terms of 

quality, resolution, and separability from different areas 

of the earth through the transmission, reception, and 

processing of electromagnetic waves. With the global 

advancements in surface mapping by SARs, the quality 

of SAR images captured is ever-increasing. Such 

imaging is extremely critical due to the accuracy in 

estimating the parameters of chirp signals to produce 

the best quality image by SAR image generation 

algorithms. A general assumption in chirp analysis 

techniques is that the signal amplitude is constant at 

any observation time. Methods for estimating mono-

component LFM parameters with constant amplitude 

include the use of maximum likelihood [7], model 

order reduction techniques [8], ambiguity function [9], 

phase unwrapping [10], and Wigner-Ville distribution 

[11]. Multi-component LFM parameter estimation 

methods work based on combining a frequency-time 

transform (FTT) such as Wigner-Ville transform with 

an image processing technique , Monte Carlo methods 

or Markov chain Monte Carlo, Fractional Fourier 
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Transform (FrFT), and High Order Ambiguity 

Function. The estimation of PPS parameters with 

constant amplitude using the high-order ambiguity 

function (HAF) [12] is for estimating basic mono-

component PPS parameters [3] and for multi-

component signals [13]. HAF-based estimation is an 

iterative process. The methods for estimating chirp 

signal parameters are generally categorized as follow: 

• Methods that estimate the central frequency 

using the chirp rate from the input signal (e.g., 

DPT and Promoted DPT methods). 

• Methods (such as DCFT) that estimate the 

chirp signal parameter using defined transform 

and calculating the input signal transform. 

In section 2, we describe RBF and NLS methods in 

the mono-exponential model for estimating the noisy 

complex exponential frequency. In section 3, we 

discuss the algorithms for sequential estimating of the 

phase parameters (e.g., DPT and promoted DPT) and 

DCFT methods. In section 4, we analyze the simulation 

results. Finally, the manuscript is concluded in section 

5. 

 

2.  RBF AND NLS METHODS IN THE MONO-

EXPONENTIAL MODE FOR ESTIMATING THE 

NOISY COMPLEX EXPONENTIAL 

FREQUENCY 

 

2.1.  NLS Method in the Mono-exponential Mode 

Nonlinear Least Squares (NLS) is a criterion where 

the values of parameters of the signal model are 

selected to minimize the sum of the squares of the 

difference between the data and the model. Then, this 

criterion considers the value of the selected parameters 

as an estimate of the signal parameters [14]. Suppose 

the signal model, which is the sum of complex 

polynomials at time t, can be defined as follow: 

 

k k

p
i( t )

k

k 1

x(t) e
 +

=

=                    (1) 

 

Where, 𝑥(𝑡) is the sum of P complex exponential 

without noise, 𝛼𝑘 is the amplitude, ωk is the angular 

frequency, and φk is the kth initial phase of the mixed 

exponential. ωk is in the [-π, π] interval, φk is the non-

random phase in [-π,π] interval, and 𝛼𝑘 > 0. y(t) is the 

input data at time t, resulting from saturated x(t)  with 

noise 𝑛(𝑡).   

 

y(t) x(t) n(t)= +                     (2) 

 

To estimate the complex exponential parameters, 

we need to minimize function f in Equation (3) based 

on the unknown parameters of the problem: 

 

𝑥(𝑡) = ∑ 𝛼𝑘𝑒𝑖(𝜔𝑘𝑡+𝜑𝑘)𝑝
𝑘=1                   (3) 

 

     The sinusoidal model specified in Equation (3) 

shows the smallest sum of squares of the model 

distance from the observed data {𝑦(𝑡)}𝑡=1
𝑁 . When f is a 

nonlinear function of the parameters {𝑦(𝑡)}𝑡=1
𝑁 , the 

method that defines the unknown parameters by 

minimizing Equation (3) is called the nonlinear least 

squares (NLS). The function f in Equation (3) can be 

rewritten as the vector of Equation (4) to (8): 

 

𝐴𝑘 = 𝛼𝑘𝑒𝑖𝜑𝑘                    (4) 

𝑎 = [𝐴1, . . . , 𝐴𝑝]
𝑇
                  (5) 

𝑦 = [𝑦(0), … . , 𝑦(𝑁 − 1)]𝑇                  (6) 

𝐵 = [
1 ⋯ 1
⋮ ⋱ ⋮

𝑒𝑖𝑁𝜔1 ⋯ 𝑒𝑖𝑁𝜔𝑝

]                  (7) 

𝑓 = [𝑦 − 𝑎𝐵]𝐻[𝑦 − 𝑎𝐵]                   (8) 

 

Equation (8) is a vector form of Equation (3), where 

matrix B is a Vandermonde matrix. P is the number of 

mixed exponentials and N is the number of input data. 

With the above definitions, Equation (8) can be 

rewritten as Equation (9): 

 

𝑓 = [𝑎 − (𝐵𝐻𝐵)−1𝐵𝐻𝑦]𝐻[𝐵𝐻𝐵][𝑎 − (𝐵𝐻𝐵)−1𝐵𝐻𝑦] +
𝑦𝐻𝑦 − 𝑦𝐻𝐵(𝐵𝐻𝐵)−1𝐵𝐻𝑦                 (9) 

 

To minimize f, the value of 𝜔 must be chosen so 

that the third expression of Equation (9) is maximized: 

 

𝜔̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜔

[𝑦𝐻𝐵(𝐵𝐻𝐵)−1𝐵𝐻𝑦 ]            (10) 

and 

𝑎̂ = (𝐵𝐻𝐵)−1𝐵𝐻𝑦|𝜔=𝜔̂                    (11) 

 

2.2.  RBF Method for Estimating Complex 

Exponential Frequency in Noise 

The Random Basis Function (RBF) method 

attempts to match the input data with the linear 

combination of the base functions. The base functions 

have non-linear parameters [15]. This method matches 

data with random functions by altering parameters 

based on the interval corresponding to them and then 

presents the parameter of interest as the estimated value 

of the unknowns of the problem. If y(t), t=0,1,...,N-1, 

then the received data and the base function that data 

can be matched with it are as follows: 

 

𝑠[𝑡] = 𝐴∅[𝑡; 𝜃], 𝑡 = 0,1, . . . , 𝑁 − 1               (12) 

 

And unknown 𝜽 = [𝜃1𝜃2, . . . , 𝜃𝑝]𝑇 is dependent. If 

this method estimates the frequency 𝑓0 of a complex 

sine, s [t] will be as follow: 

 

𝑠[𝑡] = 𝐴𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑡 + 𝜑)               (13) 
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Where, A is the unknown amplitude and 𝜃 = [𝑓0] 
and 𝜑 are the initial phases. A and 𝑓0 are calculated by 

minimizing the following equation: 

 

𝐽(𝐴, 𝑓0) = ∑ |𝑦[𝑡] − 𝐴𝑒𝑥𝑝(𝑗2𝜋 𝑓0𝑡 + 𝜑)|2𝑁−1
𝑛=0         (14) 

 

If the complex sine is summed with a complex 

white Gaussian noise, the NLS estimator used in 

Equation (14) will be the maximum likelihood (ML) 

estimator [15]. The ML estimator first minimizes the 

equation (14) on the amplitude and then minimizes the 

resulting equation based on the frequency 𝑓0. The 

process of estimating the frequency of ML in the 

presence of a complex exponential is equivalent to 

finding the frequency corresponding to the maximum 

value of the periodogram (calculated by FFT) [16]. To 

have an acceptable frequency estimation, we require a 

long FFT (which takes a lot of computation). 

 

2.3.  RBF Algorithm 

For optimal minimization of Equation (14), we first 

need to minimize the following Equation: 

 
N 1

2

1 2 1 1 2 2

t 0

J(A ,A ) E y[t] A [t; ] A [t; ]
−



=

 
= −   −   

 
        (15) 

 

From this Equation, the two amplitudes Â2 and Â1 

are obtained. The data vectors, amplitude, and 

parameter are defined as follows. 

 
T T T

1 2 1 2y [y(0), y(1),..., y(N 1)] , [A ,A ] , [ , ]= −  =  =       (16) 

 

And 

 

𝑯(𝜃) = [
∅[0:𝜃1]
∅[1:𝜃1]

⋮
∅[𝑁−1:𝜃1]

∅[0:𝜃2]
∅[1:𝜃2]

⋮
∅[𝑁−1:𝜃2]

]                (17) 

 

Where, 𝐇(Θ) is a random and complex N×2 matrix 

and equation (18) is obtained as follows: 

 

𝐽(𝑨) = 𝐸𝜃[(𝒚 − 𝑯(𝜃)𝒂)𝐻(𝒚 − 𝑯(𝜃)𝒂)]               (18) 

 

To calculate the amplitude a by the complex 

derivative property: 

 
𝜕𝐽(𝒂)

𝜕𝒂
= 𝐸𝜃 [

𝜕

𝜕𝒂
(𝒚 − 𝑯(𝜃)𝒂)𝐻(𝒚 − 𝑯(𝜃)𝒂)] =

𝐸𝜃 [
𝜕

𝜕𝒂
(−𝑯𝐻(𝜃))(𝒚 − 𝑯(𝜃)𝒂)∗] = 0              (19) 

 

And by solving Equation (19) we will have: 

 

𝐸𝜃[𝑯𝐻(𝜃)𝑯(𝜃)]𝒂̂ = 𝐸𝜃
𝐻[𝑯(𝜃)]𝒚              (20) 

 

Given the right side of Equation (20) of Equation 

(17): 

𝐸𝜃[𝑯(𝛩)] = [

𝐸[∅[0:𝜃1]]

𝐸[∅[1:𝜃1]]

⋮
𝐸[∅[𝑁−1:𝜃1]]

𝐸[∅[0:𝜃2]]

𝐸[∅[1:𝜃2]]

⋮
𝐸[∅[𝑁−1:𝜃2]]

]               (21) 

 

Suppose θ1 𝑎𝑛𝑑 θ2 are independent: 

 
H

N N
2 *

1 1 2

t 0 t 0

N N
2*

1 2 2

t 0 t 0

E [H ( )H( )]

E[ [t; ] ] E[ [t; ] [t; ]]

E[ [t; ] [t; ]] E[ [t; ] ]



= =

= =

  =

 
      

 
 

      
 

 

 

           (22) 

 

The frequency value in the RBF method is 

considered between -0.5 to 0.5. To find E[∅[t; Θ]] 
using Equations (21) and (22) and to consider a 

uniform PDF for F0 in the frequency range [𝑓1, 𝑓2], 
Equation (23) is obtained as follow: 

 

2

0
1

2

1

0 0

0 0 0

0 0

2 1

[ [ ; ]] [ [ ; ]] [exp( 2 )]

exp( 2 ) ( )

1
exp( 2 )

sin( )
exp( 2 )

= = +

= +

== +
−

= +





f

F
f

f

f

E t E t F E j F t

j F t P f df

j F t df
f f

Bt
j t

Bn

    

 

 


 



           (23) 

 

 Where B = 𝑓2 − 𝑓1 and μ =
𝑓2+𝑓1

2
 are respectively 

bandwidth and center of the frequency range. Using 

equations (20), (22), and (23), we can reach Equation 

(24), where 𝜔𝑠
(1)[𝑡] =  

sin (𝜋B(1)𝑡)

𝜋B(1)𝑡
. 

 
(1) (1)

2 ( )
1 2

(1) (1)
1 2

(1)
1

(1)
2

1
2 e

01

1
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0

1
22

0

1
22

0
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[ ]e

[ ] [ ]e

[ ] [ ]e

−
−

−

=

−
−

=

−
− +

=

−
+

=

 
  
 =  
  
 
 

 
 
 
 
 
 









j t
N

s

t

N
j t

s

t

N
j t

s

t

N
j t

s

t

N t e
A

A
t N

y t t

y t t

  

  

 

 









 (24) 

 

The following algorithm can be considered to 

estimate the frequency of a complex sine in noise. 

Suppose the unknown parameter 𝑓0 belongs to the 

interval [−𝑎, 𝑎]. In this case, the interval related to the 

estimated parameter 𝑓0 is split into two equal intervals 

[15]. 

Step 1: For the first step of k steps, which is shown 

with superscript (1), we consider the frequency of the 

first step as 𝑓1l

(1)
= −0.5, 𝑓ul

(1)
= 0 and the second 

frequency interval as 𝑓2l

(1)
= 0, 𝑓2𝑢

(1)
= 0.5. We select 

the center of the first and second frequency bands 
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respectively as μ1 =
−1

4
 and μ2 =

1

4
. Also, we consider 

the frequency band terminal as B(1) = 0.5. 

 

Step 2: Using Equation (24), we estimate the complex 

amplitudes of the two frequency bands separately from 

the previous step. 

 

Step 3: We select the interval with a higher power 

|𝐴(1)|
2
 from the previous two intervals as the new 

interval and then split it into two separate intervals. In 

this case, we define 𝑓2l

(2)
, 𝑓2u

(2)
, 𝑓1l

(2)
, 𝑓1u

(2)
, and 

μ1
(2)

، μ2
(2)

 B(2) =
B(1)

2
=

1

4
. 

 

Step 4: We repeat steps 1 and 2 based on the new 

estimation interval of the third step and considering the 

upper and lower limits corresponding to the new 

interval. This will continue until the bandwidth is 

minimized. The bandwidth reduces by a factor of 
1

2
 at 

each step, thereby, the bandwidth of the last interval is 
1

2𝑘. 

 

Step 5: After k iterations, the frequency estimate will 

be: 

 

𝑓0 =
1

2
(𝑓𝑢

(𝑘)
+ 𝑓𝑙

(𝑘)
)                 (25) 

 

3.  CHIRP SIGNAL PARAMETER ESTIMATION 

METHODS 

The chirp signal model is considered as a complex 

exponential signal in which the instantaneous 

frequency of this signal increases linearly with time. 

The slope of the frequency changes with 𝑘𝑟 is shown. 

The intercept of the instantaneous frequency of this 

signal is the central frequency carrying 𝑓0. If there is a 

linear relationship between time and frequency, the 

chirp signal is known as an LFM. The quadratic 

relationship between time and frequency leads to the 

Quadratic Frequency Modulated (QFM) signal. The 

complex chirp signal model is considered as Equation 

(26) as: 

 

𝑥(𝑡) = 𝑎𝑒𝑗 ( 2𝜋(0.5 𝑘𝑟 𝑡2+𝑓0 𝑡 ) ), 𝑡 = 0 , . . . , 𝑁 − 1      (26) 

 

 
 

Fig. 1. Illustration of QFM and LFM signal [17]. 

 

3.1. Estimation of Phase Parameters Sequentially in 

Discrete Polynomial Transform (DPT) Method 

Algorithms designed to estimate phase parameters 

sequentially, diminish the order of polynomials in 

complex exponential power to lower-order polynomials 

𝑒𝑗 𝑘𝑟
′𝑡+𝑗𝜑. Using the NLS method, we can estimate 

higher-order parameters. Then, we can estimate lower-

order parameters by neutralizing the impact of higher-

order parameters. This operation continues until all 

complex exponential parameters were estimated [9]. If 

the noiseless signal is defined as Equation (26), r(t) can 

be defined as follows: 

 

𝑟(𝑡) = 𝑥(𝑡 + 𝜏) 𝑥∗(𝑡) = 𝐴 𝑒𝑗 2𝜋 (2×0.5×𝑡× 𝑘𝑟×𝜏) , 𝑡 =
0, . . . , 𝑁 − 1 − 𝜏                              (27) 

 

Where, the complex amplitude A is as 

|𝑎|2𝑒𝑗(𝑓0𝜏+ 𝑘𝑟𝜏2), 𝜏 is a positive integer, and * 

represents the conjugate of a complex number. 

Therefore, we can estimate frequency τ𝑘𝑟 using the 

estimation methods. When the frequency τ𝑘𝑟 is 
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estimated, the demodulated signal of signal 𝑥(𝑡) is 

considered as follows: 

 

𝑧(𝑡) = 𝑥(𝑡)𝑒−𝑗 2𝜋 (0.5 𝑘𝑟̂  ̂  𝑡2) ≃ 𝑎𝑒𝑗2𝜋𝑓0𝑡                 (28) 

 

Where 𝑘𝑟̂ denotes an estimate of the slope of the 

change in frequency of the chirp signal. The signal z(t) 

is also a complex exponential signal with frequency 𝑓0 

or the central frequency of the chirp signal. If 𝑘𝑟̂ = 𝑘𝑟, 

we can by the generated signal z(t) obtain the 

parameter 𝑓0 using a frequency estimation method. In 

the DPT method, the chirp rate is estimated using the 

NLS method. 

 

3.2. Iteration Algorithm (promoted DPT) 

Ikram [18] used an iteration algorithm to improve 

the estimation accuracy of the parameters 𝑘𝑟 and 𝑓0. 

The iteration algorithm consists of two steps. The first 

step is to estimate the parameter 𝑘𝑟 and improve its 

accuracy using consecutive iterations and the second 

step is to estimate the parameter 𝑓0. 

Step 1: Consider the following definition: 

 
*

1 1 1 1( ) ( ) ( ), 0,1,..., 1− + − −= + = − −k k k k kr t w t w t t N         (29) 

 

Where, 𝑤𝑘−1 is also defined as follows: 

 
2

1
2 (0.5 )

1( ) ( ) , 0,1,..., 1−
−

− = = −rk
j k t

kw t y t e t N
               (30) 

 

Where, the parameter k represents the kth iteration 

of the first step. For the first iteration (k = 1), the initial 

value of 𝑘𝑟  ̂ = 0 and τ = 1 is selected. Therefore, in 

the first iteration, Equation (29) will be as follows: 

 

𝑟1(𝑡) = 𝑦(𝑡 + 𝜏0) 𝑦∗(𝑡),   𝑡 = 0, . . . , 𝑁 − 1 − 𝜏0     (31) 

 

Which leads to the estimation of the parameter 𝑘𝑟  ̂1. 

In the second and higher iterations (k = 2, …), the 

demodulated signal 𝑤𝑘−1(𝑡) is as a chirp signal with 

central frequency 𝑓0, and the slope of variation in the 

chirp signal frequency is as ∆𝑘𝑟𝑘−1 = 𝑘𝑟 − 𝑘𝑟̂𝑘−1
. We 

can estimate the value of ∆𝑘𝑟𝑘−1 using 𝑟𝑘(𝑡). The 

improved value of the 𝑘𝑟 estimation is as follows: 

 

𝑘𝑟𝑘̂ = ∆𝑘𝑟𝑘−1
+ 𝑘𝑟̂𝑘−1

                 (32) 

 

When the value of |∆𝑘𝑟𝑘−1
| is too small (or after a 

certain number of iterations), the first step stops. To 

avoid ambiguity in the first step, the value of τ starts 

with small values such as (𝜏 = 1). After estimating the 

parameter 𝑘𝑟 with acceptable accuracy, we estimate the 

parameter 𝑓0 using the signal z(t) in Equation (28). 

After estimating the parameters 𝑘𝑟 and 𝑓0, we can 

estimate the signal amplitude as follows: 

2
0

2
0

1 2
(2 (0.5 ))

0

1 2
(2 (0.5 ))

0

arg min ( )

1
( )

−
+

=

−
+

=

= −

=





r

r

N
j k t f t

a
t

N
j k t f t

t

a y t ae

y t e
N





               (33) 

 

 

3.3. DCFT Method 

The second-order chirp signal is a non-stationary 

signal. In SAR imaging, when the targets are moving at 

a constant speed, the signal transmitted from these 

targets is a second-order chirp signal. Signals returned 

from these targets on the radar contain essential 

information about mobile targets such as speed and 

location. In the second-order chirp signal, besides the 

central frequency, the chirp rate is also available, and 

the DFT matches the multi-harmonic frequency. Using 

DFT transform, we can efficiently estimate the 

harmonics of stationary signals, but for non-stationary 

signals, such as chirps, DFT will perform very poorly 

due to considerable variations in the frequency 

characteristics of these types of signals with the time. 

Therefore, we often use Discrete Chirp-Fourier 

Transform (DCFT) to process non-stationary signals 

(especially chirps). DCFT transform is a generalization 

of DFT transform that can help us to obtain the chirp 

rate of discrete-time signals with an acceptable 

approximation. The DCFT method is the extension of 

the DFT transform for the chirp signal and is used to 

estimate the central frequency parameters and the chirp 

rate. In DFT transform, if the input signal is a 

combination of several sinusoidal components, the 

DFT output will contain peaks at the same frequencies 

corresponding to the input signal harmonics. DFT 

transform of a discrete signal is as follows: 
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Where, 0jkn

NW e
−

= , and DCFT transform is 

defined by a similar equation as follows: 
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The parameters k and 𝑙 represent constant 

frequencies and chirp rates, respectively. The DCFT of 

signal 𝑥(𝑛) is the same as the DFT of signal 𝑥(𝑛)𝑊𝑁
𝑙𝑛2

, 

and for 𝑙 = 0, the DCFT of signal 𝑥(𝑛) will be equal to 

its DFT. For extraction of the two parameters 

(harmonic frequency and chirp rate), we need a 3D plot 

of the function 𝑋𝑐(𝑘, 𝑙) obtained from the DCFT 

definition equation at values of k and l. Also, we should 

save the values of k and l as the response (desired 

estimation) from points where peaks have occurred. In 

[19], a particular example is given to illustrate the 

DCFT transform performance when the input signal is 
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a combination of two integrated chirp signals. Fig. 2 

shows the output power spectrum of the DCFT 

transform in terms of frequency and Doppler rate in the 

form of a 3D function. The values of harmonic 

frequency and chirp rate (parameters k and l in the 

previous equations) were respectively 42 and 15 (for 

the first signal) and 45 and 44 (for the second signal), 

indicating that these two signals are merged (normal 

sum). Also, the SNR of these two signals is 

respectively 0 and 6dB. In Fig. 2, the DCFT output 

power spectrum has two peaks, showing the same 

coordinates of the two combined chirp signals. Fig. 2 

confirms the high accuracy of DCFT estimation. 

 

 
 

Fig. 2. DCFT output power spectrum in a specific 

mode by combining two chirp signals [19]. 

 

4.  SIMULATION RESULT 

Algorithms intended to estimate phase parameters 

sequentially, diminish the order of polynomials in 

complex exponential power to lower-order 

polynomials. Using the NLS method, we can estimate 

higher-order parameters. Then, lower-order parameters 

are estimated by neutralizing the impact of higher-order 

parameters. The NLS method in the mono-exponential 

mood is the same as the periodogram method. The 

promoted DPT method improves the accuracy of the 

DPT chirp rate using an iterative algorithm with 

accessible data. In the DPT and promoted DPT 

methods, the central frequency and the chirp rate at 

each step are calculated by the periodogram method. 

The periodogram method, which uses FFT to diminish 

the computational load of frequency domain search, 

comes with some restrictions such limited amount of 

Mean Squared Error (MSE) for the estimated frequency 

and the high rate of calculations than other methods 

proposed for estimating frequency. Therefore, in [20], 

the idea of using another method for frequency 

estimation to enhance the accuracy of DPT and 

promoted DPT algorithms is presented. Thereby, the 

estimation accuracy can be increased by using the RBF 

method instead of the NLS [20-22]. In these 

simulations, 10,000 experiments are conducted 

independently, and the inverse MSE of the estimation 

of the parameters in these simulations at different SNRs 

are compared with the inverse CRLB criterion. The 

number of accessible samples is 20, the central 

frequency is 0.3, and the chirp rate is 0.2. The length of 

FFT for the implementation of NLS and DCFT 

methods is 128. Figs. 3 and 4 show the performance of 

NLS-DPT, DPT-RBF, and DCFT methods for 

estimating phase parameters of the chip signal [20-22]. 

 

 
 

Fig. 3. MSE inverse versus SNR for chirp rate 

estimation in different SNR by DPT with NLS, DCFT, 

and DPT with RBF methods. 

 

 
 

Fig. 4. MSE inverse versus SNR for central frequency 

estimation in different SNR by DPT with NLS, DCFT, 

and DPT with RBF methods. 

 

Figs. 5 and 6 show the performance of the promoted 

DPT-NLS and promoted DPT-RBF methods for 

estimating the chip phase signal parameters with a 

chirp rate of 0.2 and a central frequency of 0.3. 
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Fig. 5. MSE inverse versus SNR for chirp rate 

estimation in different SNR using Promoted DPT-NLS 

and Promoted DPT- RBF methods. 

 

 
 

Fig. 6. MSE inverse versus SNR for central frequency 

estimation in different SNR by Promoted DPT-NLS 

and Promoted DPT- RBF methods. 

 

The MSE of the DPT method is far from the CRLB 

criterion. Differently put, this method comes with 

considerable errors. This problem has been somewhat 

fixed in the promoted DPT method. The error with 

estimating the rate of chirp has been decreased in the 

promoted DPT method. The DPT and promoted DPT 

with NLS method performs better than the DPT and 

promoted DPT with RBF method at low SNRs. At high 

SNRs, the DPT and promoted DPT with RBF estimator 

performs better than the DPT and promoted DPT with 

NLS method [20-22]. In the following sections, the bias 

of the aforementioned estimators is simulated and 

calculated. Figs. 7 to 18 show the bias of these 

methods. 

 
 

Fig. 7. Bias of NLS estimator for kr estimation of chirp 

signal. 

 

 
 

Fig. 8. Bias of NLS estimator for f0 estimation of chirp 

signal. 

 

 
 

Fig. 9. Bias of RBF estimator for kr estimation of chirp 

signal. 
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Fig. 10. Bias of RBF estimator for f0 estimation of 

chirp signal. 

 

 
 

Fig. 11. Bias for kr estimation of chirp signal in DPT-

NLS method. 

 

 
 

Fig. 12. Bias for f0 estimation of chirp signal in DPT-

NLS method. 

 
 

Fig. 13. Bias for f0 estimation of chirp signal in DPT-

NLS method. 

 

 
 

Fig. 14. Bias for f0 estimation of chirp signal in DPT-

NLS method. 

 

 
 

Fig. 15. Bias for kr estimation of chirp signal in 

promoted DPT-NLS method. 
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Fig. 16. Bias for f0 estimation of chirp signal in 

promoted DPT-NLS method. 

 

 
 

Fig. 17. Bias for f0 estimation of chirp signal in 

promoted DPT-NLS method. 

 

 
 

Fig. 18. Bias for f0 estimation of chirp signal in 

promoted DPT-RBF method. 

Table 1 shows the bias values of the different 

estimators for estimating the parameters (kr) and (𝑓0). 

To calculate the bias of each estimator, the absolute 

values of the estimator error were averaged in several 

experiments (10,000 experiments in these simulations) 

and the value is shown in Table (1). 

 

Table 1. The bias values of the different estimators for 

estimating the parameters (kr) and (f0). 

Method 
Bias for 

estimation of kr 

Bias for 

estimation of f0 

NLS 53.1395 10−   
58.8959 10−  

RBF 51.3219 10−   
53.7103 10−  

DPT-NLS 51.3347 10−   
52.2316 10−  

DPT-RBF 61.1391 10−   
66.7868 10−  

Promoted DPT-NLS 71.4265 10−   52.1924 10−  

Promoted DPT-RBF 84.8087 10−   
51.7750 10−  

DCFT 55.6556 10−   53.5649 10−  

 

5.  CONCLUSION 

In this study, we investigated and calculated the 

bias of the RBF method (instead of the NLS method) in 

algorithms intended for estimating phase parameters, 

i.e., DPT and promoted DPT, and compared the results 

with the results of the DCFT method. As mentioned in 

the section (4), using the RBF method instead of the 

NLS in the promoted DPT and DPT methods, the 

performance of the promoted DPT and DPT methods in 

high SNRs is developed which these changes are more 

considerable at higher SNRs. From Table  (1), the DPT 

with RBF and promoted DPT with RBF methods show 

better performance than the DCFT method due to the 

less bias. 
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