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ABSTRACT: 

The 4-moduli set residue number system  (RNS), {2𝑛 + 3,2𝑛 − 3,2𝑛 + 1, 2𝑛 − 1}, with a wide dynamic range, has 

recently been proposed as a balanced 4-moduli set for utilizing the cases that demand fast calculations such as deep 

learning and implementation of asymmetric cryptographic algorithms. Up to now, only an unsigned reverse converter 

has been designed for this moduli set. Thus, there is a need for two separate units, a sign detection circuit, and a 

comparator to use this set in cases requiring sign and comparison. Nevertheless, the existence of these components 

demands high hardware that makes the implementation of the RNS impractical. Therefore, this paper presents the design 

of a sign detection circuit and a signed reverse converter that can overcome this problem by reusing the hardware. To 

achieve an integrated hardware design, first, we optimized the previous unsigned reverse converter for this 4-moduli set 

and next, we derived an approach from the structure of the reverse convertor for detecting signs and recognizing 

comparators. Finally, using the sign signals extracted from the reverse converter, we change reverse convertor into a 

unit that perform sign detection and comparison. The simulation has been conducted using ISE Design Suite 14.7 tool 

and the Spartan6 family technology. Empirical results show that, the proposed multifunctional unit has an approximately 

identical performance with respect to delay and area compared to the previous reverse converter. Besides, the proposed 

signed reverse converter relies on a 46% and 28% reduction in area and delay compared to the previous unsigned reverse 

converter which uses a comparator and also a multiplexer to detect a sign in the output.  

 

KEYWORDS: Residue Number System, Reverse Converter, Computer Arithmetic, Sign Detection. 

  

1.  INTRODUCTION 

The efficiency of VLSI circuits, including digital 

signal processing, encryption systems, deep learning, 

and cases in which excessive and repetitive addition and 

multiplication operations are needed, is determined 

based on efficiency of the arithmetic units like adders 

and multipliers. A suitable representation of numbers 

increases the efficiency of the functions of arithmetic 

unit. By increasing the bit width, the calculation speed 

decreases in the binary number system; this happens 

because of the possibility of carry propagation from 

Least Significant Bits (LSB) to Most Significant Bits 

(MSB). Thus, this limitation has introduced different 

numerical systems such as the residue number system 

(RNS) [1]. Residue number system has been recognized 

as a tool for creating parallelism to perform arithmetic 

operations such as addition and multiplication 

efficiently [2]. Aside from traditional RNS applications 

including digital signal processing [3] and encryption 

[4], this technology has been used in emerging 

applications as in deep learning [5-8], DNA calculations 

[9], and modern encryptions [10]. The most important 

point in designing the RNS system is choosing the 

moduli set [11]. The parallelism degree, the complexity 

of operations among modules, and the dynamic range 

depend on the type of moduli set. Accordingly, many 

specific moduli sets have been presented for RNS and 

categorized as arithmetic moduli sets (balanced) and 

conversion-friendly moduli sets (unbalanced) [12-23]. 

Balance moduli sets are suitable for operations such as 

encryption and convolutional deep learning, in which the 

internal addition and multiplication rate is considerably 

more than the required conversions. One of the 

remarkable balanced moduli sets is {2𝑛 + 3,2𝑛 −
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3,2𝑛 + 1, 2𝑛 − 1} as it uses the entirely balance moduli, 

2𝑛 ± 1 and 2𝑛 ± 3. However, including the 2𝑛 ± 3 

moduli leads to more complexities of the inter-modular 

operations such as reverse conversion, sign detection, 

and comparison. These problems indicate a limit for 

using this kind of moduli sets in unsigned applications, 

whereas most software applications including deep 

learning require working with signed numbers. In this 

paper, for the first time, the sign detecting component 

and comparator for the {2𝑛 + 3,2𝑛 − 3,2𝑛 + 1, 2𝑛 − 1} 
moduli set is proposed. First of all, the previous 

unsigned reverse converter has been optimized for this 

moduli set to reduce hardware complexity and delay. 

Next, we derive an algorithm for sign detection and 

magnitude comparison for this moduli set. The proposed 

method uses the same reverse converter to extract sign. 

It is achievable to create a unit that can perform a set of 

operations, i.e. sign detection, comparison, and signed 

reverse conversion. Experimental results show the effect 

of the proposed method. In the rest of paper, Sections 2 

and 3 deal with the background and concisely state the 

formulas and the leading construction of unsigned 

reverse convertor in the {2𝑛 + 3,2𝑛 − 3,2𝑛 + 1, 2𝑛 − 1} 
moduli set. Section 4 reports the reverse converter, and 

sections 5-7 depict the proposed algorithm for sign 

detection and magnitude comparison. Finally, 

performance evaluation is presented in sections 8-9.  

 

2.  RELATED WORKS 

One of the most important obstacles in using RNS is 

the absence of efficient sign detection and magnitude 

comparison circuits. Unlike the binary number system, 

by the value of which sign detection based on bits is 

carried out, in the residue number system this method is 

not applicable since the numbers are non-weighted. The 

sign of a number in RNS is determined according to the 

division of its dynamic range into two equal parts and 

also according to this point that the number is located 

whether in the upper half of the range or in the lower half 

of that. This operation is usually carried out by a 

comparator in RNS and is considered difficult and 

complex. A comparator is normally located in the output 

of the reverse convertor to detect a sign in a conditional 

operation [24]. A new approach has recently been 

proposed for improving and increasing the efficiency of 

reverse convertors through which we can achieve the 

sign inside a reverse convertor in order to minimize the 

area, delay, and energy consumption. Therefore, 

numerous studies have been conducted towards the field 

of sign detection and magnitude comparison for 

conversion-friendly moduli sets [25-29]. Nevertheless, 

owing to the shortage of extensive dynamic range, such 

moduli sets are not appropriate for a number of 

applications which require implementation of high-

speed arithmetic such as encryption. Currently, 

researchers have aimed to find large dynamic range 

moduli sets (over three modules) [22-23]. Designing a 

signed reverse convertor for such moduli sets is 

accompanied with many complexities. Nonetheless, in 

[31], a new method for designing reverse convertors, for 

a particular class of moduli sets with {2𝑘 . 2𝑝 − 1} form, 

commonly known as C-Class, is presented. Using the 

above leads to the creation of computational channels 

that easily process the RNS numbers. The Chinese 

Remainder Theorem 1 (New-CRT-I) is regarded as one 

of the options to design a reverse convertor for such sets  

based on the relation 𝑋 = 𝑥1 + 2
𝑘𝑌. The division of the 

dynamic range into two parts provides an upper half 

which is smaller than  𝑀 2⁄ , and a MSB which equals 

zero and is situated within the spectrum of positive 

numbers. However, the lower half is bigger than  𝑀 2⁄  

and has a MSB which equals one and is located within 

the spectrum of negative numbers. The number of  𝑀 2⁄  

with a MSB equal to zero possesses K states, half of 

which have a MSB equal to zero and are situated within 

the spectrum of positive numbers, and the rest has a 

MSB equal to one situated within the spectrum of 

negative numbers. In [31], the sign is identified through 

designing a sign detection unit which constitutes a 

number of logic gates and through analyzing the MSB. 

In [32-33], another categorization of moduli sets, known 

as A-Class, with the   {2𝑘 . 2𝑝 − 1. 22𝑛 − 1} form, is 

identified by implementing some changes in the 

previous sign detection unit and by applying the New-

CRT-I. In the present study, a similar method alongside 

with using the MRC algorithm is utilized for detecting 

the sign.  

 

3.  BACKGROUND 

The Residue Number System (RNS) is a modular 

number system that is able to do arithmetic operations in 

a parallel manner without carry propagating between the 

residues. The residue number system is designed based 

on a moduli set whose moduli are pairwise relatively 

prime such as {𝑃1, 𝑃2, … ,𝑃𝑛}. Then, weighted binary 

numbers get converted into the (𝑥1, 𝑥2, … ,𝑥𝑛) form of 

residues through using the equation 𝑥𝑖 = 𝑋 𝑚𝑜𝑑 𝑃𝑖 =
|𝑋|𝑃𝑖 . The product of the moduli, namely 𝑀 =

 𝑃1 × 𝑃2 × …× 𝑃𝑛, defines the dynamic range. The 

dynamic range displays the spectrum of integers that can 

be shown in the residue number system. This dynamic 

range is equal to 𝐷𝑅 = [0,𝑀) for unsigned residue 

number system. Therefore, for the signed residue 

number system, the dynamic range is divided into two 

parts (1) and (2): 

𝑂𝑑𝑑 ∶     {
[0, 

𝑀−1

2
] ∶   𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

[
𝑀+1

2
, 𝑀 − 1] ∶   𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

              (1) 
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𝐸𝑣𝑒𝑛 ∶    {
[0, 

𝑀

2
− 1] ∶   𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

[
𝑀

2
, 𝑀 − 1] ∶   𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

              (2) 

T 

he RNS number can be transformed to regular 

number using the reverse convertor. This reverse 

conversion can be based on the Mixed-Radix 

Conversion (MRC) method or the Chinese Remainder 

Theorem 1 (New-CRT-I) [20]. For instance, the 

weighted number X can be achieved based on the 

residues (𝑥1, 𝑥2, … ,𝑥𝑛) and the moduli set 

{𝑃1, 𝑃2, … ,𝑃𝑛} through using the Chinese Remainder 

Theorem 1 and (3). 

 

𝑋 = 𝑥1 + 𝑃1|𝑘1(𝑥2 − 𝑥1) + 𝑘2𝑃2(𝑥3 − 𝑥2) + ⋯+
𝑘𝑛−1𝑃2𝑃3…𝑃𝑛−1(𝑥𝑛 − 𝑥𝑛−1)|𝑃2𝑃3…𝑃𝑛              (3) 

 

The multiplicative inverses can be obtained using the 

following relations: 

 

|𝑘1 × 𝑃1|𝑃2𝑃3…𝑃𝑛 = 1                (4) 

|𝑘2 × 𝑃1 × 𝑃2|𝑃3…𝑃𝑛 = 1                (5) 

|𝑘3 × 𝑃1 × 𝑃2 × …× 𝑃𝑛−1|𝑃𝑛 = 1               (6) 

 

First, the reverse converter can be obtained for the 4-

moduli set {2𝑛 + 1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3} using the 

New-CRT-I. Thus, principle and architectural [22] 

formulas have been investigated here briefly. At first, 

two conversions for {2𝑛 + 1, 2𝑛 − 1} and {2𝑛 + 3, 2𝑛 −
3} moduli sets occur in a parallel and simultaneous 

manner. 

In the first stage, the reverse converter carries out the 

conversion process for the {2𝑛 + 1, 2𝑛 − 1} moduli set, 

using the New CRT-I algorithm and (7).  

 

𝑋𝐼 = 𝑥1 + (2
𝑛 + 1)|𝐾𝐼(𝑥2 − 𝑥1)|2𝑛−1              (7) 

 

Also, in parallel to this stage, the reverse convertor 

carries out the conversion process for the {2𝑛 + 3, 2𝑛 −
3} moduli set, using the New-CRT-I algorithm and (8).  

 

𝑋𝐽 = 𝑥3 + (2
𝑛 + 3)|𝐾𝐽(𝑥4 − 𝑥3)|2𝑛−3              (8) 

 

Eventually, through using the values obtained from 

(7) and (8), (𝑋𝐼 , 𝑋𝐽) for the general moduli set {22𝑛 −

1, 22𝑛 − 9}, using the New-CRT-I algorithm, the value 

of 𝑋 is realized by utilizing (9). 

 

𝑋 =  𝑋𝐽 + (2
2𝑛 −  9)|𝐾(𝑋𝐼 − 𝑋𝐽)|22𝑛−1              (9) 

 

Where the three multiplicative inverses, 𝐾𝐼 ,  𝐾𝐽, and 

𝐾, have been proved and calculated in [20]. 

Thus, the general structure of the reverse converter 

for the 4-moduli set {2𝑛 + 1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3} is 

depicted in Fig. 1. In this structure, operand preparation 

unit 1 (Opu-I), Opu-J, and Opu-F conduct the required 

shifts and inversions. Then, the reverse conversion was 

implemented using the carry-save adder (CSA) and the 

carry propagate adder (CPA). 

 

Opu-I Opu-J

EAC-Csa-Tree Csa-Tree

EAC-Cpa Cpa

Opu

EAC-Cpa

Opu-F

Csa-Tree

Cpa

X1 X2 X3 X4

XI XJ

X

…..... …….

……...

 
Fig. 1. General overview of the unsigned reverse 

converter [20]. 

 

4.  REVERSE CONVERTOR 

In this section, by changing the structure of the 

reverse converter of [22-23] and by using the New-CRT-

I and MRC algorithms for the 4-moduli set {2𝑛 +
1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3}, we conduct it into a reverse 

converter with a sign detection and magnitude 

comparison circuit. In the first stage (section 4.1), by 

using the New-CRT-I algorithm, the reverse converter 

for the subset {2𝑛 + 1, 2𝑛 − 1} is obtained. In the second 

stage (section 4.2), by using the New-CRT-I algorithm, 

the reverse converter for the subset {2𝑛 + 3, 2𝑛 − 3} is 

obtained, and finally, by using the MRC, the reverse 

convertor for the final moduli set {22𝑛 − 1, 22𝑛 − 9} is 

obtained (section 4.3).  

 

4.1.  Reverse Convertor for 𝑰 = {𝟐𝒏 + 𝟏, 𝟐𝒏 − 𝟏} 
The Reverse Convertor for the {2𝑛 + 1, 2𝑛 − 1} 

moduli set is as follows: 

 

𝑋𝐼 = 𝑥3 + (2
𝑛 + 1)|𝐾𝐼(𝑥4 − 𝑥3)|2𝑛−1            (10) 

 

Therefore, considering the multiplicative inverses 

𝐾𝐼 =  2
𝑛−1 and the relation 𝑃1|𝑍|𝑃2 = |𝑃1𝑍|𝑃1𝑃2, the 

abovementioned equation can be rewritten follows: 
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𝑋𝐼 = |𝑥3 + (2
𝑛 + 1)2𝑛−1(𝑥4 − 𝑥3)|22𝑛−1 =

|2𝑛−1(2𝑛 + 1)𝑥4 + 2
2𝑛−1𝑥3 + 2

𝑛−1𝑥̅3 + (2
𝑛−1 −

1)|22𝑛−1               (11) 

 

4.2.  Reverse Converter for 𝑱 = {𝟐𝒏 + 𝟑, 𝟐𝒏 − 𝟑} 
The equation of the reverse converter for the 2-

moduli set {2𝑛 + 3, 2𝑛 − 3} is based on the same 

equations presented in [22-23] as shown by (12). 

 

𝑋𝐽 = 𝑥2 + (2
𝑛 + 3)|𝐾𝐽(𝑥3 − 𝑥2)|2𝑛−3            (12) 

 

Considering that the two moduli, 2𝑛 + 3 and 2𝑛 − 3, 

are relatively prime to each other, the inverse 

multiplication is calculated as follows: 

 

|𝐾𝐽 × (2
𝑛 + 3)|

2𝑛−3
= 1 → 𝐾𝐽 = |(2

𝑛 +

3)−1|2𝑛−3 → |𝑘𝐽 × (2
𝑛 + 3)|

2𝑛−3
= |𝑘𝐽 × 6|2𝑛−3

→ 𝐾𝐽 = |
1

6
|
2𝑛−3

                (13) 

 

Therefore, we have: 

 

𝐾𝐽 =

 {

(2𝑛−1−2)

−3
 = −(2𝑛−3 + 2𝑛−5 +⋯+ 21)     𝑒𝑣𝑒𝑛 𝑛

(2𝑛−1−1)

3
 =     (2𝑛−3 + 2𝑛−5 +⋯+ 20)      𝑜𝑑𝑑 𝑛

(14) 

 

Now, the value of   𝑋𝐽 is expressible using the inverse 

multiplication calculated in (14) as (15) suggests. 

 

𝑋𝐽 = 𝑥2 + (2
𝑛 + 3) |𝐾𝐽(𝑥3 − (3𝐶𝑛 + 𝑥̂2)⏞      

𝑥2

)|

2𝑛−3

(15) 

 

It should be noted that in the abovementioned 

equation, the residue value 𝑥2 belongs to the 2𝑛 + 3 

modulo and its bit width is (𝑛 + 1).  
 

4.3.  Reverse Converter for the {𝟐𝟐𝒏 − 𝟏, 𝟐𝟐𝒏 − 𝟗} 
The final value of 𝑋 is calculated using (16) to (19). 

  

𝑋 = 𝑉1 + 𝑉2𝑃1 + 𝑉3𝑃1𝑃2 +⋯+ 𝑉𝑛∏ 𝑃𝑖
𝑛−1
𝑖=1        (16) 

 

𝑉1 = 𝑥1               (17) 

 

𝑉2 = |(𝑥2 − 𝑉1)|𝑃1
−1|𝑃2|𝑃2

             (18) 

 

𝑉3 = |((𝑥3 − 𝑉1)|𝑃1
−1|𝑃3 − 𝑉2)|𝑃2

−1|𝑃3|𝑃3
          (19) 

 

Generally, (17) to (19) are expressible as (20).  

 

𝑉𝑛 = |(((𝑥𝑛 − 𝑉1)|𝑃1
−1|𝑃𝑛 − 𝑉2)|𝑃2

−1|𝑃𝑛 −⋯−

𝑉𝑛−1)|𝑃𝑛−1
−1 |𝑃𝑛|𝑃𝑛

              (20) 

 

Thus, by using the defined equations, the reverse 

convertor can be expressed for the residue values, 

(𝑋𝐼 , 𝑋𝐽), and the moduli set {22𝑛 − 1, 22𝑛 − 9} as (21) 

and (22) propose.  

 

𝑉1 = 𝑋𝐽               (21) 

𝑉2 = |(𝑋𝐼 − 𝑉1)|(2
2𝑛 − 9)−1|(22𝑛−1)|(22𝑛−1)

     (22) 

 

Now, the inverse multiplication of |(22𝑛 −
9)−1|(22𝑛−1) can be calculated as it is expressed in (23). 

 

𝐾 = |(22𝑛 − 9)−1|(22𝑛−1) → 𝐾 = −2
2𝑛−3            (23) 

 

Through placing the obtained inverse multiplication 

value in (23), the (24) can be obtained.  

 

𝑉2 = |(𝑋𝐼 − 𝑋𝐽)(−2
2𝑛−3)|

(22𝑛−1)
→            (24) 

𝑉2 = |(𝑋𝐽 − 𝑋𝐼)(2
2𝑛−3)|

(22𝑛−1)
→  

𝑉2 = |2
2𝑛−3((𝑋𝐽,2𝑛−1……𝑋𝐽,0) −

(𝑋𝐼,2𝑛−1……𝑋𝐼,0))|22𝑛−1 →  

𝑉2 = |(𝑋𝐽,2𝑋𝐽,1𝑋𝐽,0𝑋𝐽,2𝑛−1……𝑋𝐽,3) −

 (𝑋𝐼,2𝑋𝐼,1𝑋𝐼,0𝑋𝐼,2𝑛−1……𝑋𝐼,3)|22𝑛−1 →  

𝑉2 = (𝑋𝐽,2𝑋𝐽,1𝑋𝐽,0𝑋𝐽,2𝑛−1……𝑋𝐽,3) +

(𝑋𝐼,2̅̅ ̅̅̅𝑋𝐼,1̅̅ ̅̅̅𝑋𝐼,0̅̅ ̅̅̅𝑋𝐼,2𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅ ……𝑋𝐼,3̅̅ ̅̅̅)  

 

Therefore, in accordance with the MRC formula, 𝑋 

is calculated as (25). 

 

𝑋 = 𝑉1 + 𝑉2𝑃1 + 𝑉3𝑃1𝑃2 +⋯+ 𝑉𝑛∏ 𝑃𝑖
𝑛−1
𝑖=1 →  (25) 

𝑋 = 𝑉1 + 𝑉2𝑃1 →  

𝑋 = 𝑋𝐽 + 𝑉2(2
2𝑛 − 9) = 𝑋𝐽 + 2

2𝑛𝑉2 − 2
3𝑉2 −

𝑉2 →  

𝑋 = (0…0⏞  
2𝑛

𝑥𝐽.2𝑛−1…𝑥𝐽.0⏞        
2𝑛

) +

(𝑉2,2𝑛−1…𝑉2,0⏞        
2𝑛

0…0⏞  
2𝑛

)  − (0…0⏞  
2𝑛−3

𝑉2,2𝑛−1…𝑉2,0⏞        
2𝑛

000⏞
3

)  −

(0…0⏞  
2𝑛

𝑉2,2𝑛−1…𝑉2,0⏞        
2𝑛

)  
 

Thus, (25) can be rewritten as (26): 

 

𝑋 = (𝑉2,2𝑛−1…𝑉2,0⏞        
2𝑛

𝑥𝐽.2𝑛−1…𝑥𝐽.0⏞        
2𝑛

) +

((1… 1⏞  
2𝑛−3

𝑉2,2𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅ …𝑉2,0̅̅ ̅̅ ̅
⏞        

2𝑛

111⏞
3

) + (1…1⏞  
2𝑛

𝑉2,2𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅ …𝑉2,0̅̅ ̅̅ ̅
⏞        

2𝑛

) +

2             (26) 

 

The structure of the proposed reverse converter is 

shown in Fig. 2. 
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Comparator

Opu-IOpu-J

EAC-Csa-TreeCsa-Tree

EAC-CpaCpa

Opu-IJ

EAC-Cpa

Opu

Csa-Tree

Cpa

2n

n+1 nn+1 n

X1 X2X3 X4

XIXJ

X

…….…….

……...

2n 2n
=V1

V2

Sign 

Detection 

Unit

Sign

Sign Detection

&

Comparator

 
Fig. 2. The structure of the proposed multifunctional 

unit including reverse convertor, sign detection, and 

magnitude comparison. 

 

Since detecting the signed numbers is considered a 

prerequisite for assessing the magnitude of the signed 

numbers in the RNS, we first discuss sign detection in 

section 5 and then extend magnitude comparison in 

section 6. 

 

5.  SIGN DETECTION 

The reason why the residue number system is not as 

pervasive and common is that this system contains a 

number of difficult and complex operations, for instance 

division, overflow detection, magnitude comparison, 

and sign detection. Therefore, for the first time for the 

{2𝑛 + 1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3}  moduli set, a sign 

detection and a magnitude comparison circuit have been 

presented. However, in [33] using a similar method, a 

sign detection circuit has been provided for the five-

module set {22𝑛 ,2𝑛 + 1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3}, to 

which a comparator circuit has been added. The 

inspiration for this article is taken from [31-33] and will 

be further discussed later on.  

Generally, the residue number system has been used 

for unsigned positive numbers and the reverse converter 

output generates an unsigned value. Therefore, in order 

to implement this system for signed numbers, the output 

of the reverse converter should be modified. At first, the 

common method to detect the sign of the number was to 

compare the output of the reverse converter with half of 

the dynamic range of 𝑀 2⁄ , as illustrated in Fig.3. 
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Fig. 3. signed reverse converter using the traditional 

method [31]. 

 

In this section, the target is designing an efficient unit 

for detecting the sign by using a comparator and 

multiplexer in the reverse converter output to detect the 

sign. Hence, to detect the sign of the 4-moduli set {2𝑛 +
1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3}, the presented methods in 

[31-33] have been utilized. Fig.4 illustrates the spectrum 

of positive and negative numbers in the 4-moduli set 

{2𝑛 + 1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3}. 
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Fig 4.  The distribution of the dynamic range. 

 

As illustrated in Fig. 4, the dynamic range is divided 

into two parts. The numbers within the range of 

[0, 24𝑛−1 − (10 × 22𝑛−1 − 4)) have the MSB of zero 

and they are situated within the spectrum of positive 

numbers. However, the MSB of the numbers within the 

range of [24𝑛−1 − (10 × 22𝑛−1 − 4), 24𝑛−1) is one and 

they are situated within the spectrum of negative ones. 

The numbers within the range of [24𝑛−1, 24𝑛 −
(10 × 22𝑛 − 9)) also have MSB of one but they are 

located in the spectrum of negative numbers. In other 

words, the numbers within the range of [24𝑛−1 −
(10 × 22𝑛−1 − 4), 24𝑛−1) - which is the range of 

challenge – have MSB of zero, but they are situated 



Majlesi Journal of Electrical Engineering                                                               Vol. 15, No. 3, September 2021 

 

98 

 

within the spectrum of negative numbers. Having 

overcome this challenge, the sign can be calculated.  

The structure of the reverse converter allows us to 

find an effective method to detect the sign. It is worth 

noting that one method for detecting the sign is to take 

into consideration the dynamic range, where 𝑋 ∈

[0, 𝑀 2⁄ ) or 𝑋 ∈ [𝑀 2⁄ , 𝑀), is an indication of the 

positive or negative spectrum of the residue number 

system. When 𝑉2 ≠
𝑃𝐼−1

2
, the spectrum of the numbers 

taken into account for 𝑉2 is divided into two parts; the 

MSB bit value of the upper part is zero and 𝑋 is situated 

within the spectrum of positive numbers and the MSB 

bit value of the lower part is one and 𝑋 is situated within 

the spectrum of negative numbers. When 𝑉2 =
𝑃𝐼−1

2
, we 

need to put 𝑉1 under scrutiny in order to detect the sign 

of 𝑋. Therefore, when 𝑉1 >
𝑃𝐽−1

2
, 𝑋 is situated within the 

spectrum of negative numbers, otherwise 𝑋 is situated 

within the spectrum of positive numbers. 

 

𝑉1 = 𝑋𝐽               (27) 

𝑉1 = 𝑥3 + 𝑃3|𝐾𝐽(𝑥4 − 𝑥3)|𝑃4
             (28) 

𝑉2 = |(𝑋𝐽 − 𝑋𝐼)|𝑃1
−1|𝑃2|𝑝2

              (29) 

𝑋 =  𝑉1 + 𝑃1𝑉2              (30) 

𝑃𝑁 = (2
2𝑛 − 9)              (31) 

𝑃𝑀 = (2
2𝑛 − 1)              (32) 

 

Thus, using (27) to (38), we can detect the sign. 

 

𝑆𝑖𝑔𝑛 = (𝑉2.2𝑛−1 ⋁𝐿 ) →Sign = {
0  +
1  −

           (33) 

𝐿 = (𝐿1 ⋀(𝐿2 ⋁𝐿3))              (34) 

𝐿1 = (𝑉̅2.2𝑛−1 ⋀𝑉2.2𝑛−2 ∙∙∙ ⋀ 𝑉2.0)            (35) 

𝐿2 = (𝑉1,2𝑛−1)              (36) 

𝐿3 = (𝑉̅1.2𝑛−1 ⋀𝑉1.2𝑛−2 ∙∙∙ ⋀ 𝑉1.2)            (37) 

𝐿 = (𝑉̅2.2𝑛−1 ⋀𝑉2.2𝑛−2 ⋀∙∙
∙ ⋀ 𝑉2.0 ⋀(𝑉1.2𝑛−1 ⋁(𝑉̅1.2𝑛−1 ⋀𝑉1.2𝑛−2 ⋀∙∙∙ ⋀ 𝑉1.2))    (38) 

 

 Having detected the sign, if it is negative, we need 

to modify the output of the reverse convertor. Therefore, 

if a sign detection circuit produces one, the output is 

negative and it should be modified. If 𝑋̂ indicates a 

signed outcome, then the value of 𝑋̂ can be obtained 

based on (39) and (40). 

 

𝑋̂ = 𝑋 − 𝑀               (39) 

𝑀 = (22𝑛 − 1)(22𝑛 − 9) =  (24𝑛 − 10 × 22𝑛 + 9) 
               (40) 

 

The complement of two values of 𝑀 is a 4𝑛 bit 

number that is expressible as (41). 

 

24𝑛 −𝑀 = 24𝑛 − (24𝑛 − (10 × 22𝑛 − 9)) =

 (10 × 22𝑛 − 9)               (41) 

Now, to modify the output of the reverse converter, 

if negative, the (10 × 22𝑛 − 9) value must be added to 

the output. Hence, if needed, the hardware presented in 

Fig 5 can be used as the output modifying circuit.  
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Fig. 5. The output modifier circuit [33]. 

 

6.  SIGNED COMPARATOR 

The residue number system is a non-weighted 

numerical system. Hence, comparing the numbers in this 

system is difficult and complicated, especially when the 

comparison takes place between two signed numbers, 

unlike the case with the binary numerical system. Here, 

we show how we compare signed numbers for the 

selected moduli set based on the formulas of the reverse 

converter. In sign detection, we have used the parallel 

method for the operation, therefore, we can also use the 

parallel method to compare two signed numbers in the 

residue number system. This method could be used for 

comparing the two numbers, X and Y, in the residue 

number system. As it is apparent, we have used the New-

CRT-I and the MRC method to detect the signs of these 

two numbers. Therefore, this method has also been used 

to compare the two signed numbers. According to the 

MRC method, 𝑋 = 𝑉1𝑋 + 𝑉2𝑋𝑃𝐽 and 𝑌 = 𝑉1𝑌 + 𝑉2𝑌𝑃𝐽 

and also   𝑃𝐽 = (2
2𝑛 − 9), the 𝑉1𝑋  ,𝑉2𝑋  ,  𝑉1𝑌 and  𝑉2𝑌 

values alongside with signs are calculated in a parallel 

manner. Through an analytical analysis, it becomes 

apparent that when two numbers have different signs, 

the positive number is the bigger one in the set, 

otherwise when the two numbers have the same sign, 

first 𝑉2𝑋 and 𝑉2𝑌 values should be compared and then the 

bigger number is considered the biggest. If 𝑉2𝑋 and 𝑉2𝑌 

are equal, 𝑉1𝑋 and 𝑉1𝑌 values should be analyzed and 

compared. The outcome of this analysis determines the 

bigger number. This means that if 𝑉1𝑋 and 𝑉1𝑌 values are 

equal, the final product portrays that X and Y values are 

equal and if 𝑉1𝑋 is bigger than 𝑉1𝑌, X is bigger than Y 

and vice versa. Also, this comparator circuit for the 

signed numbers of the residue number system is 

expressible using (42) to (44). 

 

𝐸 = ((𝑆𝑖𝑔𝑛(𝑋) ⊕ 𝑆𝑖𝑔𝑛(𝑌)) ⋀(𝑉2𝑋 =



Majlesi Journal of Electrical Engineering                                                               Vol. 15, No. 3, September 2021 

 

99 

 

𝑉2𝑌) ⋀(𝑉1𝑋 = 𝑉1𝑌))             (42) 

𝐺 =

(𝑆𝑖𝑔𝑛(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋀ 𝑆𝑖𝑔𝑛(𝑌))⋁[(𝑆𝑖𝑔𝑛(𝑋) ⊕ 𝑆𝑖𝑔𝑛(𝑌)) ⋀[(𝑉2𝑋 >
𝑉2𝑉) ⋁[( (𝑉2𝑋 = 𝑉2𝑌) ⋀(𝑉1𝑋 > 𝑉1𝑌))]]]           (43) 

𝐿 = (𝐸 ⋁𝐺̅̅ ̅̅ ̅̅ ̅)               (44) 

 

This operation is shown in Fig. 1 (Algorithm 1). As 

soon as the signs of the two numbers are detected, this 

operation becomes calculable. While the method of 

comparing two signed numbers is obtained with a little 

delay, it needs a vast area since comparing the two 

numbers requires two parallel reverse converters (Fig.7). 

 

Algorithm 1 : Signed magnitude comparison 

This method can be adapted for the comparison of 

two RNS numbers, X and Y 

function Comparison(𝑋1, … , 𝑋4, 𝑌1, … , 𝑌4) 
Compute   𝑆𝑖𝑔𝑛(𝑋), 𝑆𝑖𝑔𝑛(𝑌), 𝑉1𝑋, 𝑉2𝑋, 𝑉1𝑌, 𝑉2𝑌; 

   If (𝑆𝑖𝑔𝑛(𝑋) = 𝑆𝑖𝑔𝑛(𝑌)) Then 

              If (𝑉2𝑋  =  𝑉2𝑌) Then  

                    If (𝑉1𝑋  =  𝑉1𝑌) Then  

  𝐶𝑂𝑀𝑃   ⃪   𝐸;              ► (X = Y) 

            Else  

   If  (𝑉1𝑋 >  𝑉1𝑌) Then   

                                       𝐶𝑂𝑀𝑃  ⃪    𝐺;    ►(X > Y) 

                                   Else  

                                         𝐶𝑂𝑀𝑃   ⃪   𝐿;    ►(X < Y) 

                              End; 

        End; 

            Else 

                      If  (𝑉2𝑋 >  𝑉2𝑌) Then 

                              𝐶𝑂𝑀𝑃   ⃪   𝐺;             ►(X > Y) 

                           Else 

                              𝐶𝑂𝑀𝑃   ⃪    𝐿;             ►(X < Y) 

                      End; 

              End; 

            Else 

              If  (𝑆𝑖𝑔𝑛(𝑋) = 0) Then 

                      𝐶𝑂𝑀𝑃   ⃪   𝐺;                     ►(X > Y) 

                   Else 

                      𝐶𝑂𝑀𝑃   ⃪   𝐿;                      ►(X < Y) 

              End; 

   End; 

     Return  𝐶𝑂𝑀𝑃; 

End Function; 

Fig. 6. Algorithm of the comparing two proposed 

signed numbers. 
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Fig.7. The block diagram of the proposed signed 

comparator unit. 

 

The presented method for comparing two signed 

numbers could easily be converted into a sequential 

method using the two cycles of the clock. The output 

values get stored in the register and eventually, after 

producing the second output, the logic of the comparison 

could be completed. 

 

7.  EXAMPLE 

This section presents a numerical example. 

Supposed that we plan to obtain the sign of an RNS 

number based in the {2𝑛 + 1, 2𝑛 − 1, 2𝑛 + 3, 2𝑛 − 3} 
moduli set. If we consider 𝑛 = 3 for this moduli set, 

{9, 7, 11, 5} values are obtained and the dynamic range 

equals 3465. Now, suppose that we want to detect the 

sign of the residue number (5, 4, 6, 3) that is equal to the 

binary value 1733. 

According to the presented definitions, if 𝑋 ∈
[0, 1732], then X is positive, and if 𝑋 ∈ [1733, 3464], 
then X is negative. Therefore, the value 1733 is situated 

within the spectrum of negative numbers, so we have to 

obtain 1733 − 3465 = −1732 as the output of the 

reverse converter in order to modify the output. Thus, 

the structure of the proposed reverse converter produces 

the complement of two values of −1732 which is equal 

to 2364. 

𝑋 = 1733
𝑅𝑁𝑆
⇒  (5,4,6,3)  

 

Therefore, the values  𝑋𝐽,𝑋𝐼,𝑉1,𝑉2, and  𝑆𝑖𝑔𝑛 are as 

follows. 

 

𝑋𝐽 = 5 + 9|4(4 − 5)|7 = 32  

𝑋𝐼 = 6 + 11|(3 − 6)|5 = 28  

𝑉1 = 28  

𝑉2 = |(28 − 32)8|63 = 31  
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𝑃𝐽−1

2
= 27  

𝑃𝐼−1

2
= 31  

 

Given the fact that 𝑉2 = 31, we need to analyze the 

value of 𝑉1 in order to detect the sign. Considering that 

𝑉1 = 28 and 𝑉1 > 27, the sign of 𝑋 is, therefore, 

negative. 

 

𝐿1 = (𝑉̅2.2𝑛−1 ⋀𝑉2.2𝑛−2 ∙∙∙ ⋀ 𝑉2.0) = 1  

𝐿2 = (𝑉1,2𝑛−1) = 0  

𝐿3 = (𝑉̅1.2𝑛−1 ⋀𝑉1.2𝑛−2 ∙∙∙ ⋀ 𝑉1.2) = 1  

𝐿 = (𝑉̅2.2𝑛−1 ⋀𝑉2.2𝑛−2 ⋀∙∙
∙ ⋀ 𝑉2.0 ⋀(𝑉1.2𝑛−1 ⋁(𝑉̅1.2𝑛−1 ⋀𝑉1.2𝑛−2 ⋀∙∙∙ ⋀ 𝑉1.2))  
𝐿 = (𝐿1 ⋀(𝐿2 ⋁𝐿3)) = 1  

𝑆𝑖𝑔𝑛 = (𝑉2.2𝑛−1 ⋁𝐿 ) = 1  

 

Now, if the sign of 𝑋 is negative, we need to modify 

the output of the reverse convertor. To modify the 

output, the value (10 × 22𝑛 − 9) should be added to the 

output. This operation is shown through the circuit 

presented in Fig.8. 

 

𝑋 = 1733, 𝑀 = 3465 → 𝑋̂ = 𝑋 −𝑀 = 1733 −
3465 = −1732 

𝑋̂ = −1732 = −(011011000100)
2′𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡
→           (100100111100) = 2364  

 

Therefore, the output is 2364. 

 

8.  THE ANALYTICAL EVALUATION 

In order to analyze performance and efficiency, we 

compare the proposed hardware with the designs in [22-

23], which possesses the greatest efficiency among the 

presented methods. In this section, we evaluate delay 

and the area of each design based on its core components 

including the Full Adder (FA), Half Adder (HA), 

multiplexer (MUX), and the basic gates (G). Therefore, 

the time delay and the area of each part is 𝐷𝐹𝐴  ,  𝐷𝐻𝐴, 

𝐷𝑀𝑈𝑋,  𝐷𝐺  and  𝐴𝐹𝐴   ، 𝐴𝐻𝐴    ، 𝐴𝑀𝑈𝑋    ، 𝐴𝐺, respectively. The 

delay and the logic gate level of XOR are 2𝐷𝐺  and 3𝐴𝐺, 

respectively. It is worth noting that the logarithmic terms 

are related to the number of levels or the so-called CSA 

tree structure. Since some parts of the modeled circuits 

are identical with the main resource presented in [22-23] 

and do not include significant changes, it has been taken 

into consideration with the values of the main resource 

from a hardware analysis point of view. As Fig.1. and 

Fig.2. illustrate, inside the internal structure of OPU, 

rotational operations, shift, and complement of one take 

place. CSA-n bit area is considered equal to n FAs and 

its delay equal to one FA; also, the area and delay of one 

CPA-n bit is considered equal to n FAs. Table 1 and 

Table 2 present the analytical evaluations of the original 

[22-23] and proposed designs. 

Table 1. Analytical evaluation of [22]. 

Component Delay Area 

𝑋𝐼 N/A (it is not on the 

critical delay path) 

(2𝑛 + 2)𝐴𝐹𝐴
+ (2𝑛
− 2)𝐴𝐻𝐴
+ (4𝑛 − 1)𝐴𝐺 

𝑋𝐽 (3𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉
+ 2)𝐷𝐹𝐴 

(2𝑛2 + 2𝑛
+ 2)𝐴𝐹∙𝐴
+ (𝑛)𝐴𝐻𝐴 

OPU-IJ 𝐷𝐺  (2𝑛)𝐴𝐺 

CPA (2𝑛)𝐷𝐹𝐴 (2𝑛)𝐴𝐹𝐴 

OPU (2)𝐷𝐺 (6𝑛)𝐴𝐺 

CSA Tree (2)𝐷𝐹𝐴 (4𝑛 + 1)𝐴𝐹𝐴 

CPA (4𝑛)𝐷𝐹𝐴 (4𝑛)𝐴𝐹𝐴 

Total 

Reverse 

(9𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉
+ 4)𝐷𝐹∙𝐴 + (3)𝐷𝐺  

(2𝑛2 + 14𝑛
+ 5)𝐴𝐹𝐴
+ (3𝑛 − 2)𝐴𝐻𝐴
+ (12𝑛 − 1)𝐴𝐺 

 

Table 2. Analytical evaluation of the proposed design. 

Component Delay Area 

𝑋𝐼 N/A (it is not on the 

critical delay path) 

(2𝑛 + 2)𝐴𝐹𝐴
+ (2𝑛
− 2)𝐴𝐻𝐴
+ (4𝑛 − 1)𝐴𝐺 

𝑋𝐽 (3𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉
+ 2)𝐷𝐹𝐴 

(2𝑛2 + 2𝑛
+ 2)𝐴𝐹∙𝐴
+ (𝑛)𝐴𝐻𝐴 

OPU-IJ 𝐷𝐺  (2𝑛)𝐴𝐺 

CPA (2𝑛)𝐷𝐹𝐴 (2𝑛)𝐴𝐹𝐴 

Sign 

Detection 

(⌈𝑙𝑜𝑔 4𝑛⌉ + 1)𝐷𝐺 (4𝑛 + 3)AG 

Total Sign (5𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉
+ 2)𝐷𝐹𝐴
+ (⌈𝑙𝑜𝑔 4𝑛⌉
+ 2)𝐷𝐺  

(2𝑛2 + 6𝑛
+ 4)𝐴𝐹𝐴
+ (3𝑛
− 2)𝐴𝐻𝐴
+ (10𝑛
+ 2)𝐴𝐺 

OPU 𝐷𝐺  (8𝑛)𝐴𝐺 

CSA Tree (2)𝐷𝐹𝐴 (4𝑛 + 1)𝐴𝐹𝐴 

CPA (4𝑛)𝐷𝐹𝐴 (4𝑛)𝐴𝐹𝐴 

Total 

Reverse 

And Sign 

(9𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉
+ 4)𝐷𝐹∙𝐴
+ (⌈𝑙𝑜𝑔 4𝑛⌉
+ 3)𝐷𝐺  

(2𝑛2 + 14𝑛
+ 5)𝐴𝐹𝐴
+ (3𝑛
− 2)𝐴𝐻𝐴
+ (18𝑛
+ 2)𝐴𝐺 

 

Since the main aim of this work is to present a 

method for extracting the sign and comparing the 

magnitude of two numbers inside the reverse converter, 

we extract the sign using the comparator and reverse 

convertor in [22] and compare it with the extracted sign 

in the proposed method. Therefore, through analytical 
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evaluation, the occupancy area and the delay for the [22] 

reverse converter, using (45) to (53), are considered. 

 

𝐴𝑆𝑖𝑔𝑛_𝑅𝑒𝑔𝑢𝑙𝑎𝑟 = 𝐴𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 + 𝐴𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟 +

𝐴𝐶𝑝𝑎 + 𝐴𝑀𝑢𝑥2×1              (45) 

𝐴𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = (2𝑛
2 + 14𝑛 + 5)𝐴𝐹𝐴 + (3𝑛 −

2)𝐴𝐻𝐴 + (12𝑛 − 1)𝐴𝐺             (46) 

𝐴𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟 = (12𝑛 − 2)𝐴𝐴𝑛𝑑 + (4𝑛 − 1)𝐴𝑂𝑟 +

(4𝑛 − 1)𝐴𝑋𝑜𝑟              (47) 

𝐴𝐶𝑝𝑎 = (4𝑛)𝐴𝐹𝐴              (48) 

𝐴𝑆𝑖𝑔𝑛_𝑅𝑒𝑔𝑢𝑙𝑎𝑟 =

(2𝑛2 + 18𝑛 + 5)𝐴𝐹𝐴 + (3𝑛 − 2)𝐴𝐻𝐴 + (12𝑛 − 1)𝐴𝐺
⏞                                  

𝐴𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟+𝐴𝐶𝑝𝑎

+

(12𝑛 − 2)𝐴𝐴𝑛𝑑 + (4𝑛 − 1)𝐴𝑂𝑟 + (4𝑛 − 1)𝐴𝑋𝑜𝑟
⏞                              

𝐴𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟

+

(6𝑛)𝐴𝑀𝑢𝑥2×1
⏞        

𝐴𝑀𝑢𝑥2×1

               (49) 

 

IT should be noted that the delay of comparator 

overlaps with the CPA delay, an due to this it has not 

been taken into consideration.  

 

𝐷𝑆𝑖𝑔𝑛_𝑅𝑒𝑔𝑢𝑙𝑎𝑟 = 𝐷𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 + 𝐷𝐶𝑝𝑎 + 𝐷𝑀𝑢𝑥2×1 

               (50) 

𝐷𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = (9𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉ + 4)𝐷𝐹∙𝐴 +
(3)𝐷𝐺                (51) 

𝐷𝐶𝑝𝑎 = (4𝑛)𝐷𝐹𝐴               (52) 

𝐷𝑆𝑖𝑔𝑛_𝑅𝑒𝑔𝑢𝑙𝑎𝑟 = (13𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉ + 4)𝐷𝐹∙𝐴 + (3)𝐷𝐺
⏞                      

𝐷𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟+𝐷𝐶𝑝𝑎

+

𝐷𝑀𝑢𝑥2×1
⏞    

𝐷𝑀𝑢𝑥2×1

               (53) 

 

The occupancy area and the delay of the proposed 

design are also expressed using (54) to (57). 

 

𝐴𝑆𝑖𝑔𝑛_𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝐴𝑋𝐼 + 𝐴𝑉1 + 𝐴𝑉2 + 𝐴𝑆𝑖𝑔𝑛           (54) 

𝐷𝑆𝑖𝑔𝑛_𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝐷𝑋𝐼 + 𝐷𝑉1 + 𝐷𝑉2 + 𝐷𝑆𝑖𝑔𝑛           (55) 

 

The occupancy area and the delay for the proposed 

design are obtained based on (54) and (57). Nonetheless, 

since 𝐷𝑆𝑖𝑔𝑛 ≅ 𝐷𝑉1 + 𝐷𝑉2  and that the value of 𝐷𝑆𝑖𝑔𝑛 

overlaps with the calculation of 𝐷𝑉2 and that its delay is 

insignificant against the calculation of the value of 𝐷𝑉2, 

we disregard it. 

 

𝐴𝑆𝑖𝑔𝑛_𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 =

(2𝑛2 + 6𝑛 + 4)𝐴𝐹𝐴 + (3𝑛 − 2)𝐴𝐻𝐴 + (6𝑛 − 1)𝐴𝐺
⏞                                

𝐴𝑋𝐼+𝐴𝑉1+𝐴𝑉2

+

(4𝑛 + 3)𝐴𝐺⏞      

𝐴𝑆𝑖𝑔𝑛

               (56) 

𝐷𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 = (5𝑛 + ⌈𝑙𝑜𝑔 2𝑛⌉ + 2)𝐷𝐹𝐴 + 𝐷𝐺
⏞                  

𝐷𝑋𝐼+𝐷𝑉1+𝐷𝑉2

+

(⌈𝑙𝑜𝑔 4𝑛⌉ + 1)𝐷𝐺
⏞          

𝐷𝑆𝑖𝑔𝑛

             (57) 

 

9.  THE EXPERIMENTAL EVALUATION 

In this section, we analyze and evaluate the important 

circuits parameters in designing a signed reverse 

converter and a magnitude comparator for 4-moduli set 

{2𝑛 + 3. 2𝑛 − 3. 2𝑛 + 1. 2𝑛 − 1}. Considering that this 

work is proposing the signed reverse converter and 

magnitude comparator for this moduli set for the first 

time, its evaluation takes place in comparison with the 

unsigned reverse converter proposed in [22]. We have 

utilized the ISE Design Suite 14.7 tool, and the results of 

this analysis are presented in Tables 3 and 4 using the 

Spartan6 family technology. In this work, [22] which is 

the latest work presented in this context, has been used 

for comparison purposes.  

 

Table 3. The Delay of different designs (ns). 

n 
[22] With 

Sign 

[22] With 

Sign & 

Magnitud

e 

Proposed 

With 

Sign 

Propose

d With 

Sign & 

Magnitu

de 

3 24.40 31.03 15.72 23.18 

4 29.41 35.70 21.11 28.72 

5 34.29 42.94 26.47 31.30 

6 38.66 50.37 30.99 36.18 

7 43.50 55.98 35.01 39.80 

8 47.97 61.13 39.47 42.54 

 

Table 4. The Area of different designs (LUT). 

n [22] With 

Sign 

[22] 

With 

Sign & 

Magnitu

de 

Proposed 

With 

Sign 

Propose

d With 

Sign & 

Magnitu

de 

3 102 227 61 155 

4 153 323 98 222 

5 198 421 122 277 

6 238 501 151 348 

7 272 578 168 394 

8 316 664 201 475 

 

According to the evaluations presented in Tables 3 

and 4, the delay and area of the proposed circuits are 

compared with the initial design, in which two numbers 

should be taken out of the reverse converter. These also 

bring about an improvement in the Area-Delay-Product 

(ADP), as shown in Fig.8. 
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Fig. 8. The ADP Evaluation. 

 

10.  CONCLUSION 

In this paper, the signed reverse converter and the 

magnitude comparator for the 4-moduli set {2𝑛 +
3. 2𝑛 − 3. 2𝑛 + 1. 2𝑛 − 1} have been proposed for the 

first time. The proposed unit utilizes a hardware that 

works in a parallel manner with the converter and 

extracts and produces the signed outcome and perform 

magnitude comparison of numbers from the inside of the 

reverse converter. We have also presented the first sign 

detection unit and the magnitude comparator of two 

numbers for the moduli set. The evaluation results 

indicate a considerable improvement in the proposed 

method compared with the typical reverse converter [22] 

that uses a comparator in the output of the reverse 

converter to detect the sign. Experimental results show 

that the proposed converter, alongside with the sign 

detection circuit and the magnitude comparator of two 

numbers, possesses 46% and 37% improvement in terms 

of area and 28% and 30% improvement in terms of delay 

compared with the unsigned reverse converter [22] that 

requires the exclusion of two numbers in order to detect 

the sign and compare, respectively. Currently, the 

proposed model cannot appear scalable for other similar 

moduli sets. In addition, multiplicative inverses for this 

moduli set result in complicating the hardware and 

overloading the converter. Also, further studies could 

perhaps propose a model that entails a component 

including a sign detecting circuit, a comparator, and 

scaling for a particular group of moduli sets in the { 2𝑝 −
1. 22𝑛 − 𝛿} form. 

 

11.  APPENDIX 

The full list of symbols used throughout the paper is 

shown in Table 5. 

 

Table 5. The list of symbols used in the paper. 

Symbol Description 

RNS Residue number system 

CRT Chinese remainder theorem 

MRC Mixed radix conversion 

𝐷𝑅  Dynamic range 

OPU Operand preparation unit (Shift & Route) 

CSA Carry save adder 

CPA Carry propagate adder 

EAC End around carry 

FA Full adder 

HA Half adder 
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