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ABSTRACT: 

This paper presents Circuit Models which are developed for the analysis of the radiated and conducted susceptibilities 

of nonuniform shielded coaxial cables. In order to obtain the voltage and current distributions, a two-step procedure is 

performed. First, the cables are subdivided into several uniform sections. Second, the Branin’s mode is used to obtain 

the voltage and current distributions. This model can be used directly in the analysis of both time-domain and 

frequency-domain, and  it has the ability to be used without the need of setting the preconditions for  charges which 

are applied to its ends. In this paper, three examples of applications in the time and frequency domains are presented in 

order to validate our model. The first example focuses on a coaxial shielded cable to analyze both the conducted and 

radiated immunity, while the second example focuses on a nonuniform coaxial shielded cable. The third example 

presents a complex configuration of a coaxial cable which has been exposed to an electromagnetic field incident. 

Finally, the performed simulations and obtained results will be thoroughly described and analyzed.  

KEYWORDS: Shielded Coaxial Cables, Branin's Model, Radiated Susceptibility, Conducted Susceptibility, Incident 

Electromagnetic Field. 

1. INTRODUCTION

Coaxial shielded cables are often inserted in wired

communication systems to protect the data being 

transferred through the cable from degradation by 

electromagnetic interference (EMI) exposure. 

Electromagnetic field coupling from ambient radiation 

onto coaxial shielded cables can reduce the 

performance of a circuit or even cease its functioning 

altogether. Therefore, the prediction of the 

susceptibility of coaxial shielded cables will be 

advantageous for a good optimization of system design.  

Many techniques are established to determine the 

equations of the lines, in both the frequency and time 

domains. One of these techniques consists of the 

traditional cascading technique which enables line 

demonstrating in the form of RLCG (Resistance, 

Inductance, Capacitance and Conductance) equivalent 

circuit model. This technique can also be used in the 

case of Multiconductor Transmission Lines (MTLs) 

[1], however this would make the equivalent scheme 

more complicated. In addition, it ends up in oscillations 

to temporal responses and also requires a considerable 

time for calculation, rendering it pointless.  

Recently, Circuit models for MTLs with or without 

shields have been an essential subject among research. 

One of the examples is the method that Caniggia and 

Maradei [2] presented in their latest research and which 

has enabled them to analyze the conducted immunity of 

coaxial cables. In addition, they have also  introduced 

spice models in order to study both the radiated and the 

conducted immunity of lossless shielded cables [3]. The 

disadvantage of this method is that it requires the use  of 

the inverse Fourier transform to execute the time-domain 

results. In the last few years, using Spice models, a 

fastidious focused on examination has been performed 

to analyze the conducted and the radiated susceptibilities 

of lossless [4], [5] and lossy [6], [7] shielded coaxial 

cables. The main reasons for using these models is the 

probability of using them as a part of the time and 

frequency domains, either with linear or nonlinear loads. 

https://doi.org/10.52547/mjee.16.1.9
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In all of the above analyses, it can be observed that all 

the models that are used have only studying uniform 

shielded cables. However, in practice there might be also 

many cases where the cables are nonuniform. 

In this study, an equivalent circuit model is 

presented for the analysis of both the conducted and the 

radiated susceptibilities of nonuniform shielded coaxial 

cables. Regardless of the types of loads, these models 

can be applied to study both the time and frequency 

domains. The results and interpretation of this 

simulation will be presented and compared with those 

from other methods. 

2. DESCRIPTION OF SHIELDED COAXIAL

CABLE

2.1.  Model of Shielded Coaxial Cable

The telegrapher’s equations for a coaxial shielded 

cable in the presence of external electromagnetic 

radiation, as shown in Fig. 2 can be described by[4], 

[6]:  
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Where, Csh, Lsh, Gsh and Rsh are the per-unit-lenght

-pul- capacitance, inductance, conductance and

resistance of the outer system (shield), respectively.

Vsh(z, t) and Ish(z, t) represent the voltage and the

current of the outer system, while Vw(z, t)  and Iw(z, t)
are the voltage and the current of the inner system.

Cw, Lw, Gw and  Rw are the per-unit-lenght -pul- 

capacitance , inductance, conductance and resistance of 

the inner system (wire), respectively. Zt represents the

transfer impedance, and it is given by the following 

expression [8] 

t d tZ Z j L= +  (3) 

Zd and Lt represent the diffusion term and the

inductance which aperture-penetration effects in a 

braided-shield coaxial cable, respectively. The 

formulation of both Zd and Lt in terms of the braid

weave parameters can refer to the literature [9]. In this 

work, we applied a simplified formulation [6] 

t t tZ R j L= +  (4) 

Fig. 1. Transfer impedance of a braided shield. 

Where, Rt  is the constant per-unit-length transfer

resistance of the shield. The impact of external 

radiation is represented by Vf(z, t) and If(z, t), which

are distributed sources (forcing functions). The 

comparison of the transfer impedance magnitude 

between the asymptotic and theoretical results is shown 

in Fig.1. Taylor et al. , Agrawal et al., and Rachidi [10], 

[11] have developed a  three different equivalent 

coupling formulations for the evaluation of  the 

voltages induced by an external electromagnetic field 

on a transmission line. The formula defined by Taylor 

is utilized here. In this model, the distributed sources 

are characterized with regard to the vertical and 

horizontal components of the incident electric field, 

that are provided by 

0

( , , ) (0, , )

( , , )

inc inc

f z z

h

inc

x

V E h z t E z t

E x z t dx
z

 = − 
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 (5a) 

0

( , , )

h

inc

f xI C E x z t dx
t


= −

 
 (5b) 

Where, h is the  height  of  the  line,  and 

Ez
inc(h, z, t) and Ex

inc(x, z, t) are the  horizontal  and

vertical  components  of  the  incident  electric field, 

respectively. The transmission lines can be treated 

accurately, eventhough they are nonuniform, using 

cascaded series of segments of uniform lines, with 

different characteristic parameters, as shown in Fig. 5. 

In addition, the circuit model is made for each portion 

of the uniform line using Branin's model [6]. When the 

line is above a ground plane, as exhibited in Fig.4, the 

all-out incident field is the sum total of the original 

field and the ground-reflected field. 
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Fig. 3. The parameters describing the incident field in 

the case of a uniform plane wave. 
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Fig. 4. The representation of total field : the original 

field (incident) -and the reflected field (image) 

 

 

 

Where, ex, ey and ez denote the components of the 

incident electric field vector according to  x, y , and z 

axes, and are written as: 
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We describe the polarization sort by the angle
E . If 

it equals zero, the polarization is horizontal but if it is 

equal to 90°, the polarization is vertical. In addition, the 

elevation is decided by the angle
p , with respect to the 

ground, which is referred to as the incident angle. The 
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Fig. 2. Shielded Coaxial cable excited by an incident wave over an infinite ground plane. 
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angle 
p  provides the propagation direction relative to 

the axis O, as appeared in Fig.3.  

 

𝛽𝑥 , 𝛽𝑦 and 𝛽𝑧  represent the phase constant, and are 

given by: 
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Where, v0 is the phase velocity in the space,  

Now let us consider the case where the line is 

nonuniform. In this case, the cable is subdivided into n 

fragment of a similar length Δz=λ/10. 

The general solution for the line voltages and 

currents given in (1) and (2), for each section, is as 

follows 
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In equations (13) and (14), Zcsh and Zcw denote the 

characteristic impedance of the outer and the inner 

system, respectively. 
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By using the first term of the Taylor series 

expansion, Eq. (15) then becomes: 
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Fig. 5. (a) Coaxial line is approximated by cascaded 

series of sections of (b) uniform lines. 
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In this case, the characteristic impedance can be 

viewed as resistance and capacity connected in series, 

as shown in Fig. 6. γsh and γw are the propagation 

constants of the outer and the inner system, 

respectively, and defined as   
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The equivalent circuit represented in Fig. 7 can be 
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obtained from the equations (13), (14) and (16). 

Additionally, due to  the radiated immunity, the 

generators 'forced' of voltage and current IFT and VFT, 

which represent  the distribution sources, ought to be 

included at the terminal. 
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Fig. 7. Equivalent Circuit Model for Radiated Immunity of a shielded coaxial cable. 
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𝜑𝑠ℎ12(∆𝑧) are the elements of the chain parameter 

matrix, defined as 
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3.  SIMULATION RESULTS AND VALIDATION 

3.1.  Conducted Susceptibility Analysis 

In order to validate this model, some simulations 

have been carried out. Considering a coaxial cable over 

a ground plane as shown in Fig. 8, the height of the 

cable over the ground h and the length L are 1cm and 

1m, respectively. The inner wire radius rw and the 

shield radius rs are 0.25mm and 2,5mm, respectively. 

The relative permittivity is εr = 2,375. The value of the 

transfer impedance is: RT = 100mΩ/m and LT = 

0.5nH/m. The terminal loads are given by Rs1 = 1GΩ , 

Rs2 = 154,363Ω and Rw2 =  Rw1 = 44,012Ω. 

The lumped current source embraced for the 

transient analysis is a clock wave of unit amplitude 

characterized by period Tclk =20ns, rise and fall time, 

and duty cycle τ
Tclk

⁄ = 0,5.  Fig. 9 demonstrates the 

wire-to-shield voltage at the cable ends which is  

achieved by the proposed model, accompanied by the 

results obtained by the compact circuit model 

suggested in [3] and by the Finite Difference Time 

Domain (FDTD ) method. The achieved results are in 

very good agreement with those previously obtained 

using the above mentioned models and methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Configuration adopted of the simulation for 

conducted susceptibility analysis. 
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(b) 

Fig. 9. Voltage responses of the inner loads in the 

transient analysis obtained by (a) the proposed model 

(b) different methods [3]. 
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3.2.  Radiated Susceptibility Analysis 

The examination of the emanated immunity is 

carried out on the coaxial cable as appeared in Fig. 10. 

The shielding radius  and the inner wire radius are 

0,25mm and 0,108mm, respectively. The cable’s 

characteristic impedance is Zc =  50Ω, and the relative 

permittivity εr of the internal dielectric filling is 1,77. 

The value of the transfer impedance is set to  RT = 

1Ω/m and LT = 0H/m. The height h and the length L 

are 5,25mm and 1m, respectively. The internal 

conductor is adapted with Rw1= Rw2= =50Ω. The 

external field oriented along x and propagating along z 

axis (Ex–Kz) has amplitude E=1V/m. The shield is short 

circuited on the right (RS2 =0.5 Ω). 

 

 

 

 

 

 

 

 

 

Fig. 10. Configuration adopted of the simulation for 

radiated susceptibility analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 11. Current induced on coaxial cable in dBA 

obained by the proposed model (a) and analytical 

method (b)[6] (normalized to ZtEz
Tot) 

We recover the current into Dba, at the output of the 

coaxial cable, which is matched with the same results 

published by Smith [6], as shown in Fig.11. In addition, 

it is crystal clear that the line resonates at 

( )83 10
nf n


=  , n=1, 3, 5… (f1=75MHz, f2=225MHz, 

f3=375MHz…), when it is loaded with short circuit at 

far-end and open circuit at near-end. The cable shield 

should be grounded at both ends in order to eliminate 

the coupling to internal wire. 

 

3.3.  Radiated Susceptibility Analysis of Nonuniform 

Coaxial Cable 

Considering a lossy and nonuniform shielded 

coaxial cable of 1m length above a perfectly 

conducting ground plane (PEC), and excited by an 

incident plane wave, as illustrated in Fig. 12. The inner 

wire radius 𝑟𝑤 and the shield radius 𝑅𝑠ℎ are 0,108mm 

and 0,25mm, respectively. The cable’s characteristic 

impedance is 𝑍𝑐 =50Ω, with dielectric constant 𝜀𝑟 = 

1,77. α that is the angle between the cable and the 

ground plane. The value of the transfer impedance is 

set to 𝑅𝑇 =1Ω/m and 𝐿𝑇 = 0H/m. The terminations of 

the wire are 𝑅1 = 50Ω and 𝑅2 =50Ω. The external field 

oriented along x and propagating along z axis (Ex − kz) 

has amplitude E=0,5V/m. 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Nonuniform Coaxial shielded cable over a 

perfectly conducting ground. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Far-end voltages for coupled nonuniform 

shielded coaxial cable for Rsh1=Rsh2=1Ω. 
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Fig. 14. Far-end voltages for coupled nonuniform 

shielded coaxial cable for Rsh1=1GΩ & Rsh2=1Ω. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Maximum amplitude variation as a function of 

the angle α for R1=R2= 50 Ω. 
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It is observed that in all cases, the line resonates at 

 𝑓𝑛 = n (3 × 108

λ⁄ ) , n=1, 3, 5… (f1=75MHz, 

f2=225MHz, f3=375MHz…), when the shield load is 

open at the near-end. The value chosen here of the open 

circuit resistance is 1GΩ. However, the line resonates 

at  𝑓𝑛 = n (3 × 108

λ⁄ ) , n=2,4,6…(f1=150MHz, 

f2=300MHz, f3=450MHz…), with the presence of a 

short circuit at the ends. Moreover, It is noted that  all 

resonance are practically removed when  α=0, and the 

internal immunity is decreased by  less  than 40dB. 

It is noticed from Fig. 15 that the tension is 

increased when the angle reaches 90°, and it is 

decreased as the angle leans to 0° and 180°. Therefore, 

it is observed that there is an asymmetry when the 

angle is 90°. 

 

3.4.  Radiated Susceptibility Analysis of Complex 

Configuration of Coaxial Cable 

Fig. 16 shows a nonuniform coaxial cable excited 

by an incident plane wave, while the incident field 𝐸 = 

1V/m. The shield radius 𝑅𝑠ℎ and the inner wire radius 

𝑟𝑤  are 1,5mm and 0,25mm, respectively, with dielectric 

constant εr= 1,77. The length L and the initial height ℎ1 

of the cable are 2m length (𝑇1=1m, 𝑇2=0,5m and 

𝑇3=0,5m) and 1cm, respectively. The loads 𝑅1 and 𝑅2 

between the inner wire and the shield at the two 

terminations are 𝑅1 = 50Ω and 𝑅2 = 50Ω. The value of 

the transfer impedance is set to 𝑅𝑇 = 0,01Ω/m and 

𝐿𝑇 =1nH/m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

Fig. 16. (a) A nonuniform shielded coaxial cable excited by an incident field (b) Electrical schema used for simulation. 
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Fig. 17. The voltages at the loads of far-end. 

 

Fig. 17 demonstrates the voltages at loads of far-end 

and near-end of the inner wire induced by external 

fields. The simulation results confirm that the best 

solution for low-frequency disruptions is the grounding 

of the cable shield on just one side. In addition, due to 

the cable resonances high disruption tops occur at high 

frequencies. The suggested circuit models display the 

following advantages: They can be applied in both the 

frequency and time domains, and the Inverse Fourier 

Transform (IFT) is not required to get the time domains 

outcomes. 

 

4.  CONCLUSION 

The main purpose of this paper is to present 

equivalent circuit models of nonuniform shielded 

coaxial cables to analyze the radiated susceptibility. 

First, the cable is subdivided into several uniform 

sections. Second, the voltage and current distributions 

are determined by using Branin’s model. Furthermore, 

the main advantage of these models is the ability to be 

used directly in time and frequency domain analysis. It 

should be noted, as well, that the proposed circuit 

model is also used for linear and nonlinear loads. To 

sum up, it is possible to extend the models to 

nonuniform, multiconductor shielded cables. This 

question will be further discussed in more details in the 

next study.  
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