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ABSTRACT: 

In recent years, exponential growth of communication devices in Internet of Things (IoT) has become an emerging 

technology which facilitates heterogeneous devices to connect with each other in heterogeneous networks. This 

communication requires different level of Quality-of-Service (QoS) and policies depending on the device type and 

location. To provide a specific level of QoS, we can utilize emerging new technological concepts in IoT infrastructure, 

Software-Defined Network (SDN) and, machine learning algorithms. We use deep reinforcement learning in the process 

of resource management and allocation in control plane. We present an algorithm that aims to optimize resource 

allocation. Simulation results show that the proposed algorithm improved network performances in terms of QoS 

parameters, including delay and throughput compared to Random and Round Robin methods. Compared to similar 

methods, the performance of the proposed method is also as good as the fuzzy and predictive methods.  
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1.  INTRODUCTION 

Consequence of the rapid growth in new 

technologies including IoT, Smart city, and Smart home 

would result in significant increase in number of 

connected things and devices such as smartphones and 

higher demands for more network resources. Cisco's 

annual internet report white paper predicts a growth of 

14.7 billion connected devices and 5.7 billion for total 

number of global mobile subscribers by 2023 [1]. The 

results are a rapid growth on the resource demands and 

an increase in network traffic, delay, and congestion. 

These also pose significant challenges such as 

complexity of network management and the lack of 

scalabilities. Smart city applications such as energy, 

security, and e-health have stringent requirements with 

expected QoS. In traditional network technologies, 

network devices such as switches and routers work on 

their own data plane and cannot meet those challenges. 

To cope with these issues, we need flexible and new 

networking technologies to adapt to dynamics needs. 

Software-Defined Networking or SDN [2] allows 

programming for configuration and modification of 

different network devices. With such technology, we are 

capable to cope with today's network requirements in a 

more timely manner and efficient way. Open 

Networking Foundation or ONF characterized SDN 

technology as modern and emerging architecture which 

is perfect for new applications with a delay-sensitive, 

high-bandwidth, and dynamic nature. Some of SDN-

based IoT advantages can be the dynamic manageability, 

cost-efficiency, and adaptability [3]. The network 

control plane is separated from the data plane or 

forwarding functions in SDN architecture. So, we can 

make the network control directly programmable. With 

the SDN, the underlying infrastructure is abstracted from 

applications and network services. With the dynamic 

network programming ability of SDN, we can centrally 

control and manage the entire network. With a 

centralized SDN controller, it is possible to perform 

dynamic network optimization operations and 

management.  One of the requirements of IoT 

environments is network management automation which 

is possible via the programmability of SDN [4]. Other 

challenges in the networking domain is resource 
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allocation. Deep reinforcement learning has been 

successfully utilized to solve this issue.  

So, our main contributions in this paper are: 

• Investigating the importance of machine 

learning algorithms, especially deep 

reinforcement learning, in resource allocation 

process and improving the QoS of SDN-based 

IoT. 

• Proposing a deep reinforcement learning 

algorithm for solving resource allocation 

between clients and servers in an SDN-based 

IoT. 

Our simulations and evaluations results show that the 

proposed solution improves QoS in terms of delay and 

throughput compared to Random and Round Robin 

methods, and also show that the performance of the 

proposed method is near the fuzzy and predictive 

method in [5].  The remainder of the paper is organized 

as follows: Section 2 reviews some related works. In 

section 3, a brief overview of DRL is explained. Section 

4 proposes the DRL model. We analyze the results in 

Section 5, and the paper concluded in section 6. 

 

2.  RELATED WORKS 

Several techniques are used to improve QoS in 

network resource allocation policies. These techniques 

are significantly related to the domain of network 

environments. One of the broad research domains is QoS 

in the IoT. IoT has a rapid growth of its connected 

devices. IoT applications need some levels of QoS such 

as bandwidth, delay, and reliability.  

several works have been done regarding IoT and 

QoS issues by using networking emerging technologies 

such as SDN [5]–[10]. In traditional networks, hardware 

devices manage connections between sources and 

destinations based on the static and inflexible 

parameters. Recently SDN-based IoT has received 

remarkable attention in field of QoS. Authors in [11] 

have been used SDN technology to overcome latency 

and security issues. They propose a deep-reinforcement-

learning-based quality-of-service (QoS)-aware secure 

routing protocol (DQSP) that can extract knowledge 

from past traffic demands and optimize the routing 

policy dynamically with guaranteeing QoS. Authors in 

[12] focus on QoS differentiation by exploiting a multi-

topology routing feature in RPL. They propose different 

objective functions to ensure the QoS differentiation at 

the network level by virtualizing the physical network 

into several RPL instances. In [13], the authors use an 

SDN-based IoT infrastructure based on the simulated 

annealing algorithm and propose a QoS routing 

algorithm for that system. 

In [14], a Reliable and Dynamic Routing Technique 

(RaDRT) is proposed that regulates traffic flows routing 

in an Edge-MANET environment by adopting the SDN 

approach. Their solution is based on SDN monitoring 

and management of networks while considering QoS 

requirements for running applications. Using SDN 

technology in smart city networks, a big data analysis 

approach is suggested in [6]. Their system includes Data 

Collection, Data Management, and Application levels. 

These elements are further connected via two 

intermediate levels working on SDN principles. Authors 

in [15] design a deep learning application awareness on 

SDN technology to improve QoS.   

 

3.  REINFORCEMENT LEARNING AND SDN  

Reinforcement Learning, or RL, is one of the 

machine learning techniques in which an agent acts in 

the environment to maximize reward. In the RL, the 

agent learns by trials and errors. Due to the good results 

of using RL in various fields of application, this 

technique has received more attention. In general, 

machine learning refers to algorithms that can infer a 

mathematical model using large amounts of data. In 

most applications, problem-solving is formulated as an 

optimization problem, in which the algorithm minimizes 

the loss function, which is equal to the difference 

between the predicted result and the actual value. In the 

popular algorithm of machine learning, supervised 

learning, the algorithm takes a training set (a subset of 

the available complete data) and decreases the gradient 

until the loss function is reduced to an acceptable value 

or all the data is sampled. The goal of a machine learning 

algorithm is learning data distribution that accurately 

categorizes input data and prevents overfitting, that is, 

learning a mathematical model that processes only the 

dataset of the algorithm. RL can be described by the 

conditional domain of behavioral psychology. RL 

mimics the agent conditioned to adapt to an unknown 

environment. Instead of minimizing the loss function, 

the agent improves his behavior by receiving a reward 

for the performance of his actions. It does this by 

stepping into the environment. At each stage, the agent 

observes the current states, performs an action, and 

receives a numerical reward. 

The agent chooses an action, and when action is 

done, the state of the environment changes. The 

desirability of this change is sent by a scalar reward to 

the agent. During the learning, the agent tries to 

maximize the cumulated reward [16]. The trial and error 

learning of the agent is done with several learning 

algorithms [17]. Q-learning is one of the learning 

algorithms used to learn the RL agent, this is a temporal 

difference or TD learning algorithm [18].  

In each state, TD algorithms gradually build 

information for the best actions to take. This is done by 

the policy. The policy is a strategy that applies to the 

learning agent to decide the next action based on the 

current state. In other words, policy maps states of the 

environment to actions to be taken when in those states 

[16]. Q-values Q (s, a) are values that show the 
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desirability of each action a, in the state, s. In step i a 

reward R (si, ai) will be returned by the environment. The 

Q-value Q (si, ai) is related to the state-action pair (si, ai) 

and is an approximation of the expected long-term 

reward for that pair. All the Q-values are stored in the Q 

table and based on these values; the agent chooses the 

next action by an -greedy policy.  

By adopting the -greedy policy, an action with the 

highest Q-value will be selected by the agent with a 

probability of ; otherwise, a random action with the 

probability of 1-  will be chosen. Then the reward of R 

(si, ai) is learned, and the state will shift to si+1, and also 

Q-values stored on the table with the temporal difference 

way will be updated. Q-Values continuously updates 

until the agent takes the best action by using these values 

[18]. 

 

3.1. Deep Q-learning 

Deep reinforcement learning or DRL as one of the 

RL  methods has been widely proposed in recent years 

for challenges such as decision making in large state 

space  [19]. Q-network is the agent that applies a neural 

network to represent the Q function. Q(si, ai; 𝜃) is a 

notation of a Q-network that 𝜃 is weights for the neural 

network. To approximate real Q value, Q-network is 

trained by updating 𝜃. Neural networks are applied in Q-

Learning because of great flexibility, but they may cause 

instability [20].  

Deep Q-network benefits from a deep neural 

network. It is proven that Deep Q-networks have greater 

efficiency and more strong learning [20]. In addition to 

convert an ordinary Q-network into a deep Q-network, 

the deep Q-network utilized Experience Replay to store 

experience tuple ei=((sj, aj, Rj(sj, aj), sj+1)) at each step i 

into replay memory Di = { e1, ….ei)} [21]. Q-learning 

training directly uses successive samples but to train 

weights of the deep network, randomly sample batches 

from the experience pool. Random sample batches from 

the experience pool cause the deep network to learn from 

various past experiences and keep the network from only 

focusing on what it is immediately doing. To generate 

the target Q values, the deep Q-network is adopting a 

second network called target network. 

The loss for each action in the training process is 

computed. Using one network will result in falling into 

feedback loops between the target and expected values 

for both estimates of Q values and target Q values. 

Therefore, the weights of the target network are set and 

regularly adjusted to stabilize the training. 

 

3.2. SDN and DRL 

SDN architecture as an evolution of network 

technology has emerged and aimed to create networks 

with more flexibility and better management with lower 

complexity. The main idea of SDN is decoupling the 

control plane from the data plane. SDN enables better 

programmability, agility, and flexibility in the network 

and allows to manage network centrally that keeps a 

global view of the network [3] 

RL and DRL or deep reinforcement learning as two 

powerful machine learning technics widely apply in 

emerging communication networks technologies such as 

SDN [17]. In the RL, an agent acts in an environment to 

maximize reward. The RL agent acts based on collected 

information by the centralized SDN controller. The RL 

agent also learns based on the feedback of the network 

states and continually updates its policy. Centralized 

network management with an SDN controller has the 

following advantages: 

- The controller can disseminate optimal global 

information in the form of actions and policies 

throughout the network. 

- The agent can act as an interface between the IoT and 

smart city network and the RL algorithm. 

- There is less delay in communicating with the 

central controller system. 

 

4.  RESOURCE ALLOCATION USING DRL IN 

SDN-BASED IOT 

4.1 Architecture 

The controllers and OpenFlow switches in SDN send 

the traffic without desirable QoS required for many 

applications in the domain of IoT and smart city 

networks. The traffic flows are assigned with the 

minimum value of the rate. As indicated in the proposed 

architecture for smart city networks (Fig. 1), several user 

end devices and application request data. 

In the architecture defined in Fig. 1, the number of M 

end-user devices can request the data from the MEC 

server. When the user wants to access content, or the 

application needs to process the data, the content is 

responded from the desired CDN (server) at the edge of 

the network, which reduces latency. Network nodes are 

all equipped with internal cache and also have 

processing capabilities. The SDN controller manages 

these nodes. These nodes can be virtualized to multiple 

virtual subnetworks using a hypervisor. 

Users can connect to network components such as 

BSs, APs, RSUs and MEC servers, and content caches. 

Each user device also accesses one of these CDNs (BS, 

AP, RSU) based on the defined QoS and SLA 

requirements. 
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Fig. 1. Proposed architecture. 

 

The SDN controller selects from the available CDNs 

(servers) according to the QoS parameters and the 

server’s cost that has the lowest cost and the highest 

QoS. The centralized SDN controller is responsible for 

collecting states with a global view of the network. 

These states are obtained from periodic queries from 

each of the MEC hosts, CDNs, and servers to maintain a 

global view.  

 

4.2. Reinforcement learning (RL) framework 

One of the main pillars of the RL problem is how the 

environment is represented, or in other words, what the 

algorithm observes. This observation can be done in 

different ways. Switch statistics, application flows, and 

additional information can be used to generate 

observations. Ideally, the central controller should have 

complete information about all traffic flows to infer 

traffic correlations. This may not be possible for a 

variety of reasons, including security issues or hardware 

limitations. The statistics of network switches are 

collected and stored in a p*f traffic matrix. This matrix 

models the assumed network as p ports and f network 

features. A query with a switch can get various 

information such as active flows, the number of lost 

packets, RTT, and port usage.  

The obtained states are sent to the agent of the 

reinforcement learning algorithm. This agent can be an 

agent of the DQN algorithm. The optimal policy for 

setting the right resource for a particular user device is 

determined from the algorithm feedback. After getting 

the action, a notification is sent to the user’s device 

stating which of the available CDNs it can connect to. 

In each RL algorithm, a goal is defined, and the agent 

is trained by trial and error to achieve that goal. One of 

the most essential parts of an RL algorithm is the 

definition of the reward function. We add to the reward 

if we receive feedback and evidence of the action being 

acceptable or desirable, and for actions that are not good, 

a punishment is subtracted from the reward. The 

cumulated of the rewards obtained is the goal of the RL 

algorithm. The objective of the RL agent is to maximize 

the reward, which it does by learning an optimal set of 

actions.  

All system-specific information is abstracted away 

from the agent, providing flexibility in obtaining data 

and modeling it. OpenAIGym is an RL standard 

evaluation platform that aims to expedite the 

reproduction and evaluation of the performance of an 

algorithm in different areas. 

 

4.3. Problem formulation 

In this problem, we are faced with discrete actions 

(i.e., choosing between the servers) and continuous and 

infinite state-space, so in this research, we have used the 

Deep Q-Network algorithm to find Q values. Deep Q-

Network is one of the popular reinforcement algorithms 

for estimating Q values in a system modeled with MDP.  

By choosing an action, and sending traffic and delivery, 

QoS parameters such as throughput and delay are 

measured.  

In this algorithm, the agent is not directly guided to 

what to do. It tries to recognize the value of each 

permitted action in each environment's state by trial and 

error. It may also use exploration and exploitation. The 

algorithm finds a model for appropriate behavior and 

maximizes rewards. Reinforcement learning behavior is 

based on the reward hypothesis [22] in which all goals 

are defined by maximizing the mathematical expectation 

of cumulative reward. 

RL is a step-by-step decision-making process that 

seeks to maximize reward in each step but may choose 

actions in the next step that do not necessarily have 

immediate and large rewards, but the goal is to maximize 

cumulative rewards. 

After implementing the reinforcement learning 

algorithm, it trains with repeated episodes. To 

implement this algorithm, we have used a deep neural 

network with a dense layer with a linear activity 

function. To solve each RL problem, we must specify 

the values for the states, reward, and set of actions. To 

run the algorithm in the training phase, we consider 

several episodes. In the algorithm States: Takes 

observations or state of the environment, Reward: Earns 

a numerical reward by following an action, 

Episod_done: Indicates the successful end of an episode 

(Episod_done value determines the completion of each 

episode). In the following, the details of the algorithm 

are described: 

 

States: We consider the experience at any point in time 

as a state: 
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1. current_bw: The amount of bandwidth 

available for each server. 

2. min_bw: Minimum bandwidth for each server 

(minimum SLA bandwidth allowed). 

3. server_id: The ID of each server that responded 

to the request. 

4. current_delay: The amount of current latency 

for each server. 

5. max_delay: Maximum delay (maximum SLA 

delay allowed). 

 The above parameters are measured at each step 

when the agent performs an action. 

Actions: Here, the action a  A ={0, 1, 2} as one of three 

server s1, s2,s3 could be choosing between the CDN 

servers.  

Reward: The most essential part of designing an RL 

algorithm is the design of the reward function. The 

design method of the reward function strongly affects 

the performance of the RL algorithm. The goal here is to 

maximize the bandwidth usage or minimize the delay, 

assuming that each server’s CAPEX differs. 

To define a reward function for the problem, the 

following points should be considered: 

1- The agent should avoid choosing a server with 

a higher cost, so choosing a server with a lower 

cost, a positive reward, and selecting a server 

with a higher cost, a negative reward are 

calculated. 

2- The service level agreement or SLA must be 

maintained at all costs. In the other words, the 

bandwidth obtained must be higher than the 

service level specified in the agreement. In the 

design of rewards, when the bandwidth falls 

below the values specified in the service level 

agreement, a severe penalty should be 

considered.  Also, in the design of rewards, 

severe penalties should be considered when 

increasing the delay above the SLA values. 

3- Regardless of any choice made, the goal is to 

deliver the data in any way, so a positive reward 

is considered in each successful delivery.  

To obtain the reward, QoS evaluating functions and 

other factors that affect the reward are calculated as 

follows:  

Rd
t =

{
 
 

 
 

max_delay -current_delay

max_delay
 

, current_delay<max_delay 

delay_sla_penalty                 ,
current_delay>max_delay     

                             (1) 

 

Rbw
t =

{
 
 

 
 1 − (

current_bw -min_bw

min_bw
  )       

,current_bw>min_bw  
bw_sla_penalty                              

,current_bw<min_bw     

                       (2) 

 

Reward = 1.(𝑅𝑑
𝑡 )+2 .(𝑅𝑏𝑤

𝑡 ) +3.(𝑅𝑒𝑝𝑖𝑠𝑜𝑑𝑒
𝑡 ) 

+4.( 𝑅𝑐𝑜𝑠𝑡𝑖
𝑡 )                                                                 )3) 

Where, SLA constrains violation (2, 4) punished and 

by 1  to 4 coefficients, the impacts of reward factors for 

the delay, bw, successful episodes, and cost respectively 

could be tuned. We set 1=2=1/2 and 3=4=1 and 

𝑅𝑐𝑜𝑠𝑡𝑖
𝑡 =i, i=1,2,3. 

Episodes: In an RL algorithm, we can consider a 

final execution limit, so this experience ends at some 

point in the execution. If we do not consider this final 

limit, we can continue to run the algorithm indefinitely. 

Of course, an episode may be stopped due to an error. 

For example, when the SLA is not satisfied several 

times, it decides to end the episode, in which case the 

agent restarts. 
 

 
Fig. 2. The steps in the algorithm. 

 

As indicated in Fig. 2, the proposed algorithm has 

five main steps. The agent, by taking each action could 

cause to increase or decrease the amounts of QoS 

parameters. By monitoring and evaluating QoS 

parameters, agent gets informed by a reward and based 

on, the agent adjusts its policy (Q-values). 

 

5.  EXPERIMENTAL RESULTS 

In this section, we are going to show the result of the 

evaluation of the proposed architecture. We use Mininet 

[23] to implement SDN based environment.  

 

 
Fig. 3. The topology of the SDN-based scenario. 
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The configuration setting is shown in TAable 1. To 

evaluate the performance of the proposed algorithm, we 

compare simulation results with the random method, 

Round-robin (RR) algorithm [24] in which resource 

allocates in turn to the UEs and each UE cannot be 

served in two successive periods and the work in [5]. 

  

Table 1. Configuration setting of simulated network. 

OS Ubuntu 18.04 

Environment Mininet 2.3.0d6 

SDN-controller OpenFlow 1.3 

TCP window size 85.3 Kbytes (standard) 

UDP buffer size 208 Kbytes 

ICMP (ping) packet size 1500 bytes (1472+20+8, 

data, IP header, ICMP 

header) 

Number of Controllers 1 

Number of OpenFlow 

switches 

7 

Number of hosts 6 

Time (seconds) to listen 

for new traffic 

connections 

1 

 Interpacket gap (IPG) 280 us 

Link Bandwidth 10 Mbps  

SDN Controller 

Framework 

Ryu 

Language Python 3.6 

Reward decay (𝛾)   0.95 

Learning Rate(α)   0.001 

Size of the Memory 

buffer   

1000000 

Size of mini-batch   20 

The maximum value of  0.9 

Number of episodes 500 

Number of Timestep 

Per episode 

100 

Number of hidden layers 2 

Number of nodes per 

layer 

24 

 

First, we create a topology based on the proposed 

architecture, as shown in Fig. 2, and the designed 

algorithm implemented on the controller.  

Using modules that can be used in hosts, parameters 

such as transmission throughput, jitter, latency, and 

packet loss can also be achieved. To access this 

information, a Linux operating system API called 

Netlink [25], [26] can be used to update the status matrix. 

Also, sFlow [27], [28] from the infrastructure of SDN 

that consists of network devices such as switches and 

router could collect network status information and send 

this information to management application. 

By using OpenAIGym [29], we can create a 

playground for the agent to try and learn the optimal 

behavior in the environment. OpenAIGym acts as an 

interface between the DRL agent and the smart network 

environment. 

To train the network, we use a dataset called 

MQTTset [30], as it is captured from the MQTT protocol 

from IoT sensors. It contains 11,915,716 network 

packets. For the training phase of our algorithm, we 

consider 500 episodes. As shown in Fig. 4, the average 

cumulated reward obtained from the experiment 

increased from an episode near 200. Some fluctuations 

are seen in reward in Fig. 4. These fluctuations are 

because of the maximum value of , which is used 

greedily for action selection during the training phase. 

We use 0.9, which means that the agent with a 

probability of 0.9 chooses the best action, and with a 

probability of 0.1 may choose a bad action at each 

iteration that causes a punishment or reduced reward. 

 

 
Fig. 4. The average reward for episodes. 

 

To evaluate the proposed algorithm we generate 

traffic with the iPerf  [31] with a constant rate of 100, 

300, 500, 700, and 900 packets per second. When a 

client request is received, the agent should decide which 

server is best in terms of QoS parameters. In other 

words, the clients send requests and the servers are 

selected by the agent. To make the simulation closer to 

real scenarios, we generate background traffic between 

other hosts at a constant rate.  

The performance of the proposed algorithm is 

compared with Round Robin and Random methods and 

the [5] method, in terms of throughput and delay. Fig. 5 

indicates that the proposed method outperforms two 

other technics and in all incoming traffic, from 100 to 

900 packets per second is higher than SLA (60 % total 

bandwidth). The throughput increases while increasing 

traffic to 700 packets per second but throughput in 900 

packets per second in random and round-robin methods 

decreased except in the proposed and the [5] method. 

The slight difference between the proposed method and 

the [5] is due to fluctuations of reward. 
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Fig. 5. Throughput comparison. 

 

Fig. 6 shows delay comparisons between methods. It 

can be seen that the Random and Round Robin methods 

have a high delay and the proposed method and [5] have 

an approximately identical delay. As observed from 700 

packets per second, Random and Round Robin methods 

suffered a high delay. 

  

 
Fig. 6. Delay Comparison. 

 

 

6.  CONCLUSION AND FUTURE WORK 

IoT is an emerging technology that consists of 

millions of heterogeneous devices and creates smart 

environments such as smart cities, etc. One of the most 

important aspects of these environments is the traffic and 

resource management framework to meet the QoS 

requirements of the user end device requests. However, 

matching the requests to the resources while satisfying 

QoS for IoT traffic is a challenging task considering the 

large volume of traffics from a massive number of 

devices and resource constraints. 

To deal with the challenge, we designed an SDN-based 

solution to maximize QoS inspired by the success of 

Deep Reinforcement Learning to handle complex 

problems. The proposed framework was implemented in 

Mininet as an SDN testbed. Furthermore, the 

performance of the proposed framework is validated in 

comparison to the Random and Round Robin methods 

and [5] method. Simulation results show that the 

proposed algorithm achieves better performance 
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compared to similar methods. A number of future work 

can be considered, for examples, as our proposed 

framework considers single SDN-controller, it would be 

interesting to study IoT QoS improvement in the multi 

controller SDN framework. In addition, the use of other 

AI and machine learning methods to predict the 

workload of controllers can be considered in future 

work. 
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