
Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

105

Paper type: Research paper

DOI: https://doi.org/10.52547/mjee.15.3.105

How to cite this paper: M. R. Moslehi, H. Ebrahimpour-Komleh, S. Goli-Bidgoli and R. Taji, “A QoS Optimization

Technique with Deep Reinforcement Learning in SDN-Based IoT”, Majlesi Journal of Electrical Engineering,

Vol. 15, No. 3, pp. 105-113, 2021.

A QoS Optimization Technique with Deep Reinforcement

Learning in SDN-Based IoT

Mohammadreza Moslehi1*, Hossein Ebrahimpour-Komleh2, Salman Goli-Bidgoli3, Reza Taji4

1- Department of Computer Engineering, University of Kashan, Kashan, Iran.

Email: moslehi@acecr.ac.ir (Corresponding author)

2- Department of Computer Engineering, University of Kashan, Kashan, Iran.

Email: ebrahimpour.kashanu@gmail.com

3- Department of Computer Engineering, University of Kashan, Kashan, Iran.

Email: salmangoli@gmail.com

4- Independent Researcher in the Field of AI and Neural Networking.

Email: ibdrezataji@gmail.com

Received: March 2021 Revised: May 2021 Accepted: July 2021

ABSTRACT:

In recent years, exponential growth of communication devices in Internet of Things (IoT) has become an emerging

technology which facilitates heterogeneous devices to connect with each other in heterogeneous networks. This

communication requires different level of Quality-of-Service (QoS) and policies depending on the device type and

location. To provide a specific level of QoS, we can utilize emerging new technological concepts in IoT infrastructure,

Software-Defined Network (SDN) and, machine learning algorithms. We use deep reinforcement learning in the process

of resource management and allocation in control plane. We present an algorithm that aims to optimize resource

allocation. Simulation results show that the proposed algorithm improved network performances in terms of QoS

parameters, including delay and throughput compared to Random and Round Robin methods. Compared to similar

methods, the performance of the proposed method is also as good as the fuzzy and predictive methods.

KEYWORDS: Internet of Things, Software-Defined Networking (SDN), Deep Reinforcement Learning, QoS.

1. INTRODUCTION

Consequence of the rapid growth in new

technologies including IoT, Smart city, and Smart home

would result in significant increase in number of

connected things and devices such as smartphones and

higher demands for more network resources. Cisco's

annual internet report white paper predicts a growth of

14.7 billion connected devices and 5.7 billion for total

number of global mobile subscribers by 2023 [1]. The

results are a rapid growth on the resource demands and

an increase in network traffic, delay, and congestion.

These also pose significant challenges such as

complexity of network management and the lack of

scalabilities. Smart city applications such as energy,

security, and e-health have stringent requirements with

expected QoS. In traditional network technologies,

network devices such as switches and routers work on

their own data plane and cannot meet those challenges.

To cope with these issues, we need flexible and new

networking technologies to adapt to dynamics needs.

Software-Defined Networking or SDN [2] allows

programming for configuration and modification of

different network devices. With such technology, we are

capable to cope with today's network requirements in a

more timely manner and efficient way. Open

Networking Foundation or ONF characterized SDN

technology as modern and emerging architecture which

is perfect for new applications with a delay-sensitive,

high-bandwidth, and dynamic nature. Some of SDN-

based IoT advantages can be the dynamic manageability,

cost-efficiency, and adaptability [3]. The network

control plane is separated from the data plane or

forwarding functions in SDN architecture. So, we can

make the network control directly programmable. With

the SDN, the underlying infrastructure is abstracted from

applications and network services. With the dynamic

network programming ability of SDN, we can centrally

control and manage the entire network. With a

centralized SDN controller, it is possible to perform

dynamic network optimization operations and

management. One of the requirements of IoT

environments is network management automation which

is possible via the programmability of SDN [4]. Other

challenges in the networking domain is resource

mailto:ebrahimpour.kashanu@gmail.com
mailto:salmangoli@gmail.com

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

106

allocation. Deep reinforcement learning has been

successfully utilized to solve this issue.

So, our main contributions in this paper are:

• Investigating the importance of machine

learning algorithms, especially deep

reinforcement learning, in resource allocation

process and improving the QoS of SDN-based

IoT.

• Proposing a deep reinforcement learning

algorithm for solving resource allocation

between clients and servers in an SDN-based

IoT.

Our simulations and evaluations results show that the

proposed solution improves QoS in terms of delay and

throughput compared to Random and Round Robin

methods, and also show that the performance of the

proposed method is near the fuzzy and predictive

method in [5]. The remainder of the paper is organized

as follows: Section 2 reviews some related works. In

section 3, a brief overview of DRL is explained. Section

4 proposes the DRL model. We analyze the results in

Section 5, and the paper concluded in section 6.

2. RELATED WORKS

Several techniques are used to improve QoS in

network resource allocation policies. These techniques

are significantly related to the domain of network

environments. One of the broad research domains is QoS

in the IoT. IoT has a rapid growth of its connected

devices. IoT applications need some levels of QoS such

as bandwidth, delay, and reliability.

several works have been done regarding IoT and

QoS issues by using networking emerging technologies

such as SDN [5]–[10]. In traditional networks, hardware

devices manage connections between sources and

destinations based on the static and inflexible

parameters. Recently SDN-based IoT has received

remarkable attention in field of QoS. Authors in [11]

have been used SDN technology to overcome latency

and security issues. They propose a deep-reinforcement-

learning-based quality-of-service (QoS)-aware secure

routing protocol (DQSP) that can extract knowledge

from past traffic demands and optimize the routing

policy dynamically with guaranteeing QoS. Authors in

[12] focus on QoS differentiation by exploiting a multi-

topology routing feature in RPL. They propose different

objective functions to ensure the QoS differentiation at

the network level by virtualizing the physical network

into several RPL instances. In [13], the authors use an

SDN-based IoT infrastructure based on the simulated

annealing algorithm and propose a QoS routing

algorithm for that system.

In [14], a Reliable and Dynamic Routing Technique

(RaDRT) is proposed that regulates traffic flows routing

in an Edge-MANET environment by adopting the SDN

approach. Their solution is based on SDN monitoring

and management of networks while considering QoS

requirements for running applications. Using SDN

technology in smart city networks, a big data analysis

approach is suggested in [6]. Their system includes Data

Collection, Data Management, and Application levels.

These elements are further connected via two

intermediate levels working on SDN principles. Authors

in [15] design a deep learning application awareness on

SDN technology to improve QoS.

3. REINFORCEMENT LEARNING AND SDN

Reinforcement Learning, or RL, is one of the

machine learning techniques in which an agent acts in

the environment to maximize reward. In the RL, the

agent learns by trials and errors. Due to the good results

of using RL in various fields of application, this

technique has received more attention. In general,

machine learning refers to algorithms that can infer a

mathematical model using large amounts of data. In

most applications, problem-solving is formulated as an

optimization problem, in which the algorithm minimizes

the loss function, which is equal to the difference

between the predicted result and the actual value. In the

popular algorithm of machine learning, supervised

learning, the algorithm takes a training set (a subset of

the available complete data) and decreases the gradient

until the loss function is reduced to an acceptable value

or all the data is sampled. The goal of a machine learning

algorithm is learning data distribution that accurately

categorizes input data and prevents overfitting, that is,

learning a mathematical model that processes only the

dataset of the algorithm. RL can be described by the

conditional domain of behavioral psychology. RL

mimics the agent conditioned to adapt to an unknown

environment. Instead of minimizing the loss function,

the agent improves his behavior by receiving a reward

for the performance of his actions. It does this by

stepping into the environment. At each stage, the agent

observes the current states, performs an action, and

receives a numerical reward.

The agent chooses an action, and when action is

done, the state of the environment changes. The

desirability of this change is sent by a scalar reward to

the agent. During the learning, the agent tries to

maximize the cumulated reward [16]. The trial and error

learning of the agent is done with several learning

algorithms [17]. Q-learning is one of the learning

algorithms used to learn the RL agent, this is a temporal

difference or TD learning algorithm [18].

In each state, TD algorithms gradually build

information for the best actions to take. This is done by

the policy. The policy is a strategy that applies to the

learning agent to decide the next action based on the

current state. In other words, policy maps states of the

environment to actions to be taken when in those states

[16]. Q-values Q (s, a) are values that show the

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

107

desirability of each action a, in the state, s. In step i a

reward R (si, ai) will be returned by the environment. The

Q-value Q (si, ai) is related to the state-action pair (si, ai)

and is an approximation of the expected long-term

reward for that pair. All the Q-values are stored in the Q

table and based on these values; the agent chooses the

next action by an -greedy policy.

By adopting the -greedy policy, an action with the

highest Q-value will be selected by the agent with a

probability of ; otherwise, a random action with the

probability of 1- will be chosen. Then the reward of R

(si, ai) is learned, and the state will shift to si+1, and also

Q-values stored on the table with the temporal difference

way will be updated. Q-Values continuously updates

until the agent takes the best action by using these values

[18].

3.1. Deep Q-learning

Deep reinforcement learning or DRL as one of the

RL methods has been widely proposed in recent years

for challenges such as decision making in large state

space [19]. Q-network is the agent that applies a neural

network to represent the Q function. Q(si, ai; 𝜃) is a

notation of a Q-network that 𝜃 is weights for the neural

network. To approximate real Q value, Q-network is

trained by updating 𝜃. Neural networks are applied in Q-

Learning because of great flexibility, but they may cause

instability [20].

Deep Q-network benefits from a deep neural

network. It is proven that Deep Q-networks have greater

efficiency and more strong learning [20]. In addition to

convert an ordinary Q-network into a deep Q-network,

the deep Q-network utilized Experience Replay to store

experience tuple ei=((sj, aj, Rj(sj, aj), sj+1)) at each step i

into replay memory Di = { e1, ….ei)} [21]. Q-learning

training directly uses successive samples but to train

weights of the deep network, randomly sample batches

from the experience pool. Random sample batches from

the experience pool cause the deep network to learn from

various past experiences and keep the network from only

focusing on what it is immediately doing. To generate

the target Q values, the deep Q-network is adopting a

second network called target network.

The loss for each action in the training process is

computed. Using one network will result in falling into

feedback loops between the target and expected values

for both estimates of Q values and target Q values.

Therefore, the weights of the target network are set and

regularly adjusted to stabilize the training.

3.2. SDN and DRL

SDN architecture as an evolution of network

technology has emerged and aimed to create networks

with more flexibility and better management with lower

complexity. The main idea of SDN is decoupling the

control plane from the data plane. SDN enables better

programmability, agility, and flexibility in the network

and allows to manage network centrally that keeps a

global view of the network [3]

RL and DRL or deep reinforcement learning as two

powerful machine learning technics widely apply in

emerging communication networks technologies such as

SDN [17]. In the RL, an agent acts in an environment to

maximize reward. The RL agent acts based on collected

information by the centralized SDN controller. The RL

agent also learns based on the feedback of the network

states and continually updates its policy. Centralized

network management with an SDN controller has the

following advantages:

- The controller can disseminate optimal global

information in the form of actions and policies

throughout the network.

- The agent can act as an interface between the IoT and

smart city network and the RL algorithm.

- There is less delay in communicating with the

central controller system.

4. RESOURCE ALLOCATION USING DRL IN

SDN-BASED IOT

4.1 Architecture

The controllers and OpenFlow switches in SDN send

the traffic without desirable QoS required for many

applications in the domain of IoT and smart city

networks. The traffic flows are assigned with the

minimum value of the rate. As indicated in the proposed

architecture for smart city networks (Fig. 1), several user

end devices and application request data.

In the architecture defined in Fig. 1, the number of M

end-user devices can request the data from the MEC

server. When the user wants to access content, or the

application needs to process the data, the content is

responded from the desired CDN (server) at the edge of

the network, which reduces latency. Network nodes are

all equipped with internal cache and also have

processing capabilities. The SDN controller manages

these nodes. These nodes can be virtualized to multiple

virtual subnetworks using a hypervisor.

Users can connect to network components such as

BSs, APs, RSUs and MEC servers, and content caches.

Each user device also accesses one of these CDNs (BS,

AP, RSU) based on the defined QoS and SLA

requirements.

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

108

Fig. 1. Proposed architecture.

The SDN controller selects from the available CDNs

(servers) according to the QoS parameters and the

server’s cost that has the lowest cost and the highest

QoS. The centralized SDN controller is responsible for

collecting states with a global view of the network.

These states are obtained from periodic queries from

each of the MEC hosts, CDNs, and servers to maintain a

global view.

4.2. Reinforcement learning (RL) framework

One of the main pillars of the RL problem is how the

environment is represented, or in other words, what the

algorithm observes. This observation can be done in

different ways. Switch statistics, application flows, and

additional information can be used to generate

observations. Ideally, the central controller should have

complete information about all traffic flows to infer

traffic correlations. This may not be possible for a

variety of reasons, including security issues or hardware

limitations. The statistics of network switches are

collected and stored in a p*f traffic matrix. This matrix

models the assumed network as p ports and f network

features. A query with a switch can get various

information such as active flows, the number of lost

packets, RTT, and port usage.

The obtained states are sent to the agent of the

reinforcement learning algorithm. This agent can be an

agent of the DQN algorithm. The optimal policy for

setting the right resource for a particular user device is

determined from the algorithm feedback. After getting

the action, a notification is sent to the user’s device

stating which of the available CDNs it can connect to.

In each RL algorithm, a goal is defined, and the agent

is trained by trial and error to achieve that goal. One of

the most essential parts of an RL algorithm is the

definition of the reward function. We add to the reward

if we receive feedback and evidence of the action being

acceptable or desirable, and for actions that are not good,

a punishment is subtracted from the reward. The

cumulated of the rewards obtained is the goal of the RL

algorithm. The objective of the RL agent is to maximize

the reward, which it does by learning an optimal set of

actions.

All system-specific information is abstracted away

from the agent, providing flexibility in obtaining data

and modeling it. OpenAIGym is an RL standard

evaluation platform that aims to expedite the

reproduction and evaluation of the performance of an

algorithm in different areas.

4.3. Problem formulation

In this problem, we are faced with discrete actions

(i.e., choosing between the servers) and continuous and

infinite state-space, so in this research, we have used the

Deep Q-Network algorithm to find Q values. Deep Q-

Network is one of the popular reinforcement algorithms

for estimating Q values in a system modeled with MDP.

By choosing an action, and sending traffic and delivery,

QoS parameters such as throughput and delay are

measured.

In this algorithm, the agent is not directly guided to

what to do. It tries to recognize the value of each

permitted action in each environment's state by trial and

error. It may also use exploration and exploitation. The

algorithm finds a model for appropriate behavior and

maximizes rewards. Reinforcement learning behavior is

based on the reward hypothesis [22] in which all goals

are defined by maximizing the mathematical expectation

of cumulative reward.

RL is a step-by-step decision-making process that

seeks to maximize reward in each step but may choose

actions in the next step that do not necessarily have

immediate and large rewards, but the goal is to maximize

cumulative rewards.

After implementing the reinforcement learning

algorithm, it trains with repeated episodes. To

implement this algorithm, we have used a deep neural

network with a dense layer with a linear activity

function. To solve each RL problem, we must specify

the values for the states, reward, and set of actions. To

run the algorithm in the training phase, we consider

several episodes. In the algorithm States: Takes

observations or state of the environment, Reward: Earns

a numerical reward by following an action,

Episod_done: Indicates the successful end of an episode

(Episod_done value determines the completion of each

episode). In the following, the details of the algorithm

are described:

States: We consider the experience at any point in time

as a state:

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

109

1. current_bw: The amount of bandwidth

available for each server.

2. min_bw: Minimum bandwidth for each server

(minimum SLA bandwidth allowed).

3. server_id: The ID of each server that responded

to the request.

4. current_delay: The amount of current latency

for each server.

5. max_delay: Maximum delay (maximum SLA

delay allowed).

 The above parameters are measured at each step

when the agent performs an action.

Actions: Here, the action a  A ={0, 1, 2} as one of three

server s1, s2,s3 could be choosing between the CDN

servers.

Reward: The most essential part of designing an RL

algorithm is the design of the reward function. The

design method of the reward function strongly affects

the performance of the RL algorithm. The goal here is to

maximize the bandwidth usage or minimize the delay,

assuming that each server’s CAPEX differs.

To define a reward function for the problem, the

following points should be considered:

1- The agent should avoid choosing a server with

a higher cost, so choosing a server with a lower

cost, a positive reward, and selecting a server

with a higher cost, a negative reward are

calculated.

2- The service level agreement or SLA must be

maintained at all costs. In the other words, the

bandwidth obtained must be higher than the

service level specified in the agreement. In the

design of rewards, when the bandwidth falls

below the values specified in the service level

agreement, a severe penalty should be

considered. Also, in the design of rewards,

severe penalties should be considered when

increasing the delay above the SLA values.

3- Regardless of any choice made, the goal is to

deliver the data in any way, so a positive reward

is considered in each successful delivery.

To obtain the reward, QoS evaluating functions and

other factors that affect the reward are calculated as

follows:

Rd
t =

{

max_delay -current_delay

max_delay

, current_delay<max_delay

delay_sla_penalty ,
current_delay>max_delay

 (1)

Rbw
t =

{

 1 − (

current_bw -min_bw

min_bw
)

,current_bw>min_bw
bw_sla_penalty

,current_bw<min_bw

 (2)

Reward = 1.(𝑅𝑑
𝑡)+2 .(𝑅𝑏𝑤

𝑡) +3.(𝑅𝑒𝑝𝑖𝑠𝑜𝑑𝑒
𝑡)

+4.(𝑅𝑐𝑜𝑠𝑡𝑖
𝑡))3)

Where, SLA constrains violation (2, 4) punished and

by 1 to 4 coefficients, the impacts of reward factors for

the delay, bw, successful episodes, and cost respectively

could be tuned. We set 1=2=1/2 and 3=4=1 and

𝑅𝑐𝑜𝑠𝑡𝑖
𝑡 =i, i=1,2,3.

Episodes: In an RL algorithm, we can consider a

final execution limit, so this experience ends at some

point in the execution. If we do not consider this final

limit, we can continue to run the algorithm indefinitely.

Of course, an episode may be stopped due to an error.

For example, when the SLA is not satisfied several

times, it decides to end the episode, in which case the

agent restarts.

Fig. 2. The steps in the algorithm.

As indicated in Fig. 2, the proposed algorithm has

five main steps. The agent, by taking each action could

cause to increase or decrease the amounts of QoS

parameters. By monitoring and evaluating QoS

parameters, agent gets informed by a reward and based

on, the agent adjusts its policy (Q-values).

5. EXPERIMENTAL RESULTS

In this section, we are going to show the result of the

evaluation of the proposed architecture. We use Mininet

[23] to implement SDN based environment.

Fig. 3. The topology of the SDN-based scenario.

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

110

The configuration setting is shown in TAable 1. To

evaluate the performance of the proposed algorithm, we

compare simulation results with the random method,

Round-robin (RR) algorithm [24] in which resource

allocates in turn to the UEs and each UE cannot be

served in two successive periods and the work in [5].

Table 1. Configuration setting of simulated network.

OS Ubuntu 18.04

Environment Mininet 2.3.0d6

SDN-controller OpenFlow 1.3

TCP window size 85.3 Kbytes (standard)

UDP buffer size 208 Kbytes

ICMP (ping) packet size 1500 bytes (1472+20+8,

data, IP header, ICMP

header)

Number of Controllers 1

Number of OpenFlow

switches

7

Number of hosts 6

Time (seconds) to listen

for new traffic

connections

1

 Interpacket gap (IPG) 280 us

Link Bandwidth 10 Mbps

SDN Controller

Framework

Ryu

Language Python 3.6

Reward decay (𝛾) 0.95

Learning Rate(α) 0.001

Size of the Memory

buffer

1000000

Size of mini-batch 20

The maximum value of  0.9

Number of episodes 500

Number of Timestep

Per episode

100

Number of hidden layers 2

Number of nodes per

layer

24

First, we create a topology based on the proposed

architecture, as shown in Fig. 2, and the designed

algorithm implemented on the controller.

Using modules that can be used in hosts, parameters

such as transmission throughput, jitter, latency, and

packet loss can also be achieved. To access this

information, a Linux operating system API called

Netlink [25], [26] can be used to update the status matrix.

Also, sFlow [27], [28] from the infrastructure of SDN

that consists of network devices such as switches and

router could collect network status information and send

this information to management application.

By using OpenAIGym [29], we can create a

playground for the agent to try and learn the optimal

behavior in the environment. OpenAIGym acts as an

interface between the DRL agent and the smart network

environment.

To train the network, we use a dataset called

MQTTset [30], as it is captured from the MQTT protocol

from IoT sensors. It contains 11,915,716 network

packets. For the training phase of our algorithm, we

consider 500 episodes. As shown in Fig. 4, the average

cumulated reward obtained from the experiment

increased from an episode near 200. Some fluctuations

are seen in reward in Fig. 4. These fluctuations are

because of the maximum value of , which is used

greedily for action selection during the training phase.

We use 0.9, which means that the agent with a

probability of 0.9 chooses the best action, and with a

probability of 0.1 may choose a bad action at each

iteration that causes a punishment or reduced reward.

Fig. 4. The average reward for episodes.

To evaluate the proposed algorithm we generate

traffic with the iPerf [31] with a constant rate of 100,

300, 500, 700, and 900 packets per second. When a

client request is received, the agent should decide which

server is best in terms of QoS parameters. In other

words, the clients send requests and the servers are

selected by the agent. To make the simulation closer to

real scenarios, we generate background traffic between

other hosts at a constant rate.

The performance of the proposed algorithm is

compared with Round Robin and Random methods and

the [5] method, in terms of throughput and delay. Fig. 5

indicates that the proposed method outperforms two

other technics and in all incoming traffic, from 100 to

900 packets per second is higher than SLA (60 % total

bandwidth). The throughput increases while increasing

traffic to 700 packets per second but throughput in 900

packets per second in random and round-robin methods

decreased except in the proposed and the [5] method.

The slight difference between the proposed method and

the [5] is due to fluctuations of reward.

-50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

R
ew

ar
d

Training Episodes

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

111

Fig. 5. Throughput comparison.

Fig. 6 shows delay comparisons between methods. It

can be seen that the Random and Round Robin methods

have a high delay and the proposed method and [5] have

an approximately identical delay. As observed from 700

packets per second, Random and Round Robin methods

suffered a high delay.

Fig. 6. Delay Comparison.

6. CONCLUSION AND FUTURE WORK

IoT is an emerging technology that consists of

millions of heterogeneous devices and creates smart

environments such as smart cities, etc. One of the most

important aspects of these environments is the traffic and

resource management framework to meet the QoS

requirements of the user end device requests. However,

matching the requests to the resources while satisfying

QoS for IoT traffic is a challenging task considering the

large volume of traffics from a massive number of

devices and resource constraints.

To deal with the challenge, we designed an SDN-based

solution to maximize QoS inspired by the success of

Deep Reinforcement Learning to handle complex

problems. The proposed framework was implemented in

Mininet as an SDN testbed. Furthermore, the

performance of the proposed framework is validated in

comparison to the Random and Round Robin methods

and [5] method. Simulation results show that the

proposed algorithm achieves better performance

0

100

200

300

400

500

600

700

800

100 300 500 700 900

Th
ro

u
gh

p
u

t
-

P
ac

ke
t

p
er

 S
ec

o
n

d

Total traffic - Packet per Second

Proposed Method Random Method
Round Robin Method [25] Method

0

500

1000

1500

2000

2500

3000

3500

100 300 500 700 900

D
el

ay
 -

m
s

Traffic - Packets per Second

Delay

Proposed Method Random Method

Round Robin Method [5] Method

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

112

compared to similar methods. A number of future work

can be considered, for examples, as our proposed

framework considers single SDN-controller, it would be

interesting to study IoT QoS improvement in the multi

controller SDN framework. In addition, the use of other

AI and machine learning methods to predict the

workload of controllers can be considered in future

work.

REFERENCES
[1] “Cisco Annual Internet Report - Cisco Annual

Internet Report (2018–2023) White Paper - Cisco.”

[Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/e

xecutive-perspectives/annual-internet-report/white-

paper-c11-741490.html. [Accessed: 23-Feb-2020].

[2] “Software-Defined Networking (SDN) Definition -

Open Networking Foundation.” [Online].

Available: https://opennetworking.org/sdn-

definition/. [Accessed: 07-Dec-2020].

[3] “Software-Defined Networking (SDN) Definition -

Open Networking Foundation.” [Online].

Available: https://www.opennetworking.org/sdn-

definition/?nab=1&utm_referrer=https%3A%2F%2

Fsdn.itrc.ac.ir%2F%3Fq%3Dfa%2Fcontent%2Fsdn.

[Accessed: 08-Jan-2020].

[4] “Examples of Network Programmability and

SDN > Introduction to Controller-Based

Networking | Cisco Press.” [Online]. Available:

https://www.ciscopress.com/articles/article.asp?p=2

995354&seqNum=3. [Accessed: 07-Dec-2020].

[5] A. Montazerolghaem and M. H. Yaghmaee, “Load-

Balanced and QoS-Aware Software-Defined

Internet of Things,” IEEE Internet Things J., Vol.

7, No. 4, pp. 3323–3337, Apr. 2020.

[6] S. Din, M. M. Rathore, A. Ahmad, A. Paul, and M.

Khan, “SDIoT: Software Defined Internet of

Thing to Analyze Big Data in Smart Cities,” in

Proceedings - 2017 IEEE 42nd Conference on Local

Computer Networks Workshops, LCN Workshops

2017, 2017, pp. 175–182.

[7] H. E.-K. S. G.-B. Mohammadreza Moslehi,

“Improving QoS using Software-Defined

Networking for Smart City (SDSC),” Int. J. Futur.

Gener. Commun. Netw., Vol. 13, No. 3, pp. 2757–

2767–2757–2767, Aug. 2020.

[8] S. K. Tayyaba, M. A. Shah, O. A. Khan, and A. W.

Ahmed, “Software Defined Network (SDN) Based

Internet of Things (IoT),” in Proceedings of the

International Conference on Future Networks and

Distributed Systems - ICFNDS ’17, 2017, pp. 1–8.

[9] D. Sinh, L. V. Le, B. S. P. Lin, and L. P. Tung,

“SDN/NFV - A new approach of deploying

network infrastructure for IoT,” in 2018 27th

Wireless and Optical Communication Conference,

WOCC 2018, 2018, pp. 1–5.

[10] Y. Njah, C. Pham, and M. Cheriet, “Service and

Resource Aware Flow Management Scheme for

an SDN-Based Smart Digital Campus

Environment,” IEEE Access, Vol. 8, pp. 119635–

119653, 2020.

[11] X. Guo, H. Lin, Z. Li, and M. Peng, “Deep-

Reinforcement-Learning-Based QoS-Aware

Secure Routing for SDN-IoT,” IEEE Internet

Things J., Vol. 7, No. 7, pp. 6242–6251, Dec. 2019.

[12] K. S. Bhandari, I. H. Ra, and G. Cho, “Multi-

Topology Based QoS-Differentiation in RPL for

Internet of Things Applications,” IEEE Access,

vol. 8, pp. 96686–96705, 2020.

[13] G. C. Deng and K. Wang, “An Application-aware

QoS Routing Algorithm for SDN-based IoT

Networking,” in Proceedings - IEEE Symposium on

Computers and Communications, pp. 186–191, 2018.

[14] K. Streit, C. Schmitt, and C. Giannelli, “SDN-Based

Regulated Flow Routing in MANETs,” 2020, pp.

73–80.

[15] N. Hu, F. Luan, X. Tian, and C. Wu, “A Novel SDN-

Based Application-Awareness Mechanism by

Using Deep Learning,” IEEE Access, Vol. 8, pp.

160921–160930, 2020.

[16] M. Naeem, S. T. H. Rizvi, and A. Coronato, “A

Gentle Introduction to Reinforcement Learning

and its Application in Different Fields,” IEEE

Access, Vol. 8, pp. 209320–209344, Nov. 2020.

[17] Yichen Qian, Jun Wu, Rui Wang, Fusheng Zhu, and

Wei Zhang, “Survey on Reinforcement Learning

Applications in Communication Networks,” J.

Commun. Inf. Networks, Vol. 4, No. 2, pp. 30–39,

2019.

[18] A. Alharin, T.-N. Doan, and M. Sartipi,

“Reinforcement Learning Interpretation Methods: A

Survey,” IEEE Access, Vol. 8, pp. 171058–171077,

Sep. 2020.

[19] V. Mnih et al., “Playing Atari with Deep

Reinforcement Learning,” Dec. 2013.

[20] V. Mnih et al., “Human-level control through deep

reinforcement learning.,” Nature, Vol. 518, No.

7540, pp. 529–33, Feb. 2015.

[21] Y. He, N. Zhao, and H. Yin, “Integrated

networking, caching, and computing for

connected vehicles: A deep reinforcement

learning approach,” IEEE Trans. Veh. Technol.,

Vol. 67, No. 1, pp. 44–55, Jan. 2018.

[22] R. S. Sutton and A. G. Barto, “Reinforcement

Learning: An Introduction Second edition, in

progress.”

[23] “Mininet: An Instant Virtual Network on your

Laptop (or other PC) - Mininet.” [Online]. Available:

http://mininet.org/. [Accessed: 22-Mar-2020].

[24] M. Runsungnoen and T. Anusas-amornkul, “Round

Robin Scheduling Based on Remaining Time and

Median (RR_RT&M) for Cloud Computing,” in

Smart Innovation, Systems and Technologies, Vol.

165, pp. 21–29, 2020.

[25] “RFC 3549 - Linux Netlink as an IP Services

Protocol.” [Online]. Available:

https://datatracker.ietf.org/doc/rfc3549/. [Accessed:

11-Dec-2020].

[26] A. Kuznetsov, J. Salim, A. Kleen, and H. Khosravi,

“Linux Netlink as an IP Services Protocol.”

[27] “sFlow.org - Making the Network Visible.” [Online].

Available: https://sflow.org/index.php. [Accessed:

26-Nov-2020].

Majlesi Journal of Electrical Engineering Vol. 15, No. 3, September 2021

113

[28] “sFlow-RT.” [Online]. Available: https://sflow-

rt.com/. [Accessed: 17-Dec-2020].

[29] “Gym.” [Online]. Available:

https://gym.openai.com/. [Accessed: 11-Nov-2020].

[30] “MQTTset | Kaggle.” [Online]. Available:

https://www.kaggle.com/cnrieiit/mqttset. [Accessed:

26-Dec-2020].

[31] “esnet/iperf: iperf3: A TCP, UDP, and SCTP network

bandwidth measurement tool.” [Online]. Available:

https://github.com/esnet/iperf. [Accessed: 05-Dec-

2020].

