[1] Bako B & Weber M.: Efficient information dissemination in VANETs. INTECH Open Access Publisher (2011).
[2] Ranjan P & Ahirwar K.K.: Comparative study of vanet and manet routing protocols. In Proc. of the international conference on advanced computing and communication technologies (acct 2011) (No. Acct, pp978-981) (2011, January).
[3] Kumar R & Dave M.: A review of various vanet data dissemination protocols. International Journal of u-and e-Service, Science and Technology 5(3), 27-44 (2012).
[4] Hartenstein H & Laberteaux K.P.: A tutorial survey on vehicular ad hoc networks. Communications Magazine, IEEE 46(6), 164-171 (2008).
[5] Zeadally S., Hunt R., Chen Y.S., Irwin A and Hassan A.: Vehicular ad hoc networks (VANETs): Status, results, and challenges. Telecommun. Syst. 50(4), 217–241 (2012).
[6] Manvi S.S and Tangade S.: A survey on authentication schemes in VANETs for secured communication. Veh. Commun. 9, 19–30 (2017 Jul).
[7] Mishra R., Singh A and Kumar R.: VANET security: Issues, challenges and solutions. In Proc. Int. Conf. Electr., Electron., Optim. Techn. (ICEEOT). 1050–1055 (2016, Mar).
[8] Cui J., Wei L., Zhang J., Xu Y and Zhong H.: An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 20(5), 1621–1632 (2018 May).
[9] Al-Shareeda M.A., Anbar M., Hasbullah I.H and Manickam S.: Survey of authentication and privacy schemes in vehicular ad hoc networks. IEEE Sensors J. 21(2), 2422–2433 (2020 Jan).
[10] Xie L., Ding Y., Yang H and Wang X.: Block chain-based secure and trustworthy Internet of Things in SDN-enabled 5G-VANETs. IEEE Access 7, 56656–56666 (2019).
[11] Kumar G., Saha R., Rai M.K and Kim T.H.: Multidimensional security provision for secure communication in vehicular ad hoc networks using the hierarchical structure and end-to-end authentication. IEEE Access 6, 46558–46567 (2018).
[12] Kumar N and Chilamkurti N.: Collaborative trust aware intelligent intrusion detection in VANETs. Comput. Elect. Eng. 40(6), 1981–1996 (2014).
[13] Maier, M.W., Emery, D & Hilliard, R.: Software architecture: introducing IEEE Standard 1471. Computer 34(4), 107-109 (2001).
[14] Tomar R., Prateek M & Sastry G. H.: Vehicular Adhoc network (vanet)-an introduction. International Journal of Control Theory and Applications 9(18), 8883-8888 (2016).
[15] Azam F., Yadav S.K., Priyadarshi N., Padmanaban, S & Bansal R.C.: A comprehensive review of authentication schemes in a vehicular ad-hoc network. IEEE Access 9, 31309-31321 (2021).
[16] Cheng H & Liu Y.: An improved RSU-based authentication scheme for VANET. Journal of Internet Technology 21(4), 1137-1150 (2020).
[17] Maria A., Pandi V., Lazarus J.D., Karuppiah M & Christo M.S.: BBAAS: Block chain-based anonymous authentication scheme for providing secure communication in VANETs. Security and Communication Networks 2021 (2021).
[18] Yang M., Chen J., Chen Y., Ma R & Kumar S.: Strong key-insulated secure and energy-aware certificateless authentication scheme for VANETs. Computers & Electrical Engineering 95, 107417 (2021).
[19] Khalid H., Hashim S.J., Ahmad S. M. S., Hashim F & Chaudhary M.A.: A lightweight and secure online/offline cross-domain authentication scheme for VANET systems in Industrial IoT. PeerJ Computer Science 7, e714 (2021).
[20] Jiang H., Hua L & Wahab L.: SAES: a self-checking authentication scheme with higher efficiency and security for VANET. Peer-to-Peer Networking and Applications 14(2), 528-540 (2021).
[21] Moni S.S & Manivannan D.: A lightweight Privacy-Preserving V2I Mutual Authentication Scheme using Cuckoo Filter in VANETs. In 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC) IEEE 815-820 (2022).
[22] Wang Y., Zhang W., Wang X., Khan M.K & Fan, P.: Efficient Privacy-Preserving Authentication Scheme with Fine-Grained Error Location for Cloud-Based VANET. IEEE Transactions on Vehicular Technology 70(10), 10436-10449 (2021).
[23] Cheng Y., Xu S., Zang M., Jiang S & Zhang, Y.: Secure Authentication Scheme for VANET Based on Blockchain. In 2021 7th International Conference on Computer and Communications (ICCC), IEEE 1526-1531 (2021).
[24] Al-Shareeda M.A., Anbar M., Manickam S & Hasbullah I.H.: Towards identity-based conditional privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Access (2021).
[25] Ercan S., Ayaida M & Messai N.: Misbehavior Detection for Position Falsification Attacks in VANETs Using Machine Learning. IEEE Access 10, 1893-1904, (2021).
[26] Al-Mehdhara M & Ruan N.: MSOM: Efficient Mechanism for Defense against DDoS Attacks in VANET. Wireless Communications and Mobile Computing 2021 (2021).
[27] Alharthi A., Ni Q & Jiang R.: A privacy-preservation framework based on biometrics blockchain (BBC) to prevent attacks in VANET. IEEE Access 9, 87299-87309 (2021).
[28] Polat O.N.U.R., Koçak C.E.M.A.L & Polat H.Ü.S.E.Y.İ.N.: Recognition of DDoS Attacks on SD-VANET Based on Combination of Hyperparameter Optimization and Feature Selection. Expert Systems with Applications 117500 (2022).
[29] Parfenov, D., Bolodurina I., Grishina L and Zhigalov A.: Investigation of the effectiveness of metric classification methods in identifying attacks in VANET. In Journal of Physics: Conference Series IOP Publishing 2094(3), 032066 (2021).
[30] Maleknasab Ardakani M., Tabarzad M.A & Shayegan M.A.: Detecting Sybil attacks in vehicular ad hoc networks using fuzzy logic and arithmetic optimisation algorithm. The Journal of Supercomputing 1-33 (2022).
[31] Pattanayak B.K., Pattnaik O & Pani S.: Dealing with Sybil attack in VANET. In Intelligent and Cloud Computing, Springer, Singapore 471-480 (2021).
[32] Alladi T., Gera B., Agrawal A., Chamola V & Yu F.R.: Deep ADV: A Deep Neural Network Framework for Anomaly Detection in VANETs. IEEE Transactions on Vehicular Technology 70(11), 12013-12023 (2021).
[33] Sabbagh A.A & Shcherbakov M.V.: A Secure and Stable Routing Protocol for VANET Under Malicious Attacks. In Conference on Creativity in Intelligent Technologies and Data Science, Springer, Cham, 421-435 (2021).
[34] Bangui H., Ge M & Buhnova B.: A Hybrid Data-driven Model for Intrusion Detection in VANET. Procedia Computer Science 184, 516-523 (2021).
[35] Kolandaisamy R., Noor R.M., Kolandaisamy I., Ahmedy I., Kiah M.L.M., Tamil M.E.M & Nandy T.: A stream position performance analysis model based on DDoS attack detection for cluster-based routing in VANET. Journal of Ambient Intelligence and Humanized Computing 12(6), 6599-6612 (2021).
[36] Alhaidari, Fahd A and Alia Mohammed Alrehan. A simulation work for generating a novel dataset to detect distributed denial of service attacks on Vehicular Ad hoc NETwork systems. International Journal of Distributed Sensor Networks 17(3), 15501477211000287 (2021)
[37] Kadam N & Krovi R.S.: Machine Learning Approach of Hybrid KSVN Algorithm to Detect DDoS Attack in VANET. Machine Learning 12(7) (2021).
[38] Thilak, K., Deepa, A., Amuthan and Rajkamal S.: Mitigating DDoS attacks in VANETs using a Variant Artificial Bee Colony Algorithm based on cellular automata. Soft Computing 25(18), 12191-12201, (2021).
[39] Gaurav A., Gupta B.B., Peñalvo F.J.G., Nedjah N & Psannis K.: DDoS Attack Detection in Vehicular Ad-Hoc Network (VANET) for 5G Networks. In Security and Privacy-Preserving for IoT and 5G Networks, Springer, Cham 263-278 (2022).
[40] Bensalah F., Elkamoun N & Baddi Y.: SDNStat-Sec: a statistical defence mechanism against DDoS attacks in SDN-based VANET. In Advances on smart and soft computing, Springer, Singapore 527-540 (2021).
[41] Xie Y., Guo Y., Yang S., Zhou J & Chen X.: Security-Related Hardware Cost Optimization for CAN FD-Based Automotive Cyber-Physical Systems. Sensors 21(20) 6807 (2021).
[42] Alassery, F.: Predictive maintenance for cyber-physical systems using neural network based on deep soft sensor and industrial internet of things. Computers and Electrical Engineering 101, 108062 (2022).
[43] Huong T.T., Bac T.P., Long D.M., Luong T.D., Dan N.M., Thang B.D & Tran K.P.: Detecting cyber-attacks using anomaly detection in industrial control systems: A Federated Learning approach. Computers in Industry 132, 103509 (2021).
[44] Sharmila V.C., Aslam H.M & Riswan M.M.: Analysing and Identifying Harm Propagation of Cyber Threats in Autonomous Vehicles and Mitigation Through ANN. In Smart Trends in Computing and Communications, Springer, Singapore 405-417 (2022).
[45] Mchergui A., Moulahi T & Zeadally S.: Survey on Artificial Intelligence (AI) techniques for Vehicular Ad-hoc Networks (VANETs). Vehicular Communications 100403 (2021).
[46] Bangui H., Ge M & Buhnova B.: A hybrid machine learning model for intrusion detection in VANET. Computing 104(3), 503-531 (2022).
[47] Bakkoury, S., Ouahou S., Bah Z.: New machine learning solution based on clustering for delay-sensitive application in Vanet.
[48] Zang M & Yan Y.: Machine learning-based intrusion detection system for big data analytics in VANET. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), IEEE, 1-5 (2021).
[49] Phull N., Singh P., Shabaz M & Sammy F.: Enhancing Vehicular Ad Hoc Networks' Dynamic Behavior by Integrating Game Theory and Machine Learning Techniques for Reliable and Stable Routing. Security and Communication Networks 2022 (2022).
[50] Saleem M.A., Shijie Z., Sarwar M.U., Ahmad T., Maqbool A., Shivachi C.S & Tariq M.: Deep learning-based dynamic stable cluster head selection in VANET. Journal of Advanced Transportation 2021 (2021).
[51] Bibi R., Saeed Y., Zeb A., Ghazal T.M., Rahman T., Said R.A. ... & Khan M.A.: Edge AI-based automated detection and classification of road anomalies in VANET using deep learning. Computational intelligence and neuroscience 2021 (2021).
[52] Sepasgozar S.S & Pierre S.: An Intelligent Network Traffic Prediction Model Considering Road Traffic Parameters Using Artificial Intelligence Methods in VANET. IEEE Access (2022).
[53] Goyal A.K., Kumar Tripathi A and Agarwal G.: Security Attacks, Requirements and Authentication Schemes in VANET. International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT) 1-5, (2019), doi: 10.1109/ICICT46931.2019.8977656.
[54] Verma A., Saha R., Kumar G & Kim T.H.: The Security Perspectives of Vehicular Networks: A Taxonomical Analysis of Attacks and Solutions. Applied Sciences 11(10), 4682 (2021). https://doi.org/10.3390/app11104682
[55] Chowdhury A., Karmakar G., Kamruzzaman J., Jolfaei A and Das R.: Attacks on Self-Driving Cars and Their Countermeasures: A Survey. In IEEE Access 8, 207308-207342 (2020). doi: 10.1109/ACCESS.2020.3037705
[56] Sheikh M.S., Liang J & Wang W.: A Survey of Security Services, Attacks, and Applications for Vehicular Ad Hoc Networks (VANETs). Sensors 19(16): 3589 (2019). https://doi.org/10.3390/s19163589
[57] Molina-Masegosa R and Gozalvez J.: LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications. In IEEE Vehicular Technology Magazine 12(4), 30-39. (Dec. 2017) doi: 10.1109/MVT.2017.2752798.
[58] Cellular-Vehicle-to-Everything-C-V2X. Available online: https://internetofthingsagenda.techtarget.com/definition/Cellular-Vehicle-to-Everything-C-V2X
[59] Hamdi M.M., Audah L., Abood M.S., Rashid S.A., Mustafa A.S., Mahdi H & Al-Hiti A.S.: A review on various security attacks in vehicular ad hoc
networks. Bulletin of Electrical Engineering and Informatics 10(5), 2627~2635 (October 2021) ISSN: 2302-9285, DOI: 10.11591/eei.v10i5.3127
[60] Vamshi Krishna K and Reddy G.: A Delay Sensitive Multi-Path Selection to Prevent the Rushing Attack in VANET. 2021 5th International Conference on Information Systems and Computer Networks (ISCON), 1-7, (2021). doi: 10.1109/ISCON52037.2021.9702331.
[61] Al-Shareeda M.A., Anbar M., Hasbullah I.H and Manickam S., Survey of Authentication and Privacy Schemes in Vehicular Ad hoc Networks. In IEEE Sensors Journal 21(2), 2422-2433 (15 Jan.15, 2021). doi: 10.1109/JSEN.2020.3021731.
[62] Liang, J., Ma, M and Tan, X.: GaDQN-IDS: A Novel Self-Adaptive IDS for VANETs Based on Bayesian Game Theory and Deep Reinforcement Learning. In IEEE Transactions on Intelligent Transportation Systems. doi: 10.1109/TITS.2021.3117028.
[63] Bangui, H., Ge, M & Buhnova, B.: A hybrid machine learning model for intrusion detection in VANET. Computing, 1-29 (2021). https://doi.org/10.1007/s00607-021-01001-0
[64] Xu W., Ji X., Zhang C and Liu B.: NIHR: Name/ID Hybrid Routing in Information-centric VANET. 2020 IEEE Wireless Communications and Networking Conference (WCNC) 1-7 (2020). doi: 10.1109/WCNC45663.2020.9120459.
[65] Aboelfottoh A.A and Azer M.A.: Intrusion Detection in VANETs and ACVs using Deep Learning. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 241-245 (2022). doi: 10.1109/MIUCC55081.2022.9781691
[66] Lihua L.: Energy-Aware Intrusion Detection Model for Internet of Vehicles Using Machine Learning Methods. Wireless Communications and Mobile Computing, Hindawi (2022) 2022/05/26. https://doi.org/10.1155/2022/9865549.
[67] Mahmood J., Duan Z., Yang Y., Wang Q., Nebhen J & Bhutta M.N.M.: Security in Vehicular Ad Hoc Networks: Challenges and Countermeasures. Security and Communication Networks, 2021, Article ID 9997771, 20 (2021). https://doi.org/10.1155/2021/9997771