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ABSTRACT 

In this article, the issue of sensor fault detection and identification with sensory information is considered. This is due 

to the dependence of successful Fult Detection (FD) method on correct sensory measurements that suffer from various 

soft sensory faults such as bias, drift, scaling factor, and hard faults that can be detected independently. They are not 

detectable but can be combined with other sensors. To solve this issue, firstly, a state space model for pump subsystem 

was constructed using the electrical simulation method. Then, the sensory soft faults are modeled and amplified to 

electro-pump state space model.  Both system states and amplified sensory soft faults are then estimated using an 

Extended Kalman filter (EKF) in which nonlinear model of the induction motor is linearized around the estimated 

states. Information of current, angular velocity (encoder) and pressure sensors are  melted for this goal. The efficiency 

of the method is firstly evaluated through simulation and then experimental results are provided from our laboratory 

setup. Measured volume currents, flow, and pressure are compared with simulated signals, and results show that the 

proposed model is able to successfully describe the laboratory system with good precision. These results show that the 

model can describe the electro-pump dynamic with good precision. 
 

KEYWORDS: Electro-Pump System, Fault Detection, Sensory Soft Fault, Extended Kalman Filtering. 
 

1. INTRODUCTION  

Pumps are important part in a wide range of 

mechanical operations, such as power plants, the 

chemical industry, air conditioning, cooling and heating 

systems, and more. They are commonly used for a 

variety of industries and used for fluid delivery [1]. 

Most of them are driven by induction motors, which call 

the whole system an electro-pump system. Induction 

motors use robustness, reliability, efficiency and 

controllability. For electric pumps, proper operation 

through real-time fault detection and fault reset is 

essential, as it can be used in a variety of industries, 

especially the process industry [2]. 

The idea of conclusive repetition has recently 

received a great deal of attention in the diagnostic 

literature compared to hardware redundancy because of 

its benefits. Approaches to analytical error (FD) 

detection can be roughly divided into two main classes 

of models and knowledge-based methods. The first 

examples use a quantitative analytical model of the 

physical system, while the second models let the use of 

qualitative models based on the available information 

and knowledge of a physical system. If an almost exact 

mathematical model is available, model-based methods 

are preferred. This is because these approaches provide 

more accurate results and are more suitable for 

performance analysis. Observer-based methods are 

among the model-based models with wide applications 

in the framework of modern control theory [3]. 

Therefore, in this article, observation-based individuals 

are used. 

Faults in an electro-pump are probably due to the 

pump, motor elements, actuators or sensors. Short-

circuit in stator windings is the most common fault in 

induction motors which devotes 38% of all induction 

motor failures to itself. The early diagnosis of this fault 

is of great importance due to the increase of eddy 

current and the loss of windings insulation. Therefore, 

different methods which are model-based [4], signal 

processing-based [5] and intelligent methods [6] have 

been widely used in diagnosing this fault [7]. However, 

the main faults in pumps are associated with impeller 
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damages [8], rotor faults, seals faults, cavitation [9] and 

bearing faults.   These faults may reduce pump 

performance or even may cause total failure of the 

pump system. The overall reliability and safety of many 

systems rely on the working quality of the pump. Thus, 

the monitoring and fault diagnosis of pumps plays a key 

role in maintenance procedures [10]. 

However, the success of an FD method of all of the 

above faults is highly dependent on accurate sensory 

measurements that may suffer from various soft 

sensory faults such as bias, drift, scaling factor, and 

hard faults. Detection of these sensory defects in an 

independent use is completely impractical. Satisfactory 

performance is immensely reliant on the faithful 

working of all of its major components of which 

sensors are the integral part [11]. 

The literature on current sensors FDI shows a 

variety of approaches based on hardware redundancy, 

software redundancy, or both of them [12]. Efficient 

sensory defect detection is usually performed by sensor 

fusion [13]. In particular, defects in sensors can lead to 

major consequences for the performance of industrial 

devices. As shown in [14], a fault in a current sensor 

can cause an overcurrent in the induction motor in a 

short period of time in which the overcurrent protection 

method must be used. In addition, mechanical speed or 

position sensors are more prone to error than current 

sensors. However, they affect the phase current almost 

after a long time, which makes the error detection 

method unrealistic in time [14]. In this regard, the 

design of FD methods for mechanical sensors with 

promising results has been widely considered in the 

literature [15], [16] however, the current FD of sensors 

still needs to be examined. 

Most diagnostic methods in the literature are based 

on hardware redundancy [17], [18]. However, the use of 

redundant sensors increases the size and cost of the 

system [19]. For this reason, some research studies 

suggest FD methods using only two-sensor information. 

For example, in [20], a compatible observer is proposed 

to detect faults in current, speed or voltage sensors. This 

method is based on the assumption that there is 

probably only one faulty sensor at a time, meaning that 

only single faults can be separated. This method 

requires calculating the average residual value. 

A similar method for Fault Detection and Isolation 

(FDI) single-sensor faults has been reported in [19]. The 

FDI is performed by calculating Kalman filter residues 

(KF) and absolute values of currents. These residues are 

not completely separated from each other, so the 

thresholds must be carefully selected with the 

experimental algorithms proposed in the paper. This 

method is not able to detect the recovery of a sensor 

from a defective situation, for example, after a short-

term fault [21]. 

In this paper, however, similar to [22] sensory soft 

faults (biases, drifts, and scaling factors) are modeled 

and augmented to system state parameters in our 

electro-pump application. Using its electrical analogy, a 

mathematical model for pump subsystem is created to 

provide a suitable model which is correlated with sensor 

measurements.  Then, an EKF (extended Kalman 

filtering) method is employed to estimate system states 

and the extent of sensory soft faults fusing the 

information of current, angular velocity (encoder) and 

pressure sensors. 

In this article, similar to [19], soft sensory faults 

(biases, drifts and scaling factors) are modeled and 

amplified in the application of our electro pump to the 

system state parameters. Using its electrical analogy, a 

mathematical model is created for the pump subsystem 

to provide a suitable model that correlates with sensor 

measurements. Then, an EKF (extended Kalman 

filtering) method is used to estimate the state of the 

system and the amount of soft sensory faults using the 

information of flow, angular velocity (encoder) and 

pressure sensors. 

The rest of this article is as follows: Some 

information about system and sensor error models is 

provided in Section 2. The EKF is then reviewed and 

used in Section 3. The simulation results are presented 

in Section 4 to show the efficiency of the proposed 

method. In Section 5, this method is evaluated through 

the experimental results obtained from the operation of 

the laboratory. Ultimately, a summary is available in 

Section 6. 

 

2. SYSTEM MODELING AND PROBLEM 

FORMULATION AND FAULTS 

In this section, firstly, nonlinear model of the 

induction motor is presented. Then, a mathematical 

model for pump subsystem is proposed using its 

electrical analogy.  

 

2.1. Nonlinear Dynamic Model of an Induction 

Motor 

The induction motor model is described in two 

stationary reference frames, denoted by ( , )  . This 

frame is obtained by linear transformations applied to 

the three-phase electromagnetic variables, denoted by 

( , , )a b c . A graphic representation of the stationary 

reference frame is shown in Fig. 1, where ζ denotes the 

components of the currents, voltages or fluxes. It can be 

observed that in the ( , ) 
 
frame, the   component is 

aligned with axis a. In order to obtain the representation 

of the induction motor model in the ( , ) 
 
frame, the 

following transformation is employed: 

  
T T

a b cT       =     () 

where,  
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Fig. 1. Graphic representation of the stationary 

reference frame [21]. 

 

The model is represented in the ( , )  frame by 

the following dynamic equations:    

di
ai bc b dv

dt


    = − + + +                      () 

di
ai bc b dv

dt



    = − + − +                         ()

M

d
L ci c

dt


  


 = − −                                 ()

M

d
L ci c

dt



  


 = − +                                 ()

( )f t L

d
kc kc i i kT

dt
   


  = − + − −              () 

 

Where, i  and i   are stator currents;   and   

are rotor fluxes;    is the rotor speed; v  and v  are 

stator voltages; LT  is the load torque. Thus, 

T

X i i      =  
 is the state vector of 

induction motor subsystem and v , v  and LT  are 

considered as  arbitrary inputs, and the constants are as 

follows: 

2 2

r s M r

r

L R L R
a

L

+
=    

ML
b


=    r

r

R
c

L
=    

rL
d


=                                                                   (−) 

2( )r s ML L L = −  1k
J

=  M
t

r

pL
c

L
=

                                                                                (−) 

sR  and rR  are stator and rotor resistances, 

respectively; sL , rL  and ML  are stator, rotor and 

magnetizing inductances, respectively; J  and p are the 

moment of inertia and the number of pole pairs, 

respectively; fc  is the friction coefficient [21]. 

 

2.2. Modeling of Pump and Tank by Electrical 

Analogy Method 

In this subsection, we develop a model for hydraulic 

subsystem including pump and tank components using 

electrical analogy method. The employed experimental 

setup is depicted in Fig. 2. The system consists of a 

3KW induction motor and a 3-stage centrifugal pump. 

The schematic of the employed pump and tank system 

has been depicted in Fig. 3. As it is depicted in the 

figure, the system is composed of a pump, a reservoir 

tank and connecting pipes. The length of connecting 

pipes is represented by ,  1,2,3il i = . Due to the pressure 

and fluid flow changes in the system, pressure and flow 

of different parts are represented by ,  1,2,3,4iP i =  and 

,  1,2iq i = , respectively. Besides, h  is the tank height. 

.  

 

Fig. 2. Electro-pump system in system identification Lab., Iran Univ. of Sci. & tech. 
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Fig. 3. Graphic representation of pump and tank system. 
 

Now, the electrical analogy method [20] is 

employed for the hydraulic subsystem. In this method, a 

reservoir is modeled by a capacitor, a pipe by inductor a 

cross section change by resistor and a pump by voltage 

or current source.  

• Electrical analogy of hydraulic components: 

Reservoir: In the electrical analogy approach, a 

reservoir is modeled by a capacitor. Consider a reservoir 

as depicted in Fig 4. The following equations relate the 

reservoir to the capacitor. 

 

 
Fig. 4. Scheme of reservoir. 

 
1 2

dV
q q

dt
− =                                                      (−) 

                   V Ah=                                             (−)

1 2

( )V Ah dh
q q A

dt dt
− = =                         (−) 

1 2

( / )d p g A dp
q q A

dt g dt




− = =                    (−) 

Where 1,2q , p , V ,
 

h , A ,  , g   are flow, 

pressure, volume, the cross-section of the tank, liquid 

density and gravity acceleration constant, respectively.  

Thus, the reservoir can be modeled by a capacitor 

with the following capacity: 

 

A
C

g
=                                                                 (−) 

Pipe: If a pipeline is long enough, it is modeled by an 

inductor as an electrical component in the electrical 

analogy approach. Besides, any change in cross-section 

of the pipeline is modeled by a resistor. Consider a 

pipeline as depicted in Fig 5. The following equations 

show how a pipeline can be related to an inductor 

through formulas: 

 

 
Fig. 5. Scheme of pipe. 

 

1 2 1 2 1 2( )F F p A p A p p A ma− = − = − =             (−) 

1 2( )
dv

p p A m
dt

− =                                    (−) 

,m AL q Av= =                                   (−) 

1 2( )
dv

p p A AL
dt

− =                                     (−) 

    1 2( )
L dq

p p A
A dt


− =                               (−) 

 

Where, A ,  , L , m , v  and a  are cross-section 

of pipes, liquid density, pipe’s length, liquid mass, 

liquid velocity and, liquid acceleration, respectively. 

      Thus the corresponding inductance of a pipeline is 

calculated as follows: 
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L
l

A


=                                                              (−) 

Besides, as mentioned earlier, any changes in cross-

section of the pipe is modeled by a resistor component 

in the electrical analogy approach which can be 

determined by experimental data.  

Pump: A pump as a pressure producer in the 

hydraulic system is modeled by voltage or current 

source in an electrical system. In this paper, we replace 

a pump with a voltage source with a constant value of 

sp . Electrical analogy modeling of laboratory 

hydraulic system: 

   
  

 

Fig. 6. Electrical model of pump and tank system. 
 
 

Therefore, the equivalent electrical model as shown 

in Fig. 6 is obtained from. Analyzing the electrical 

circuit of Fig. 6, dynamics of the hydraulic subsystem 

can be described as follow: 

  

3 21 1 2 2
1 2 3 4

1 1 3 1 1 3 1

-( ) 1 2
- (1 )

3

sR L pdq R R LL
q q p p

dt L L L L L L L L

++
= + + + +

                                                                                (−) 

2 2
1 2 3

2 2 2

- 1 1dq R
q p p

dt L L L
= + −                              (−) 

32 2 1 2
1

1 1 2 2

2

3 3 2 3 2
2

1 2 1 2 3 1 3

3 32 2 2 2 2
3 4

3 1 3 3 2 1 3 1

( )1
( )

1 1
          ( )

- 1
         ( (1 )) ( ) s

Ldp R R R
q

dt C C L L

L R R R L
q

C C C L L L L

R RR L R L R
p p p

L L L L RC L L L

+
= + − +

− + − + + +

− + + − + +

                                                                                (−) 
2

3 3 3 3 3 3
1 2 3 4

1 2 2 1 2 3 3 3 2

1 1
( ) ( )

dp L L R R R
q q p p

dt C L C C L L L L RC
= + − + − + −

                                                                            (−)  

4
2 4

2 2

1 1dp
q p

dt C RC
= −                                         (−) 

Where ip , ( 1,2,3,4i = ) and iq , ( 1,2i = ) are 

pressure and flux respectively as shown in Fig. 5  and 

equation (4-5, 5-6 and 6). We assume 

1 2 2 3 4, , , ,q q p p p  as states and 
sp  is the output 

pressure of pump that we assume it constant and as an 

input. 

 

3. SENSOR FAULT MODELLING AND AUGMENTATION 

In this section, sensory soft faults (biases, drifts, and 

scaling factors) are modeled in the form of state space 

model and then they are augmented to the motor and 

pump state space models. Finally, a general augmented 

model is introduced. 

3.1. Soft faults in sensors 

All type of sensors are disturbed with the 

following sensory faults which are referred to as soft 

faults [21], [10]: 

• Bias: A constant offset from the nominal sensor 

signal statistics. It is the sensor output at zero 

input. Bias can occur due to incorrect 

calibration physical changes in the sensory 

system.  

• Drift: A time-varying offset from the nominal 

statistics of the sensor signal. 

• Scaling factor: Magnitudes are scaled by a 

factor where the waveform itself does not 

change. 

Accordingly, a general sensor output model has the 

following form [20]: 

 

(1 ) ( )m f tS s S b t= + +                                    () 

 

Where, 
mS  is the sensor’s measured output,

tS  is 

the true value of the quantity that the sensor is 

measuring and is corrupted by the scale factor error fs  

and the bias ( )b t .The bias term, ( )b t has the following 

form: 

 

 
0 1( ) ( ) ( )b t b b t n t= + +                                      () 
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The term 0b  represents constant offset or bias, 

1( )b t  represents time varying offset or sensor drift, and 

the term ( )n t represents the measurement noise. If the 

values of the variable fs  and the components of  ( )b t

are identified, the true value of tS  can be extracted 

from the measurement. They can be computed online 

using an estimator (in this paper EKF) as a part of state 

estimation system. It should be mentioned that the value 

of bias is sometimes listed on the data sheet. The main 

challenge is to determine 
1( )b t . To this end, it is crucial 

to have a model of its time variations. A Gauss–Markov 

process with an additive wide-band noise 
1b , is 

introduced as an appropriate model for drift in [23] as 

follows: 

 

 
11 1

1
( ) ( ) bb t b t 


= − +&                                               () 

 

Where,   is the process time constant [13].  

Moreover, since bias and scaling factor are 

constants, they can be modeled by the following static 

state space model with additive noises, 
0b and, 

fs  , 

respectively: 

 

00 ( ) bb t =&                                                                 ()

 
( )

ff ss t =&                                                              () 

 

3.1. Current Sensor Soft Fault Modeling and 

Augmentation to Motor Model 

In this subsection, according to the introduced 

modeling of the soft faults in equations (8)-(12), firstly, 

the faults in the current sensors are modeled and then 

they are augmented to the introduced motor model in 

equations (2) and (3). In our introduced system, we are 

using three current sensors, one for each phase. After 

coordinate transformation from ( , , )a b c  to ( , )  , 

they are mathematically transformed to two current 

sensors and their corresponding fault models are as 

follows: 

 

0 1(1 ) ( ) ( )
i i i i im f t iS s S b b t n t

    

= + + + +

                                                                              (−) 

0 1(1 ) ( ) ( )
i ii i i i

m f tS s S b b t n t
    

= + + + +

                                                                              (−)

00 ( )
i ibb t
 

=&                                                       (−) 

 
00 ( )

i ibb t
 

=&                                                    (−)

11 1

1
( ) ( )

i i ib

i

b t b t
  






= − +&
                                (−) 

  
11 1

1
( ) ( )

i i ib

i

b t b t
  






= − +&                               (−) 

( )
i fi

f ss t
 

=&                                                 (−) 

 ( )
i fi

f ss t
 

=&                                               (−) 

Where, 
imS


 and 
imS


 are the sensor’s measured 

outputs of i


and i


. 
it

S


and 
it

S


 are the true values 

of the quantities which are corrupted by the scale factors 

of 
if

S


and 
if

S


 , offsets of 0i
b



and 0i
b


,  drifts of 

1i
b



and 1i
b


 and noises of in


 and in


 which are zero 

mean Gaussian measurement noises. (.)  refers to 

process time constants and (.)  refers to zero mean 

Gaussian noise. Thus biases, drifts and scaling factors of 

current sensors are generally modeled as follows:   

 

1 1 1 1( ) ( ) ( )x t A x t t= +&                                     (−)

1 1 1 1( ) ( )y C x t t= +                                            (−) 

 

Where, 6

1x   is system state with the following 

parameters: 

 

1 0 1 0 1

T

i i fi i i fix b b s b b s
     

 =
                () 

 

And, 2

1 [  ]
i i

T

m my S S
 

=   is system output.

( )t  and ( )t
 
are zero mean Gaussian process and 

measurement noises which are mutually uncorrelated. 

Besides: 

 

1 2

1
1 1diag(0, ,0,0, ,0)

i i

A
 

= − −                   () 

Besides, 

                                           

1

1 1 0 0 0

0 0 0 1 1

i
C

i





 
=  

 

                            () 
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Now, sensory faults are augmented to the motor 

model. The motor model is nonlinear and after 

linearization, the following general continuous time 

linear model is obtained: 
 

 ( ) ( ) ( ) ( )T T T T T Tx t A x t B u t t= + +&               (−) 

 
( ) ( )T T T Ty C x t t= +                                        (−) 

 

Where, 11

Tx   is system state with the following 

parameters: 

                    

0 1 0 1[ ]T

T i i fi i i fix i i b b s b b s
          =

       
                                                                           () 

3

Tu   is system input:      

[ ]
T

T Lu v v T =                                              () 

 

And, 3

Ty   is system output which shows the 

sensor measurements.
 

( )T t  and ( )T t
 
are process 

and measurement noises which are zero mean Gaussian 

noises. Moreover: 
 

11

22 11 11

0

0
T

A
A

A


 
=  

 
                                            () 

 

Where 

 

11

0

0

0

0

M

M

t t t t f

a bc b b

a b bc b

L c cA

L c c

kc kc kc i kc i kc









   

 

 

 

 

 

− 
 

− − −
 
 − − −=
 

− 
 − − 

 

 

and 22 1A A=  is defined in Equation (15) and other 

parameters are introduced in Equations (2) and (3). 

Moreover: 

 

11

21 11 3

T

B
B

B


 
=  

 
                                                          () 

 

Where 

 

11

0 0

0 0

0 0 0

0 0 0

0 0

d

d

B

k

 
 
 
 =
 
 
 − 

   21 6 3
0B


=    

 

Where ,d k are constants as presented previously. 

Besides: 

                           

1 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0

T

i

C i





 
 

=
 
  

                                                                                  () 

Discretizing the state space model, the following is 

obtained: 

 

, 1 , ,( )T k T T k T T T kx x u k + = +  +

   () 
 

Where ,T kx   is the state vector of the process at 

time instant k , T  is the state transition matrix of the 

process from the state at k k to state at 1k + , 
,T k  is 

the associated discrete zero mean white Gaussian noise 

with the known covariance matrix of  

, ,[ ]T

T T k T kQ E  = . Observations on this 

variable can be modeled in the form; 

, , ,T k T T k T ky H x = +                                  () 

Where; ,T ky  is the sensor measurement model 

TH  is the measurement vector, ,T k  is the discrete 

measurement zero mean white Gaussian noise with the 

known covariance matrix of 
, ,[ ]T

T T k T kR E  = . 

This is again assumed to be a white noise process with 

known covariance and has zero cross-correlation with 

the process noise.        

                   

3.2.  Flow and Pressure Sensors Soft Fault Modeling 

and Augmentation to Pump Model 

In this subsection, according to the introduced 

modeling of the soft faults in equations (8)-(12), firstly, 

the faults in pressure and flow sensors are modeled and 

then they are augmented to the pump model in 

equations (7). Faulty model for pressure and flow 

sensors are presented as follow: 

 

22 2 2 2 2
0 1(1 ) ( ) ( )

q q q q qm f t qS s S b b t n t= + + + +

                                                                              (−) 
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33 3 3 3 3
0 1(1 ) ( ) ( )

p p p p pm f t pS s S b b t n t= + + + +

                  (−) 

    
02 2

0 ( )
q qbb t =&                                                 (−) 

 
03 3

0 ( )
p pbb t =&                                                    (−) 

2 12 2

2

1 1

1
( ) ( )

q qq b

q

b t b t 


= − +&                              (−

13 3 3

3

1 1

1
( ) ( )

p p pb

p

b t b t 


= − +&                             (−)

2 2

( )
q f q

f ss t =&                                                     (−) 

3 3

( )
p f p

f ss t =&                                                  (−) 

Where 
2qmS  and 

3pmS  are the measured values of 

flow and pressure according to Fig. 3. 
2q

tS  and 
3p

tS are 

the true values of the quantities which are corrupted by 

the scaling factors of 
2q

fS  and 
3pfS , biases of 

2
0q

b  

and 
3

0 p
b , time-varying drifts of 

2
1q

b  and 
3

1p
b and noises 

of 
2qn   and 

3pn which are zero mean Gaussian 

measurement noises. (.)  represent process time 

constants, 
(.)  refer to additive zero mean Gaussian 

noises. 

Thus biases, drifts and scaling factors are modeled as 

follows: 

 

2 2 2 2( ) ( ) ( )x t A x t t= +&                            (−) 

2 2 2 2( ) ( )y C x t t= +                                         (−) 

 

Where,
6

2x   is system state with the following 

parameters: 

 

2 2 3 3 32
2 0 1 0 1

T

q q fq p p fpx b b s b b s =
 

               () 

 

And,
2 3

2

2[  ]
q p

T

m my S S   is system output 

which shows the sensor measurements.
 2( )t  and 

2 ( )t
 
are process and measurement noises. Besides: 

                                                  

2 3

2
1 1diag(0, ,0,0, ,0)

q p

A
 

= − −                  () 

2

2

3

1 1 0 0 0

0 0 0 1 1

q
C

p

 
=  

 
                           () 

 

Augmenting, pump and sensory soft fault models, 

the following continuous time linear model is obtained: 

 

( ) ( ) ( ) ( )T T T T Tx t A x t B u t t    = + +&             (−) 

( ) ( )T T T Ty C x t t   = +                                     (−) 

Where, 11

Tx   is system state with the following 

parameters: 

            

2 2 3 3 32
1 2 2 3 4 0 1 0 1[ ]T

T q q fq p p fpx q q p p p b b s b b s =

                                                                                  () 
1

Tu   is system input:  

T su p =                                                                  () 

And, 2

Ty   is system output which shows the 

sensor measurements.
 

( )t  and ( )t   are process and 

measurement noises with Gaussian probability 

distribution. 

 

11

22 11 11

0

0
T

A
A

A


 
 =   

                                      () 
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 
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And 22 2A A =  is defined in Equation (28) and other 

parameters are defined in Section 2.2.  Besides, 

 

2

3

0 1 0 0 0 1 1 0 0 0

0 0 0 1 0 0 0 0 1 1
T

q
C

p

 
 =  

 

                                                                                  () 

 

Discretizing the state space model, the following is 

obtained: 

 

, 1 , ,( )T k T T k T T T kx x u k +
     = +  +                () 
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Where ,T kx   is the state vector of the process at 

time instant k , T  is the state transition matrix of the 

process from the state at k k to state at 1k + , 
,T k  is 

the associated discrete zero mean white Gaussian noise 

with the known covariance matrix of  

, ,[ ]T

T T k T kQ E    = . Observations on this 

variable can be modeled in the form; 
 

, , ,T k T T k T ky H x    = +                                  () 

Where;  ,T ky  is the sensor measurement model 

TH   is the measurement vector, ,T k   is the discrete 

measurement zero mean white Gaussian noise with the 

known covariance matrix of 
, ,[ ]T

T T k T kR E    = . 

This is again assumed to be a white noise process with 

known covariance and has zero cross-correlation with 

the process noise.  

                         

4. SIMULATION RESULTS 

In this part of article, simulation results are provided 

to demonstrate the effectiveness of our proposed 

method. To this purpose, Extended Kalman filtering 

(EKF) ([25]) is employed to the system introduced in 

Section 3. Values of the model parameters in our 

simulation are summarized in Table 1. 

 

 

 

 

 

 

Table 1. Kalman Filter Recursive Algorithm. 
Parameter Values Parameter Values 

sR
 

10.9   p   2   

rR   
20.69   J   0.089   

sL   1H   
1L   

0.5m   

rL   
3H   

2L   1 m   

ML  
0.007857H 3L  1 m  

g
 

29.8m s   
s   2 2*0.5 m 


 0.00001   A  

2 2*0.1 m 
R  1 / (min* )lit bar

 
,i i 

   300s  

1 2 3, ,R R R
 

30   
2 3
,q p 

 

10s  

 

System and measurement noise parameters for 

motor and pump are selected as follows: 

 

3 3 3 3 3 7 2 7 7 2 7

 

diag(5 10 ,8 10 ,5 10 ,8 10 ,5 10 ,10 ,10 ,10 ,10 ,10 ,10 )

T T
Q Q

− − − − − − − − − − −


= =

    

   

diag(0.02, 0.0225, 0.02)
T

R =       

4
10 diag(1,1)

T
R

−
=       

Fig. 7 Estimations the system state estimate 

compared to real (simulated) values for engine 

modeling. Appraisal of sensory soft faults compared to 

the true values are indicated in Fig. 8.  

 

 

Fig. 7. Appraisal of states of The motor system: , , , ,i i      . 
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Fig. 8. Estimation of sensor faults (bias , drift, and scaling factor terms for two current sensors). 

 

Fig. 9 Demonstrates evaluations of the state of the 

system compared to the actual simulated values for 

pump modeling. Appraisal of sensory soft errors 

compared to actual values is indicated in Fig. 10. 

 

Fig. 9. Estimation of states of the pump system: 
1 2 2 3 4, , , ,q q p p p . 
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(a) Flow sensor 

 

(b) Pressure sensor 

Fig. 10. Estimation of sensor faults (bias ,drift and scaling factor terms for and pressure sensors). 

 

5. EXPERIMENTAL RESULTS 
In this section, experimental results are provided to 

demonstrate the effectiveness of our proposed method. 

The employed experimental setup is depicted in Fig. 2. 

Data is transferred to a computer via an ADVANTECH 

PCI-1711 data card with the minimum frequency of 
410−  Hz. Fig. 11 and Fig. 12. depict the results. 

Because of providing a scalar assessment for the 

prediction performance, the Root Mean Square Error 

(RMSE) was used. It is formulated as follows: 
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N
T

k

RMSE e k e k
N =

=                                 () 

Which ˆ( ) ( ) ( )e k x k x k= − , N  indicates the total 

number of parables. The RMSE is obtained for one 

round algorithm implemented in Table 2.  

Which refers to the total number of samples. The 

RMSE is obtained for a round algorithm implemented 

in Table 2. 
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Fig. 11. Estimation of sensor faults (bias ,drift and scaling factor terms for and pressure sensors). 

 

 

Fig. 12. Estimation of sensor faults (bias, drift and scaling factor terms for and pressure sensors). 

 

 

Table 2. The RMSE  values for simulation data. 

System RMSE 

motor 0.0024 

 

pump 

 

0.0247 

 

motor with sensor faults 

 

0.0058 

 

pump with sensor faults 

 

0.0581  

6. CONCLUSIONS 

In this article, a fault identification and detection 

method for evaluating system states and soft sensory 

faults is presented simultaneously. For this purpose, we 

first proposed a mathematical model for the pump 

system using the electrical analogy method. Then, soft 

sensory faults including biases, drifts and scaling factors 

were modeled and added to the system state space 

model. The nonlinear model of the induction motor was 

linearized for use in the Extended Kalman filter. 

Ultimately, the method was appraised  simulation and 

experimental data. 
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