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ABSTRACT: 
Soft tissue modeling is a challenging issue in tissue engineering. Tissue is a complex environment. It is assumed to represent 

viscoelastic behavior. Therefore, a complicated process is required to model its stress-strain relationship. In this paper, a non-integer 

order model is considered for the tissue’s mechanical behavior. The order indicates the amount that the tissue tends to behave as a 

pure viscous or pure elastic material. The main goal of the paper and the main contribution is to interpret the order as a function of 

the state of the material. To this aim, an experimental estimated model is used in which the order is considered as a function of time. 

Stress and strain signals are also available as functions of time. Then, an identification process is used to obtain the direct functionality 

of the order with respect to the state of the material (i.e. the momentary stress and strain). Data are gathered through an experimental 

setup. The stress signal calculated using a force sensor is highly noisy. Hence, de-noising is necessary. However, noise elimination 

may cause losing meaningful data. Also, a slight amount of noise enhances the generalization of the trained network in the 

identification process. Accordingly, a multi-level noise reduction method is used. The method is based on Empirical Mode 

Decomposition (EMD). To obtain the optimal noise reduction level, the noise reduction process is performed level by level and the 

best levels in train and test stages are chosen. Results show that supposing an explicit functionality between the order (as the amount 

of viscoelasticity) and the state of the tissue is reasonable. Also, it is verified that multi-level de-noising significantly improves the 

identification process. 
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1.  INTRODUCTION 

Soft tissue modeling is still a challenging issue 

among both medicine and engineering researchers. The 

topic was firstly investigated in developing virtual 

surgery simulators [1]. An accurate model of soft tissue 

resembling the actual behavior would strongly enhance 

the quality of the learning process for beginners. 

Afterward, soft tissue modeling found a vast variety of 

applications, including needle insertion [2], blood 

sampling [3], seed planting [4-6], etc., where a needle 

must be inserted into the tissue to perform an operation. 

Most of the recent applications need a model to provide 

the state of the tissue at each moment of the process as a 

function of time. In other words, they need a dynamic 

rather than a steady-state model. As an example, in the 

seed planting process, the seed must be placed in the 

exact position. As the needle is inserted the tissue is 

deformed, therefore, the planting spot also deviates. The 

only method leading to exact planting is to have a 

dynamic model of the tissue and predict the deviation of 

the planting spot to have a precise seed planting process 

[4].  

In a microscopic sight of view, soft tissue consists of 

two phases; liquids such as water or blood, and cell 

membranes. Accordingly, in the microscopic viewpoint, 

it is not a pure elastic or pure viscous material. The most 

common approach is to consider it viscoelastic [7-10]. 

Various approaches are used to model such a 

viscoelastic behavior. Some methods use the Kelvin-

Voigt model and model each particle using a mass-

spring equivalent [11-12]. To increase the accuracy, the 

Finite Element Method is used in several papers [12]. 

All modeling approaches consider the fact that a 

viscoelastic material behaves “between” viscous and 

elastic ones. Having an interesting interpretation for the 

word “between”, non-integer order calculus is a recent 

alternative for modeling viscoelasticity [8,13]. 

Non-integer order calculus is an old topic with recent 

applications in modeling and engineering. The non-

integer order derivation with order 𝛼 in the sense of 

Caputo is defined as [14]: 
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
− − =   is the extension of the 

factorial function to non-integer arguments. During the 

recent decades, the concept of non-integer order calculus 

was the main subject of many papers in different fields 

theoretical and practical in both theoretical and practical 

sights of view [14]. 

Technically, modeling the mechanical behavior of a 

material is equivalent to proposing an equation 

describing the stress-strain relationship [13]. As 

qualitative definitions, stress (denoted by σ) is the 

normalized force on each particle of the material, and 

strain (denoted by 𝜀) is the relative displacement of a 

particle [15]. The non-integer order stress-strain 

relationship is suggested as  

 

(2) σ = η𝐷𝑞𝜀 
 

     In which, η is a constant, however the order q may be 

varying [13,16]. The concept beyond the above 

suggestion is the fact that: 1. For a pure elastic material, 

the stress is linearly directed to the strain (or, in other 

words, to its 0th differentiation), 
0

tE ED =  =  . 2. For 

a pure viscous material the stress is linearly directed to 

the first differentiation of the strain 
1

tb bD =  = & . 

Accordingly, as an interpretation for the word 

“between”, in a viscoelastic material, the stress is 

linearly directed to the qth differentiation of the strain. 

This is the reasoning explaining Equation (2).  
The recent modeling concept has attracted 

researchers to apply identification methods to verify the 

modeling approach. In [17], a variable order diffusion 

model is used to model the tension in the cable. The 

model is compared to the real experimental data. In [18], 

data extracted from a robotics system is used to model 

soft tissue deformation. The model considers the order 

as a function of time, q=q(t), and approximates it using 

a piece-wise constant function. Then, the Genetic 

Algorithm is used to estimate the constant coefficients. 

Convergence of an adaptive order/parameter estimation 

method is proven in [13], where, a non-integer order 

model is suggested for the one-dimensional tissue 

deformation, having time-varying order. The estimation 

results are shown in Fig. 1. The data used in this paper 

for identification purposes are captured from the recent 

paper. 

In practice, considering the order as a function of 

time works. The reason is the fact that the states of the 

material are time-varying. Therefore, the order -as an 

explicit function of the states- would be, in turn, an 

implicit function of time. However, there is a significant 

drawback in considering the order as a function of time: 

The order cannot be predicted . 

 

 

 
Fig. 1. Strain, stress, estimated strain and order with 

AOPIM (Experiment number 3) [13]. 

 

The point is that the order, itself, is not a function of 

time. Therefore, it is not possible to consider a function 

with a time argument and expect it to calculate the order 

in each instant.  However, based on mechanical facts, the 

amount of viscoelasticity is dependent on the status of 

the material [19]. The status of the material is interpreted 

as the value of its stress and strain in each spot. In our 

model, it is denoted by the order, as tending the order to 

zero leads to elasticity, and order 1 implies pure 

viscosity. Therefore, the order is a function of the stress 

and strain, in each point, in each time instant. 

However, the challenge is that how this functionality 

may be found. To this aim, the former non-integer one-

dimensional model is used with the Adaptive 

Order/Parameter Identification Method (AOPIM) 

proposed in [13]. Data extracted from the experiments 

performed in [13] are used to build train and test data set. 

The AOPIM gives the stress/strain pair and the order as 

some functions of time. To remove the time argument, 

an ANFIS network is fed with the stress-strain pair of a 

training experiment as the input and the order of the 

same experiment as the output. After the network is 

trained, data extracted from another experiment is 

considered as the test dataset and the identification 

process is evaluated . 

There are 3 experiments, among which a pair is 

selected, the first is used as the training experiment and 

the second is used as the test experiment. Considering 

different combinations would show that the concept of 

considering the order as a function of the stress-strain 

pair is reasonable and the estimation process efficiently 

works. Now, having such a trained network in hand, by 

measuring the stress-strain one can estimate the order 

and therefore, predict the soft tissue deformation 
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However, as it is depicted in the top-left graph in Fig. 

1, the stress data extracted from a force sensor are 

heavily noisy. Noise plays a twofold role in training 

Neural Networks: It improves the generalization, while 

it reduces the accuracy [20]. Therefore, a certain “level” 

of de-noising may be useful in identification. 

Accordingly, different levels of de-noising should be 

considered to choose the best level, resulting in the least 

identification error. 

There are different methods for noise reduction 

[21,27,28] among which, the multi-level noise reduction 

techniques are of high interest [20]. It will be shown that 

the identification process is improved as the proper level 

of de-noising is chosen. Accordingly, the following 

procedure is taken for obtaining the amount of 

viscoelasticity of a material as a function of its state: 

1. The variable order stress-strain relationship is 

considered, where the order determines the amount of 

viscoelasticity. 

2. Extracting stress and strain as functions of time from 

several experiments, AOPIM is used to estimate the 

order as a function of time, as well. 

3. A level of de-noising is considered by which the stress 

signal is de-noised. 

4. The state of the material (momentary stress and strain 

signals) and the amount of viscoelasticity (the 

momentary order) are fed to an ANFIS network. The 

network is trained to estimate the input-to-output 

functionality. 

5. After applying a data organizing approach similar to 

the former step, another experiment is used as a test 

dataset. The test error is calculated. 

6. Steps 3 to 5 are done considering different levels of 

de-noising and the best DNL –lead to the least error 

calculated in step 5- is chosen. 

7. The whole procedure is performed by choosing 

different experiments as training and testing datasets to 

verify the modeling scheme. 

Based on the above, the rest of the paper is organized as 

follows: 

The next section investigates the Empirical Mode 

Decomposition method. Afterward, in Section 3, the 

identification process is proposed. The results are given 

in Section 4, where different choosing of the train and 

test dataset, and, the effect of de-noising level are 

discussed. Finally, Section 5 concludes the paper. 

 

2.  MULTI-LEVEL NOISE REDUCTION BASED 

ON EMPIRICAL MODE DECOMPOSITION 

(EMD) 

      Because of the measurement noise, inherited from 

the force sensor, the data express noisy behavior. The 

problem is that the power of the noise is unknown. This 

is where multi-level noise reduction idea is taken into 

account to improve modeling process. Among the 

methods used to de-noise the data, the empirical mode 

decomposition method is the most practical one, because 

it is basically data-driven and does not require special 

prior knowledge of the data compared to other methods. 

Since there is no systematic approach to determine the 

De-Noising Levels (DNL), several experiments are 

required to achieve to the appropriate level. 

      First we introduce EMD and Edited-EMD (EEMD). 

EMD is an iterative algorithm through which a signal is 

decomposed into a set of oscillatory components, 

referred to as Intrinsic Mode Functions (IMFs).  An IMF 

waveform is symmetric with respect to the local mean 

and at the same time the number of its zero-crossings and 

extrema at most equals to one. [26]. 

The EMD algorithm is as follows: 

1. Find the local extrema during a given signal 

x(t) 

2. Interpolate between the local maxima and 

minima to create the upper and lower 

envelopes of the signals.  

3. Find the mean of two envelopes derived 

from stage 2.  

𝑚1(𝑡) =  
𝑢1(𝑡) + 𝑙1(𝑡)

2
   (3) 

Where, 𝑢1(𝑡) and 𝑙1(𝑡) are the upper and 

lower envelopes of the signal, respectively. 

4. Calculate ℎ1(𝑡) = 𝑥(𝑡) −  𝑚1(𝑡) 

5. Calculate the stopping criteria for the sifting 

process, sum of difference, defined as: 

𝑆𝐷 =  ∑
|ℎ𝑗−1(𝑡) − ℎ𝑗(𝑡)|

2

ℎ𝑗
2(𝑡)

𝑇

𝑡=0

 (4) 

If 𝑆𝐷 < 𝑇𝐻𝑅, the 1st IMF has been 

derived: 𝑐1(𝑡), visit step 6, Else repeat steps 

1-5 for 𝑥(𝑡) = ℎ1(𝑡) THR is threshold level 

and frequently set between 0.2 to 0.3. 

6. Form 𝑟(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡). 

7. Check 𝑟(𝑡) for the number of extrema. If 

the number of extrema is one or less, the 

iteration is over. The original signal can be 

reconstructed by: 

𝑥(𝑡) = ∑ 𝑐𝑗(𝑡) + 𝑟(𝑡)

𝑚

𝑗=1

 (5) 

8. Else, return to step 1, by replacing 𝑥(𝑡) with 

𝑟(𝑡). 

In EMD-based de-noising strategy, the noisy signal 

first decomposed into IMFs. IMFs of the noisy signal are 

later filtered so as to get 𝑐𝑗̂(𝑡). It is the estimation of the 

IMFs of original signal (𝑐𝑗(𝑡)).  Therefore, the initial 

signal 𝑥(𝑡) are often reconstructed through 

 

𝑥̂(𝑡) = ∑ 𝑐̂𝑗(𝑡) + 𝑟(𝑡)

𝑚

𝑗=1

 (6) 



Majlesi Journal of Electrical Engineering                                                                          Vol. 16, No. 1, March 2022 

 

88 

 

 

Where 𝑟(𝑡) is the residual signal. 

In the second step of the above algorithm, cube 

spline function is employed which in the presence of 

noise it follows all the rapid and unwanted changes of 

the signal, therefore cube spline is an inflexible method 

and has no effect on noise reduction to form the upper 

and lower push curves of the signal. This paper uses a 

combination of two tricks to reduce the noise effect. The 

first is using the smooth spline function instead of using 

the cube spline function (known in the literature as the 

edited EMD method (EEMD)). A smooth spline for 𝑛 

points (𝑥1. 𝑦1) . (𝑥2. 𝑦2) . …  . (𝑥𝑛 . 𝑦𝑛)   is: 

 

(7) 

𝑆(𝑥) =  𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 +  𝛽3𝑥3

+  ∑ 𝜃𝑗(𝑥 −  𝑥𝑖)3

𝑛

𝑗=1

 

 

Where, S is a 3rd degree polynomial in each interval 
[𝑥𝑖 . 𝑥𝑖+1] with first and second order derivatives. The 

𝑆(𝑥) function must minimize the following expression: 

 

(8) 

𝐽 =  𝑝 ∑(𝑦𝑖 − 𝑆(𝑥𝑖))
2

𝑛

𝑖=1

 

              + (1 − 𝑝) ∫ (
𝑑2𝑆

𝑑𝑥2
)

2𝑥𝑛

𝑥1

𝑑𝑥 

 

The two above terms control the smoothness of the 

function, the closeness of the value of the function and 

the data points. It is done by smoothness parameter 𝑝 

which 𝑝 =  0  is a straight line with the least squares 

method and 𝑝 =  1 corresponds to a cubic spline. 

Experimentally the value (1 +
ℎ3

6
)−1 is used, where ℎ is 

the average distance between points. 

Second, although different EMD-based de-noising 

methods use different filtering techniques, like soft-

thresholding, hard-thresholding, adaptive filtering [22], 

instantaneous half period [22,23,24], in the above 

methods the noise level and the threshold level is 

estimated and new IMFs are calculated for 

reconstruction. To achieve a completely data driven 

method, based on [25] we filter out the first IMF and 

reconstruct the estimated signal using equation 6. Then, 

we apply the EEMD method to the estimated signal 

again. Thus, by applying the combination of the two 

methods to the data, the smoothness of the data increases 

and the unwanted changes caused by noise are reduced. 

The present numerical results show that using this 

strategy leads to a significant improvement. 

 

3.  IDENTIFICATION PROCESS 

In this section, as the main part of the paper, different 

levels of de-noising are considered, using the de-noising 

method explained in the previous Section and the de-

noised signals are fed to an ANFIS network. De-noising 

may be applied on both train and test inputs. 

The output of the network is the order function, 

calculated using the AOPIM. It is noteworthy to mention 

that the order is not a measurable signal in model 2 and 

it must be estimated using an estimation method. 

AOPIM is a promising estimation algorithm with 

convergence proof [13]. This is the reason it is chosen in 

this paper to provide the network output. We aim to 

verify the hypothesis that the order has a meaningful 

functionality with respect to the stress-strain pair in each 

moment. 

One approach to improve generalization error and to 

improve the structure of the mapping problem is to add 

random noise. Many studies have noted that adding 

small amounts of input noise (jitter) to the training data 

often aids generalization and fault tolerance. 

First, to depict the effect of the EEMD method, it is 

applied to some signals. Fig. 2 compares the original 

signal and its de-noised version with 1 and 2 levels of 

de-noising. Obviously, each level of de-noising removes 

a certain part of the noise exceeding the threshold power. 

 

 
Fig. 2. Noisy and de-noised stress in two levels. 

 

Now, ANFIS is fed with the input (the stress-strain 

pair) and the output (the order), extracted from different 

experiments. Fig. 3 shows the results captured by 

considering results of experiment no. 2 as the training 

dataset and testing the network using the dataset 

extracted from experiment no. 1 with two levels of de-

noising on both test and train data sets. Also, Figs. 4 to 

8 depict some different choices of train and test 

experiments . 

The figures definitely verify the main hypothesis of 

the paper. There exists a meaningful functionality 

between the order and the status of the material which is 

detectable by ANFIS 
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Fig. 3. Estimated order with ANFIS and AOIPM 

(Train: Experiment no.2. Test: Experiment no.1). 

 

 
Fig. 4. Estimated order with ANFIS and AOIPM 

(Train: Experiment no.3. Test: Experiment no.1). 

 

 
Fig. 5. Estimated order with ANFIS and AOIPM 

(Train: Experiment no.1. Test: Experiment no.2). 

 

 
Fig. 6. Estimated order with ANFIS and AOIPM 

(Train: Experiment no.3. Test: Experiment no.2). 

 

 
Fig. 7. Estimated order with ANFIS and AOIPM 

(Train: Experiment no.1. Test: Experiment no.3). 

 

 
Fig. 8. Estimated order with ANFIS and AOIPM 

(Train: Experiment no.2. Test: Experiment no.3). 
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To discuss the effect of de-noising, the identification 

procedure is run several times on several pairs of 

experiments (as train and test pair), each considers 

different levels of de-noising in the training and testing 

process, in turn. The Mean of Squared Error between the 

ANFIS output and AOPIM output (as the reference 

output) is considered as the accuracy criteria. Table 1 

shows the result. 

      The results shown in the table suggest that for the 

data gathered from the experiments 2 and 1 as the 

training and testing dataset, respectively, 2 De-Noising 

Level (DNL) for the test stress signal, because in all 

cases, the test error decreases from 0 to 2 DNL, however, 

it remains the same afterward. Training DNL is better to 

be set on 2, as well, since the training error does not 

decrease with more level of de-nosing.   

 

Table 1. The MSE between ANFIS output and AOPIM 

output (as the reference output). Train: Experiment 

no.2.  Test: Experiment no.1. 

 DNL: De-noising Level 

Train 

DNL 

Test  

DNL 
Train MSE Test MSE 

0 

0 

0.01126 

0.06528 

1 0.06421 

2 0.06269 

3 0.06269 

4 0.06269 

1 

0 

0.00872 

0.29401 

1 0.29142 

2 0.27677 

3 0.27677 

4 0.27677 

2 

0 

0.00864 

0.38191 

1 0.37914 

2 0.36057 

3 0.36057 

4 0.36057 

3 

0 

0.00864 

0.38191 

1 0.37914 

2 0.36057 

3 0.36057 

4 0.36057 

4 

0 

0.00864 

0.38191 

1 0.37914 

2 0.36057 

3 0.36057 

4 0.36057 

 

Also, it is obvious that complete de-noising reduces 

the accuracy for the test error (resembling the 

generalization accuracy). The same result is obtained 

when other sets of data are chosen. 

 

Table 2. The MSE between ANFIS output and 

AOPIM output (as the reference output). Train: 

Experiment no.2.  Test: Experiment no.3. 

 DNL: De-noising Level 

Train 

DNL 

Test  

DNL 
Train MSE Test MSE 

0 

0 

0.01126 

   0.035963 

1 0.035453 

2 0.032223 

3 0.032223 

4 0.032223 

1 

0 

0.008718 

0.076523 

1 0.073529 

2 0.057407 

3 0.057407 

4 0.057407 

2 

0 

0.008638 

0.124735 

1 0.120102 

2 0.096511 

3 0.096511 

4 0.096511 

3 

0 

0.008638 

0.124735 

1 0.120102 

2 0.096511 

3 0.096511 

4 0.096511 

4 

0 

0.008638 

0.124735 

1 0.120102 

2 0.096511 

3 0.096511 

4 0.096511 

 

Table 3. The MSE between ANFIS output and AOPIM 

output (as the reference output). Train: Experiment 

no.1.  Test: Experiment no.2. 

 DNL: De-noising Level 

Train 

DNL 

Test  

DNL 
Train MSE Test MSE 

0 

0 

0.015367 

0.383632 

1 0.284527 

2 0.265624 

3 0.265624 

4 0.265624 

1 

0 

0.011786 

0.410846 

1 0.398655 

2 0.411355 

3 0.411355 

4 0.411355 

2 

0 

0.009738 

0.550254 

1 0.521141 

2 0.550397 

3 0.550397 
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4 0.550397 

3 

0 

0.009738 

0.550254 

1 0.521141 

2 0.550397 

3 0.550397 

4 0.550397 

4 

0 

0.009738 

0.550254 

1 0.521141 

2 0.550397 

3 0.550397 

4 0.550397 

 

Table 4. The MSE between ANFIS output and AOPIM 

output (as the reference output). Train: Experiment 

no.1.  Test: Experiment no.3. 

 DNL: De-noising Level 

Train 

DNL 

Test  

DNL 
Train MSE Test MSE 

0 

0 

0.015367 

    0.38038 

1 0.258379 

2 0.183072 

3 0.183072 

4 0.183072 

1 

0 

0.011786 

0.232344 

1 0.215015 

2 0.210798 

3 0.210798 

4 0.210798 

2 

0 

0.009738 

0.330804 

1 0.289379 

2 0.296879 

3 0.296879 

4 0.296879 

3 

0 

0.009738 

0.330804 

1 0.289379 

2 0.296879 

3 0.296879 

4 0.296879 

4 

0 

0.009738 

0.330804 

1 0.289379 

2 0.296879 

3 0.296879 

4 0.296879 

 

Table 5. The MSE between ANFIS output and AOPIM 

output (as the reference output). Train: Experiment 

no.3.  Test: Experiment no.1. 

 DNL: De-noising Level 

Train 

DNL 

Test  

DNL 
Train MSE Test MSE 

0 

0 

0.017514 

0.050746 

1 0.050393 

2 0.050166 

3 0.050166 

4 0.050166 

1 

0 

0.016967 

0.072878 

1 0.072421 

2 0.072371 

3 0.072371 

4 0.072371 

2 

0 

0.015826 

0.162172 

1 0.161527 

2 0.158765 

3 0.158765 

4 0.158765 

3 

0 

0.015826 

0.162172 

1 0.161527 

2 0.158765 

3 0.158765 

4 0.158765 

4 

0 

0.015826 

0.162172 

1 0.161527 

2 0.158765 

3 0.158765 

4 0.158765 

 

Table 6. The MSE between ANFIS output and AOPIM 

output (as the reference output). Train: Experiment 

no.3.  Test: Experiment no.2. 

 DNL: De-noising Level 

Train 

DNL 

Test  

DNL 
Train MSE Test MSE 

0 

0 

0.017514 

0.062192 

1 0.051407 

2 0.050374 

3 0.050374 

4 0.050374 

1 

0 

0.016967 

0.072397 

1 0.054823 

2 0.053549 

3 0.053549 

4 0.053549 

2 

0 

0.015826 

0.077863 

1 0.054982 

2 0.053269 

3 0.053269 

4 0.053269 

3 

0 

0.015826 

0.077863 

1 0.054982 

2 0.053269 

3 0.053269 

4 0.053269 

4 

0 

0.015826 

0.077863 

1 0.054982 

2 0.053269 
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3 0.053269 

4 0.053269 

 

4.  CONCLUSION 

In this paper, a non-integer order model describing 

the stress-strain relationship of soft tissue in one 

dimension was investigated and the hypothesis that in 

such a modeling approach the order is a function of 

tissue status was considered. The tissue status refers to 

its moment stress and strain. For this purpose, ANFIS 

was used to estimate the functionality. 

To provide output in supervised training, obtained 

with AOPIM was taken into account. In this 

optimization process, the order is assumed to be variable 

with time. After training, the neural network is obtained 

as a function of stress and strain. In this process, in fact, 

the time argument is removed from the input (stress and 

strain) and output (order), and direct functionality is 

extracted. 

Noise and de-noised data were used to train the 

neural network, using the EEMD method with different 

levels. The results of various experiments showed that 

performing two levels of noise reduction in the network 

training stage leads to minimum error. On the other 

hand, in order for the trained network to be able to act 

more accurately on the test data, we need to perform 

two-level noise reduction. 

Future work may concentrate on estimating the order 

and predicting the soft tissue deformation during a 

procedure like surgery or needle insertion, using the 

approach proposed in this paper. 
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