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ABSTRACT: 

In this paper, we use a nonlinear hierarchical model predictive control (MPC) to stabilize the Segway robot. We also 

use hardware in the loop (HIL) simulation in order to model the delay response of the wheels' motor and verify the 

control algorithm. In Two-Wheeled Personal Transportation Robots (TWPTR), changing the center of mass location 

and value, the nonlinearity of the equations, and the dynamics of the system are topics complicating the control problem. 

A nonlinear MPC predicts the dynamics of the system and solves the control problem efficiently, but requires the exact 

information of the system models. Since model uncertainties are unavoidable, the time-delay control (TDC) method is 

used to cancel the unknown dynamics and the unexpected disturbances. When TDC method is applied, the results show 

that the maximum required torque for engines is reduced by 7%, and the maximum displacement of the robot has 

dropped by 44% around the balance axis. In other words, robot stability has increased by 78%. Due to the cost of 

implementing control in practice, this research runs the HIL simulation for the first time. Use of this simulation helps in 

implementing the control algorithms without approximation, and also the system response can be discussed in a more 

realistic way. 
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1.  INTRODUCTION 

With the increase in personal transportation vehicles, 

traffic congestion is growing worse in urban areas and is 

expected to aggravate over the next years. Moreover, 

there are some other serious problems such as lack of 

parking space and pollution [1]. In order to improve 

urban trip conditions, developing a smart and less 

polluting narrow vehicle can be a good idea. To achieve 

this idea, many intelligent robots and vehicles have been 

applied base on two-wheeled inverted pendulum 

(TWIP) models[2]. Such advantages of these narrow 

vehicles are the occupation of less space, the possibility 

of sharing a single lane with another narrow vehicle, 

lower emission, and flexible operation. 

Over the last 50 years, the inverted pendulum has 

been the most popular benchmark among others in 

nonlinear control theory [3]. These TWIPs have two 

wheels mounted on both sides of a chassis, with a center 

of mass above the wheel axles [4]. In this case, a DC 

motor controls each wheel independently. The control 

objective of the TWIP is to perform position or velocity 

control of the wheels, while the stability of the pendulum 

occurs around the vertical position which is an unstable 

equilibrium point. This type of systems that have 

numbers of actuators fewer than the degrees of freedom 

to be controlled is defined as under-actuated systems. 

Based on the mechanical configuration, under-actuated 

TWIPs can be categorized into a class without input 

coupling (Class A) and a class with input coupling 

(Class B). In class A, the actuator is mounted on the 

wheel and in class B the actuator is mounted on the 

pendulum or chassis [5]. The structure of the TWPTRs 

are based on Class A. The TWPTR is a device that 

transports one person at relatively low speeds. TWPTRs 

have a low-speed operation and use electric power 

systems to move. These features make this robot a 

candidate for providing short-distance trips [6]. 

TWPTR relies on the changes in driver’s gravity 

center to control the vehicle movements such as starting, 

acceleration, deceleration, stopping and so on [7]. In 

other words, the initial law for riding the TWPTR states 

that if the center of gravity (COG) leads forward, it 

makes the wheels accelerate and if it leads backward, it 

makes the wheels slow down. Essentially, the mobility 

of the TWPTR is not autonomous as the traveler is 

involved in the control [8]. 
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Consequently, TWPTR is driven by DC motors that 

are applied independently of each of the wheels, thus 

causing the system to be under-actuated. It is also subject 

to the non-holonomic constraint of no sideslip. These 

features make the stabilization of a TWPTR a 

challenging and interesting control problem. In this 

regard, linear controllers have been successfully used to 

locally stabilize the pendulum around an unstable 

upright position. These controllers have a limited region 

of stability. Nonlinear fuzzy logic and adaptive neural 

network controllers have been effectively used to 

maximize the region of stabilization. The main 

drawback of such methods is robustness [9-11]. In this 

paper, we propose a nonlinear MPC, where this process 

captures the dynamic and static interactions between 

input, output, and disturbance variables, while the 

control loop is coordinated with the calculation of 

optimum set points. In spite of these advantages, the 

success of MPC depends on the accuracy of the process 

model [12]. Clearly, according to simulation results, this 

approach is very precise and rapid compared with other 

nonlinear methods, but like the others, it cannot handle 

the unmeasurement disturbances. Since model 

uncertainties are unavoidable for actual systems, we use 

the TDC approach. TDC has been known as a robust 

controller for a long time. TDC has been recognized as 

a simple, efficient, and effective control method for 

various nonlinear plants. The idea of the TDC method is 

to use the previous dynamic information to cancel out 

uncertainties [13]. Therefore, in this paper, we use a two-

layer or hierarchical MPC as each layer covers the 

disadvantage of the other, while their advantages are 

preserved. 

On the other hand, most of the published works are 

based on theoretical analysis, and results are obtained by 

simulations. However, these controllers may not operate 

well in real-life systems. First, the controller design and 

proving stability are based on the accurate mathematical 

models without considering any uncertainties. Second, 

some of the control algorithms are too complicated to be 

implemented [5]. Hardware-in-the-loop (HIL) 

simulation represents a bridge between pure simulation 

and complete system construction by providing an 

efficient real-time and safe environment. Tests can focus 

on the functionality of the controller and verify all the 

dynamic conditions of the system [14]. In other words, 

the HIL simulation technique is a kind of real-time 

simulation where the input and output signals of the 

simulator represent the time-dependent values like a real 

process. Such a simulator allows us to test the real 

controller or embedded control system under different 

real working conditions. HIL is more reliable and 

credible in its results than numerical simulation, and it 

can also save a great deal of money and time for 

engineers or scientific institutes [15]. In this paper, an 

HIL simulation is set up for TWPTR to evaluate the real-

time hierarchical MPC with regards to their accuracy, 

computational ability, and robustness against 

disturbances and erroneous system parameters. 

This paper is organized as follows. The next section 

presents the mathematical analysis of the proposed 

control approach. In this section, first we discuss the 

dynamic equation of a TWPTR; secondly we state the 

MPC; then the TDC approach is expressed, and finally, 

the HIL simulation loop is determined. In the third 

section, the numerical and HIL simulation of the 

proposed approach is demonstrated. Finally, conclusions 

are presented. 

 

2.  MATHEMATICAL MODEL 

Before proposing the points related to the Segway 

robot modeling, the reference coordinates systems that 

make mathematical analyzing feasible are defined [16]. 

Inertial coordinates system (e-frame): The origin of 

this coordinates system is the initial position of the 

robot's motion field, whose z-axis (𝑧𝑒) is along the 

center of the earth. Its x-axis (𝑥𝑒) and y-axis (𝑦𝑒) 

directions can be tangent to the global surface of the 

earth in any direction. 

The origin of the other coordinates systems is fixed 

on the base of TWPTR. 

Navigation coordinates system (n-frame): The z-axis 

(𝑧𝑛) of this coordinates system is perpendicular to the 

surface of the ground. Its y-axis (𝑦𝑛) is along the 

direction of wheels' axle and its origin is set in its center.  

Pendulum coordinates system (p-frame): Its z-axis 

(𝑧𝑝) is in the direction of the robot's pendulum and 

attached to it across all positions. Its origin and y-axis 

(𝑦𝑝) are the same as the origin and y-axis of the n-frame. 

Wheel coordinates system (w-frame): Its y-axis (𝑦𝑤) 

is the same as the 𝑦𝑝. The x-axis (𝑥𝑤) and z-axis (𝑧𝑤) 

directions are tangent to the plate of the robot's wheel 

and rotate with it. The w-frame origin is the center of the 

wheel. 

In order to avoid unnecessary complexity of the 

equations, it is assumed that the torques produced by the 

DC motor of right (𝜏𝑤𝑅) and left (𝜏𝑤𝐿) wheels are always 

equal. So, the direction of the right and left wheels axes 

is always the same as each other. The transmission 

vector of the left wheel to the right wheel is fixed in all 

positions and conditions, and its length is equal to the 

axle length between these two wheels. 

All these four frames are demonstrated in Fig. 1. 
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Fig. 1. Coordinates Systems. 

 

2.1.  Dynamic analysis of a TWPTR 

A TWPTR is considered as Fig. 1. This robot can be 

divided into two parts: the wheels and the pendulum. 

The TWPTR's pendulum consists of a pole and motors' 

driver to support the body over the wheel making it 

balanced [17]. The p-frame of this robot can only rotate 

with respect to the y-axis. The motion field of the robot 

is assumed as a flat plane; so 𝑥𝑒 and 𝑦𝑒  can have the 

same directions as 𝑥𝑛 and 𝑦𝑛. Therefore, due to the 

equal torque of the right and left wheels, this TWPTR 

moves along 𝑥𝑒 or 𝑥𝑛 at all-time intervals. 

 

 TWPTRs' Wheel 

Since the robot moves only along the 𝑥𝑛, and the 

field of robot motion is flat, gravity acceleration is equal 

to 𝐺𝑛 = [0 0 −𝑔]𝑇, the friction force of each wheel 

is 𝐹𝑡𝑤
𝑛 = [𝑓𝑡𝑤

𝑛 0 0]𝑇, and the normal force is equal to 

𝑁𝑤
𝑛 = [0 0 𝑁𝑧𝑤

𝑛 ]𝑇 . In addition, the forces applied to 

the wheels by means of chassis are equal to 𝐹𝑤
𝑛 =

[𝑓𝑥𝑤
𝑛 0 𝑓𝑧𝑤

𝑛 ]𝑇, the torque produced by each wheel's 

motor is 𝜏𝑛𝑤
𝑛 = [0 𝜏𝑦𝑛𝑤

𝑛 0]𝑇, and the extent of 

friction torque caused by friction viscous between the 

wheels' shaft and pendulum in relation to the center of 

the wheel in the n-frame is 𝜏𝑓𝑝𝑤
𝑛 = [0 𝜏𝑓𝑦𝑝𝑤

𝑛 0]𝑇. 

Note that all of these values are expressed in the n-frame 

(in all cases, the index above any sign is the indication 

of the reference coordinates system). The mass of each 

wheel is denoted by m. So, the forces and torques exerted 

to each wheel can be modeled as Fig. 2. 

τynw
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fxw
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fzw
n

mg
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nftw

n

 
Fig. 2. Forces and Torques of the TWPTR's Wheel. 

The acceleration of each wheel is proportional to the 

sum of the exerted forces into the wheel minus the 

friction forces. 

𝑚𝑎𝑒𝑤𝑜
𝑛 = 𝐹𝑇

𝑛 − 𝐹𝑡𝑤
𝑛                                                       (1) 

In equation 1, 𝑎𝑒𝑤𝑜
𝑛  is the acceleration of the w-frame 

origin with respect to the e-frame in the n-frame. The 

total force (𝐹𝑇
𝑛) exerted on each wheel can be calculated 

as equation 2. 
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𝐹𝑇
𝑛 = 𝐹w

𝑛 + 𝑚𝐺𝑛 − 𝑁𝑛                                                   (2) 

Also, based on Fig. 3, the following equations can be 

deduced. 

𝑚𝑎𝑥𝑒𝑛
𝑛 = 𝑓𝑥𝑤

𝑛 − 𝑓𝑡𝑤
𝑛                                                       (3) 

𝑁𝑧𝑤
𝑛 = 𝑚𝑔 + 𝑓𝑧𝑤

𝑛                                                             (4) 

To convert the coordinates of a point in the n-frame 

to the e-frame, equation 5 should be used [18]. 

𝑃𝑒 = 𝐶𝑛
𝑒𝑃𝑛 + 𝑇𝑒𝑛

𝑒                                                          (5) 

In the equation 5, 𝑇𝑒𝑛
𝑒  is the transmission vector of 

the n-frame to the e-frame proposed in the e-frame, 𝐶𝑛
𝑒 

is the rotation matrix of the n-frame to the e-frame, and 

𝑃𝑒  and  𝑃𝑛 are the coordinates of one arbitrary point in 

the e-frame and the n-frame, respectively. The rotation 

matrix between these two frames is the unit matrix since 

their axes have the same directions. Only the x-axis of 

the transmission vector is variable(𝑡𝑥𝑒𝑛
𝑛 ). According to 

these conclusions, equation 5 can be rewritten as 

follows: 

𝑃𝑒 = 𝑃𝑛 + 𝑇𝑒𝑛
𝑛 = 𝑃𝑛 + [𝑡𝑥𝑒𝑛

𝑛 0 0]𝑇                             (6) 

Because of the same direction of the e-frame and the 

n-frame axes, 𝑇𝑒𝑛
𝑒  and 𝑇𝑒𝑛

𝑛  are equal. Therefore, deriving 

from equation 6, the acceleration of one point in the e-

frame, based on its acceleration in the n-frame can be 

obtained by equation 7. 

𝑎𝑒 = 𝑎𝑛 + [�̈�𝑥𝑒𝑛
𝑛 0 0]𝑇                                               (7) 

[�̈�𝑥𝑒𝑛
𝑛 0 0]𝑇 in equation 7 is the same as 𝑎𝑒𝑤𝑜

𝑛  in 

equation 1.   In other words, this acceleration is 

equivalent to the acceleration of the origin of the n-frame 

with respect to the e-frame. Since the origins of the w-

frame, the p-frame, and the n-frame are fixed in relation 

to each other, the following relation can be written. 

�̈�𝑒𝑛
𝑛 = �̈�𝑒𝑝

𝑛 = �̈�𝑒𝑤
𝑛                                                               (8) 

On the other hand, based on Fig. 3, the torque applied 

to each wheel can be written as equation 9 (only around 

the 𝑦𝑤, the torque is not zero). 

𝜏𝑦𝑛𝑤
𝑛 = 𝐼𝑤�̈�𝑦𝑛𝑤

𝑛 − 𝑟𝑓𝑡𝑤
𝑛 + 𝜏𝑓𝑦𝑝𝑤

𝑛                                            (9) 

In equation 9, the moment of each wheel around 𝑦𝑛 

is denoted by 𝐼𝑤. Also, according to the radius of the 

robot wheels, r, the distance traveled by the robot can be 

obtained by equation 10. 

𝑡𝑥𝑒𝑤
𝑛 = 𝑟𝜑𝑦𝑛𝑤

𝑛                                                                  (10) 

𝜑𝑦𝑛𝑤
𝑛  is the pitch angle of the w-frame with respect 

to 𝑦𝑛. The following relation is obtained by deriving 

equation 10. It is the most important constraint relation 

that we will use in the TDC section. 

�̇�𝑥𝑒𝑛
𝑛 = 𝑟�̇�𝑦𝑛𝑤

𝑛 →  �̈�𝑥𝑒𝑛
𝑛 = 𝑟�̈�𝑦𝑛𝑤

𝑛                                       (11) 

By replacing equation 3 and equation 11, in equation 

9 the dynamic model of each wheel can be rewritten as 

equation 12. 

𝜏𝑦𝑛𝑤
𝑛 = (

𝐼𝑤

𝑟
+ 𝑚𝑟) �̈�𝑥𝑒𝑛

𝑛 − 𝑟𝑓𝑥
𝑛 + 𝜏𝑓𝑦𝑝𝑤

𝑛                           (12) 

The friction torque between w-frame and the p-frame 

can be calculated from the equation 13, where 𝑏𝑝𝑤 is the 

viscous friction coefficient. 

𝜏𝑓𝑦𝑝𝑤
𝑛 = 𝑏𝑝𝑤(�̇�𝑦𝑛𝑤

𝑛 − �̇�𝑦𝑛𝑝
𝑛 )                                         (13) 

In the above equation, 𝜑𝑦𝑛𝑝
𝑛  is the pitch angle of the 

p-frame with respect to 𝑦𝑛. 

 TWPTR's Pendulum 

As illustrated in Fig. 2, the pendulum is connected to 

the chassis of a two-wheeled robot. The wheels' torque 

(𝜏𝑦𝑛𝑤
𝑛 ) and force (𝐹𝑤

𝑛) are equal, which according to 

Newton's third law, twice of this torque is transmitted to 

the robot pendulum by chassis (Fig. 3). 
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Fig. 3. Forces and Torques of the TWPTR's Pendulum. 
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The coordinates of the center of gravity (COG) of the 

robot in the p-frame are 𝑃𝐶𝑂𝐺
𝑃 = [𝑙 0 0]𝑇. As with 

equation 5, the coordinates of this point in the n-frame 

can be obtained through equation 14. 

𝑃𝐶𝑂𝐺
𝑛 = 𝐶𝑝

𝑛𝑃𝐶𝑂𝐺
𝑝

+ 𝑇𝑛𝑝
𝑛                                                  (14) 

Since the transmission vector between these two 

coordinates systems is zero (𝑇𝑛𝑝
𝑛 = 0), and the p-frame 

is only rotating around the 𝑦𝑛, equation 15 can be 

obtained as follows: 

𝑃𝐶𝑂𝐺
𝑛 = [

sin 𝜑𝑦𝑛𝑝
𝑛 0 cos 𝜑𝑦𝑛𝑝

𝑛

0 0 0
cos 𝜑𝑦𝑛𝑝

𝑛 0 sin 𝜑𝑦𝑛𝑝
𝑛

] 𝑃𝐶𝑂𝐺
𝑝

 →

𝑥𝐶𝑂𝐺
𝑛 = 𝑙 sin 𝜑𝑦𝑛𝑝

𝑛   , 𝑧𝐶𝑂𝐺
𝑛 = 𝑙 cos 𝜑𝑦𝑛𝑝

𝑛

               (15) 

In the above equation, 𝑥𝐶𝑂𝐺
𝑛  and 𝑧𝐶𝑂𝐺

𝑛  , are the 

coordinates of the length and height of the COG along 

the 𝑥𝑛 and 𝑧𝑛, respectively. In order to obtain the 

coordinates of this point in the e-frame, we should use 

equation 6. The results are shown in equation 16 and 

equation 17. 

𝑥𝐶𝑂𝐺
𝑒 = 𝑥𝐶𝑂𝐺

𝑛 + 𝑡𝑥𝑒𝑛
𝑛                                                             (16) 

𝑧𝐶𝑂𝐺
𝑒 = 𝑧𝐶𝑂𝐺

𝑛                                                                         (17) 

By deriving from the above relations, the COG 

acceleration is obtained easily in the e-frame. 

�̇�𝐶𝑂𝐺
𝑒 = �̇�𝑦𝑛𝑝

𝑛 𝑙 cos 𝜑𝑦𝑛𝑝
𝑛 + �̇�𝑥𝑒𝑛

𝑛 →  �̈�𝐶𝑂𝐺
𝑒 =

+�̈�𝑦𝑛𝑝
𝑛 𝑙 cos 𝜑𝑦𝑛𝑝

𝑛 − (�̇�𝑦𝑛𝑝
𝑛 )

2
𝑙 sin 𝜑𝑦𝑛𝑝

𝑛 + �̈�𝑥𝑒𝑛
𝑛

            (18) 

�̇�𝐶𝑂𝐺
𝑒 = −�̇�𝑦𝑛𝑝

𝑛 𝑙 sin 𝜑𝑦𝑛𝑝
𝑛  →

�̈�𝐶𝑂𝐺
𝑒 = −(�̇�𝑦𝑛𝑝

𝑛 )
2

𝑙 cos 𝜑𝑦𝑛𝑝
𝑛 − �̈�𝑦𝑛𝑝

𝑛 𝑙 sin 𝜑𝑦𝑛𝑝
𝑛

          (19) 

On the other hand, according to the forces exerted to 

the pendulum (Fig. 3), equation 20 is obtained (The mass 

of the pendulum is denoted by M). 

𝑀�̈�𝐶𝑂𝐺
𝑛 = 2𝑓𝑥𝑤

𝑛

𝑀�̈�𝐶𝑂𝐺
𝑛 = 2𝑓𝑧𝑤

𝑛 + 𝑀𝑔
                                                      (20) 

The pendulum torque around the 𝑦𝑛 (𝜏𝑦𝑛𝑝
𝑛 ) can be 

calculated by equation 21 (The pendulum's moment 

around the 𝑦𝑛 is denoted by 𝐼𝑝). 

𝜏𝑦𝑛𝑝
𝑛 = Ip�̈�𝑦𝑛𝑝

𝑛 + (𝑀�̈�𝐶𝑂𝐺
𝑛 )𝑧𝐶𝑂𝐺

𝑛

−(𝑀�̈�𝐶𝑂𝐺
𝑛 )𝑥𝐶𝑂𝐺

𝑛 − 𝜏𝑓𝑦𝑝𝑤
𝑛                                  (21) 

The values of 𝑓𝑥𝑝
𝑛 , 𝑓𝑧𝑝

𝑛 , 𝑥𝐶𝑂𝐺
𝑛  and 𝑧𝐶𝑂𝐺

𝑛  are 

incorporated from equations 15, 18, 19 and 20 in 

equation 21, and after the simplification, the dynamic 

model of the pendulum is obtained by equation 22. 

𝜏𝑦𝑛𝑝
𝑛 = (𝐼𝑝 − 𝑀𝑙2)�̈�𝑦𝑛𝑝

𝑛 − 2𝜏𝑓𝑦𝑝𝑤
𝑛

−𝑀𝑙 cos(𝜑𝑦𝑛𝑝
𝑛 ) �̈�𝑥𝑒𝑛

𝑛
                             (22) 

By combining dynamic models of the pendulum and 

wheel, the equation 23 is generated. 

𝜏𝑦𝑛𝑤
𝑛 = (

𝐼𝑤

𝑟
+ 𝑟𝑚 −

𝑟𝑀

2
) �̈�𝑥𝑒𝑛

𝑛 + 𝜏𝑓𝑦𝑝𝑤
𝑛

+
𝑟𝑀

2
(−�̈�𝑦𝑛𝑝

𝑛 𝑙 cos 𝜑𝑦𝑛𝑝
𝑛 + �̇�𝑦𝑛𝑝

𝑛 2𝑙 sin 𝜑𝑦𝑛𝑝
𝑛 )

               (23) 

2.2.  MPC 

The angular velocity of the pendulum can be 

measured by a tilt sensor, a gyro sensor or an 

acceleration sensor [17]. In this paper, the TWPTR 

system is used as a gyro sensor to measure the angular 

velocity of the pendulum. In other words, a gyro is 

placed such that it measures the pendulum angular 

velocity around the yn. Indeed, the magnitude of �̇�𝑦𝑛𝑝
𝑛  in 

the equations is determined by this sensor. The torque 

required to stabilize the pendulum around the upright 

position (keep 𝜑𝑦𝑛𝑝
𝑛  equal to zero) is also generated by 

the two DC motors where the shaft coupler of them is 

fixed at the center of each wheel. 

In order to control the robot, the relationship between 

the acceleration of the robot chassis and the angular 

position of the robot pendulum should be determined. To 

achieve this, by equating the equation 22 and equation 

23, the torques are eliminated, and the acceleration of the 

chassis along 𝑥𝑒 is obtained by the 𝜑𝑦𝑛𝑝
𝑛  angle, as well 

as its first and second derivatives. Constant coefficients 

in equation 24 have been defined in previous sections 

which depend on the robot's properties. 

 
�̈�𝑥𝑒𝑛

𝑛

=

((−
𝐼𝑝

2
+

𝑀𝑙2

2
+

𝑟𝑀𝑙
2

cos 𝜑𝑦𝑛𝑝
𝑛 ) �̈�𝑦𝑛𝑝

𝑛 −
𝑟𝑀𝑙

2
sin 𝜑𝑦𝑛𝑝

𝑛 (�̇�𝑦𝑛𝑝
𝑛 2

))

(
𝐼𝑤

𝑟
+ 𝑟𝑚 −

𝑟𝑀
2

−
𝑀𝑙
2

cos 𝜑𝑦𝑛𝑝
𝑛 )

 

(24) 

 

On the other hand, using the dynamic model of the 

system, the behavior of the controlled variables can be 

predicted. In MPC, in order to compute the next state 

from the real state and the inputs, one must numerically 

solve the nonlinear differential equation 24. In order to 

obtain its value, a numerical method such as the Runge-

Kutta method can be used[19]. 

The value of �̇�𝑦𝑛𝑝
𝑛  is determined by the gyro 

information in the real state (k-th sample). Using the 

Runge-Kutta method, the value of 𝜑𝑦𝑛𝑝
𝑛  can be predicted 

for the next sample time ((k+1)-th sample), while the 

value of �̈�𝑦𝑛𝑝
𝑛  is calculated for the previous sample time 
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((k-1)-th sample). Ignoring the angular acceleration in 

the current moment, �̈�𝑦𝑛𝑝
𝑛 (𝑘) can be considered equal to 

�̈�𝑦𝑛𝑝
𝑛 (𝑘 − 1). With this calculated information, the 

value of TWPTR linear acceleration for the next sample 

time is predicted. Also, the torque required for the 

wheels to stabilize the pendulum constant at the next 

sample time is calculated by equation 23. Based on these 

calculations, the value of �̇�𝑦𝑛𝑝
𝑛  for the present sample 

time is estimated. This estimation is obtained by the 

predicted linear acceleration and wheels' torque, and the 

angular position is estimated by the output of the gyro in 

the previous sample time (Fig. 4). A detailed discussion 

on MPC can be found in [12], [20]. 

 
Fig. 4. MPC for a TWPTR. 

 

2.3.  TDC 

The back electromotive force (EMF) or induced 

voltage of a DC motor, 𝑒𝑚, has a direct relationship with 

the magnetic field, 𝜙𝑓, and angular velocity of the shaft, 

�̇�𝑚. This relation is denoted by a constant factor 𝐾1 in 

equation 25. 

𝑒𝑚 = 𝐾1𝜙𝑓�̇�𝑚                                                                (25) 

𝜙𝑓 varies with the field current in a manner similar 

to the saturation characteristic of the magnetic material 

of the machine. It is a common practice to assume that 

the machine operates such that the magnetic field is 

proportional to the field current, 𝑖𝑓. As a result: 

𝜙𝑓 = 𝐾2𝑖𝑓

𝐾 = 𝐾1𝐾2
→ 𝑒𝑚 = 𝐾𝑖𝑓�̇�𝑚                                         (26) 

Meanwhile, the generated torque of the motor, 𝜏𝑚, 

can be obtained from the basic relation 
𝑃𝑚

�̇�𝑚
, where 𝑃𝑚 is 

the motor power. So the equation 27 can be concluded. 

𝜏𝑚 =
𝑒𝑚𝑖𝑚

�̇�𝑚
→ 𝜏𝑚 = 𝐾𝑖𝑓𝑖𝑚                                         (27) 

In the motor circuit model, if the magnetic field is 

modeled as a series circuit, it can be concluded that 𝑖𝑓, 

𝑖𝑚 and origin current, 𝑖, are equal. So the equation 28 is 

obtained. 

𝜏𝑚 = 𝐾𝑖2 → 𝑖 = ±√
𝜏𝑚

𝐾
                                                     (28) 

All DC motor equations are derived from [21]. The 

sign of 𝑖 is determined by the sign of 𝜑𝑦𝑛𝑝
𝑛  (If 𝜑𝑦𝑛𝑝

𝑛  is 

greater than zero, the sign will be plus, and vice versa). 

Also,  the required torque to be generated by the DC 

motor of wheels, 𝜏𝑦𝑛𝑤
𝑛 , is determined by equation 23. If 

we assume 𝜏𝑦𝑛𝑤
𝑛  is equal to 𝜏𝑚, the value of i in each 

sample time will be determined. 

 
Fig. 5. Circuit model of DC motor. 

From Fig. 5, equation 29 can be derived based on 

Newton's 2nd law. 
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𝐼𝑤�̈�𝑚 + 𝑏𝑚�̇�m = 𝜏𝑚 → 𝐼𝑤𝜃𝑚 + 𝑏𝑚�̈�𝑚 = �̇�𝑚             (29) 

𝐼𝑤 is the inertia moment of each wheel, and 𝑏𝑚 is the 

motor viscous friction constant. According to equation 

11, and given the equality of 𝜃m and 𝜑𝑦𝑛𝑤
𝑛 , the value of 

�̈�𝑚 in each sample time can be determined. 

With regard to Fig. 5, equation 30 is derived from 

Kirchhoff's voltage law. 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝐾𝑖�̇�𝑚 = 𝑉                                                  (30) 

𝑅 and 𝐿 are electric resistance and electric 

inductance of the motor, respectively. By replacing 

equation 28 in equation 30, the equation 31 is obtained. 

𝐿
�̇�𝑚

2√𝐾𝜏𝑚
+ (𝑅 + 𝐾�̇�𝑚)√

𝜏𝑚

𝑘
= 𝑉                                      (31) 

As with MPC step, the voltage required for the 

wheels' motor is determined (Fig. 6). 

 

 
Fig. 6. TDC of a TWPTR. 

A detailed discussion on MPC can be found in [22]. 

So, the hierarchical MPC method is the best approach to 

control the dynamics of the TWPTR and manage the 

disturbance of it simultaneously. The block diagram of 

this method is shown in Fig. 7. 

Mechanical 

Dynamics
Input Output

Electrical 

Dynamics

MPC TDC

+

-

+

-

 
Fig. 7. Hierarchical MPC Block Diagram. 

 

2.4.  HIL Implementation 

HIL simulation seeks to implement equations 

without any approximation. Reconstruct coefficients in 

the laboratory process are one of the advantages of this 

simulation [23]. In order to implement an HIL 

simulation, one should replace some virtual components 

in the simulation model with real components. The real 

components interact with the virtual components in real 

time to create an HIL simulation system [24]. 

Specifically, the output angular velocity of the pendulum 

as a real component is firstly measured and transmits 

data to the virtual component. Then, the response of 

different components including the output speed of the 
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wheels' motor is observed (Fig. 8). For an HIL 

simulation test bench of a TWPTR, a real component 

will be a gyro connected to the pendulum. If the resulting 

output speed of DC motors can be fully tracked by 

controlling the angle of the pendulum, the virtual 

component is then well simulated. 

 

Real 

Component

Pendulum 

Angular Velocity

Delay Calculation

Virtual 

Component

Gyro

Microcontroller Speed of Motor

 
Fig. 8. HIL simulation for a TWPTR. 

 

3.  SIMULATION RESULTS 

In this section, a TWPTR with defined dynamic 

parameters according to Table 1 is modeled. First, the 

functionality of this robot with specific inputs and 

without any controller has been investigated, then the 

efficiency of the MPC algorithm has been evaluated. 

After that, the MPC has been evaluated against 

turbulence and delayed response of the robot engines. In 

the following, the combination of MPC and TDC to 

manage disturbances has been evaluated. In the end, to 

verify results, the HIL simulation is utilized. 

Table 1. TWPTR's parameters. 

Parameters Symbol Value 
Wheel's radius r 20 cm 
Length of COG l 1 m 
Mass of wheels m 4 kg 

Mass of the robot minus the 

wheels 
M 100 kg 

Moments of wheels 𝐼𝑤 0.07𝑘𝑔𝑚2 
Robot pendulum moment 𝐼𝑝 86.67𝑘𝑔𝑚2 

Earth's gravity acceleration g 10
𝑚

𝑠2
 

Transitional torque losses 𝜏𝑓𝑤𝑝 0 
Gyro sampling frequency - 100 Hz 

 

It is assumed that a person on the TWPTR will do 

arbitrary moves to test the stability of the robot. In order 

to model the person's movements, an equation is 

considered as follows. 

�̇�𝑦𝑛𝑝
𝑛 = 5 𝑠𝑖𝑛(50𝑡) + 4 𝑐𝑜𝑠(20𝑡)                                (32) 

Two points in equation 32 must be considered. First, 

due to the robot's structure, the person's maneuverability 

is low for rotation around the 𝑦𝑛; so the coefficients of 

the terms in equation 25 are set to be larger than the 

values that occur in reality. In other words, with regard 

to this equation, the maximum rotation of a person aroud 

the y-axis is 120 °, while the maximum rotation in reality 

is far less than this value. Secondly, it is assumed that a 

person has a significant COG position change, so the 

frequency of terms in equation 32 has a large value. In 

other words, this significant change is considered for 

testing the stability of the applied control method. If no 

control is applied to the system, the angle of the p-frame 

with respect to the n-frame can be shown in Fig. 9. 

 

 
Fig. 9. The angular velocity and angular position of the 

p-frame with respect to the n-frame without any 

controller. 

 

After implementing the MPC proposed in Section 2-

2, the output waveform can be seen in Fig. 10. Indeed, 

this shape is related to the angle of the p-frame around 

the 𝑦𝑛. The minor changes in the position of the 

pendulum in Fig. 10 is because of the assumption that 

the angular acceleration in the previous and present 

sample time is considered equal. Also, this figure also 
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includes the torque input to the motors over time. 

 

 
Fig. 10. The angular position of the p-frame with 

respect to the n-frame without considering the delay 

response of wheels' motor – the torque of each wheels' 

motor. 

 

In Fig. 10, it is assumed that the DC motors generate 

the required torque in real time. In a real robot, such an 

assumption is far from the reality, so Fig. 11 displays the 

pendulum angle, considering the two sampling units for 

delay of motor response. By comparing Fig. 10 and Fig. 

11, it can be concluded that consideration of the delay 

response caused a kind of nonstablization in pendulum 

angular position. Also, the torque required for its control 

grows as demonstrated in Fig. 12. Therefore, 

implementing the TDC is important to control the 

TWPTR and decrease the maximum required torque. 

 

 
Fig. 11. The angular position of the p-frame with 

respect to the n-frame considering the delay response of 

wheels' motor – the torque of each wheels' motor. 

 

 
Fig. 12. Torque of each wheels' motor with delay and 

nondelay response and difference between them. 

 

After implementing the TDC proposed in Section 2-

3, the pendulum angular position can be seen in Fig. 13. 

By comparing Fig. 11 and Fig. 13, it can be concluded 

that applying the TDC has caused a significant reduction 

in the angular movement of the pendulum, or rather the 

maximum displacement of the robot around the balance 

axis has decreased 44%. Precisely, robot stability has 

increased by 78%. Also, the torque required for its 

control decreases as indicated in Fig. 14. 

 

 
Fig. 13. The angular position of the p-frame with 

respect to the n-frame by applying TDC - torque of 

each wheels' motor. 

 



Majlesi Journal of Electrical Engineering                                                                                Vol. 16, No. 2, June 2022 

 

112 

 

 
Fig. 14. Torque of each wheels' motor with TDC and 

without TDC and the difference between them. 

 

According to Fig. 14, when TDC method is applied 

to output of MPC, the results show a 7% reduction in the 

maximum torque required by the engines. 

In order to verify the performance of the hierarchical 

MPC method, different tests are implemented in this 

section. Firstly, a start-up procedure of TWPTR 

controller hardware is described step by step. Then, the 

motor speed delay time response is investigated. A 

comparison is provided on the responses of the TWPTR 

in the HIL simulation and the analytical simulation. 

To start up the system, real-time simulation is first 

implemented in PROTEUS. To apply this simulation, all 

electric elements are precisely connected together 

according to real controller electrical circuit of a 

TWPTR.  Thereafter, the gyro measurement data are 

sent to the microcontroller. With the initiation of the 

control process, modeled in the HIL platform, two 

virtual DC motors are turned and accelerated to the 

desired speed. When these motors reach the desired 

speed, the electrical voltage of the motors should be sent 

from the microcontroller. Because of PWM control of 

motor speed, we use encoder motor in this simulation 

and send their real-time speed to the microcontroller at 

each sample time. When the speed signal of the DC 

motors hits the set point, a digital signal is sent to the 

gyro sensor. The microcontroller checks the 

synchronization by checking the speed and phase 

differences of the gyro sensor and DC motors, as 

revealed in Fig. 15. 

 

 
Fig. 15. Electrical Circuit Simulation of a TWPTR 

 

4.  CONCLUSION 

According to the simulation results and based on the 

maximum pendulum angular position as well as the 

maximum torque applied to the motors, the system's 

response to different inputs can be stabilized rapidly and 

accurately. Although this robot has non-negligible 

nonlinearities, hierarchical MPC method control 

TWPTR considers all these nonlinearities while 

conserving the simplicity of implementation. Also, 

according to the HIL simulation results, the proper 

structure can be designed for manufacturing robots. The 

need for HIL simulation becomes clearer when changing 

the inherent properties of TWPTR in the control process 

becomes necessary. 

In two-wheeled autonomous robots, determining the 

correct position is essential. The inertial measurement 

unit (IMU) is generally used for higher precision to 

determine robot position. Measuring the rotation matrix 

between the IMU-frame and coordinates systems of the 

two-wheeled robot is necessary for robot control 

process. This issue can be an interesting topic for further 

research. 

The other interesting topic for research is the 

segway's field pressure control. Due to the structure of 

these robots, the extent of force that pulls the passenger 

during the robot movements is very important. In 

addition to its direct impact on the safety, by minimizing 

this force, the magnitude of required torque applied to 

the wheel's motor can be decreased. Eventually, by 

reducing the maximum torque, the cost of the robot will 

also be reduced. 
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