Document Type : Reseach Article

Authors

National Institute of Technology Kurukshetra, Kurukshetra, 136119, India

Abstract

Load frequency control is an important factor of supplying quality electricity in an interconnected power system. As a result, an optimally tuned Proportional-Integral-Derivative (PID) controller is proposed in this work to eliminate frequency errors caused by unexpected load changes while maintaining tie-line power exchange. The PID controller is tuned using several optimization techniques such as GA, PSO, SCA, and GWO. A two-area power system with Generation Rate Constraint is studied in the first instance, and a three-area thermal power system with both generation rate constraint and dead band effect is considered in the second case. In both scenarios, a PID controller is employed for each area. When compared to the results of other optimization approaches for the same integrated power system, such as Genetic Algorithm, Particle Swarm Optimization, and Sine Cosine Algorithm, the GWO-based PID controller outperforms them in both scenarios.  According to the simulation findings, the GWO technique gives better dynamic responses in terms of overshoot value, settling time, and Integral Time Absolute Error.  Finally, to evaluate the robustness of the suggested optimization strategies, sensitivity analysis is done by modifying the system parameters (turbine time constant, governor time constant, and both simultaneously) in the range of 25% from their nominal values.

Keywords

  • [1] J. Wood and B. F. Wollenberg, Power generation, operation, and control. J. Wiley & Sons, 1996.
  • [2] H. Soliman, H. E. A. Talaat, and M. A. Attia, “Power system frequency control enhancement by optimization of wind energy control system,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3711–3723, Dec. 2021, doi: 10.1016/j.asej.2021.03.027.
  • [3] I. Elgerd and C. E. Fosha, “Optimum Megawatt-Frequency Control of Multiarea Electric Energy Systems,” 1970.
  • [4] Ismayil, R. Sreerama Kumar, and T. K. Sindhu, “Automatic generation control of single area thermal power system with fractional order PID (PIλDμ) controllers,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2014, vol. 3, no. PART 1, pp. 552–557. doi: 10.3182/20140313-3-IN-3024.00025.
  • [5] P. S. Parmar, S. Majhi, and D. P. Kothari, “Load frequency control of a realistic power system with multi-source power generation,” Int. J. Electr. Power Energy Syst., vol. 42, no. 1, pp. 426–433, Nov. 2012, doi: 10.1016/j.ijepes.2012.04.040.
  • [6] G. Padhan and S. Majhi, “A new control scheme for PID load frequency controller of single-area and multi-area power systems,” ISA Trans., vol. 52, no. 2, pp. 242–251, 2013, doi: 10.1016/j.isatra.2012.10.003.
  • [7] Doolla and T. S. Bhatti, “Load frequency control of an isolated small-hydro power plant with reduced dump load,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1912–1919, Nov. 2006, doi: 10.1109/TPWRS.2006.881157.
  • [8] Arya, “Automatic generation control of two-area electrical power systems via optimal fuzzy classical controller,” J. Franklin Inst., vol. 355, no. 5, pp. 2662–2688, Mar. 2018, doi: 10.1016/j.jfranklin.2018.02.004.
  • [9] Gozde and M. C. Taplamacioglu, “Automatic generation control application with craziness based particle swarm optimization in a thermal power system,” Int. J. Electr. Power Energy Syst., vol. 33, no. 1, pp. 8–16, Jan. 2011, doi: 10.1016/j.ijepes.2010.08.010.
  • [10] K. Sahu, T. S. Gorripotu, and S. Panda, “Automatic generation control of multi-area power systems with diverse energy sources using Teaching Learning Based Optimization algorithm,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 113–134, Mar. 2016, doi: 10.1016/j.jestch.2015.07.011.
  • [11] Dash, L. C. Saikia, and N. Sinha, “Automatic generation control of multi area thermal system using Bat algorithm optimized PD-PID cascade controller,” Int. J. Electr. Power Energy Syst., vol. 68, pp. 364–372, 2015, doi: 10.1016/j.ijepes.2014.12.063.
  • [12] Sharma and L. C. Saikia, “Automatic generation control of a multi-area ST - Thermal power system using Grey Wolf Optimizer algorithm based classical controllers,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 853–862, Jun. 2015, doi: 10.1016/j.ijepes.2015.06.005.
  • [13] Demiroren and H. L. Zeynelgil, “GA application to optimization of AGC in three-area power system after deregulation,” Int. J. Electr. Power Energy Syst., vol. 29, no. 3, pp. 230–240, Mar. 2007, doi: 10.1016/j.ijepes.2006.07.005.
  • [14] C. Sahu, S. Mishra, R. C. Prusty, and S. Panda, “Improved -salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid,” Sustain. Energy, Grids Networks, vol. 16, pp. 380–392, Dec. 2018, doi: 10.1016/j.segan.2018.10.003.
  • [15] Delassi, S. Arif, and L. Mokrani, “Load frequency control problem in interconnected power systems using robust fractional PIλD controller,” Ain Shams Eng. J., vol. 9, no. 1, pp. 77–88, Mar. 2018, doi: 10.1016/j.asej.2015.10.004.
  • [16] Raju, L. C. Saikia, and N. Sinha, “Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller,” Int. J. Electr. Power Energy Syst., vol. 80, pp. 52–63, Sep. 2016, doi: 10.1016/j.ijepes.2016.01.037.
  • [17] Morsali, K. Zare, and M. Tarafdar Hagh, “Applying fractional order PID to design TCSC-based damping controller in coordination with automatic generation control of interconnected multi-source power system,” Eng. Sci. Technol. an Int. J., vol. 20, no. 1, pp. 1–17, Feb. 2017, doi: 10.1016/j.jestch.2016.06.002.
  • [18] Gupta, S. Srivastava, and J. R. P. Gupta, “A Novel Control Scheme for Load Frequency Control,” vol. 7, no. 2, pp. 31–40, 2013.
  • [19] Jagatheesan, B. Anand, S. Samanta, N. Dey, A. S. Ashour, and V. E. Balas, “Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm,IEEE/CAA J. Autom. Sin., vol. 6, no. 2, pp. 503–515, Mar. 2019, doi: 10.1109/JAS.2017.7510436.
  • [20] Guha, P. K. Roy, and S. Banerjee, “Application of backtracking search algorithm in load frequency control of multi-area interconnected power system,” Ain Shams Eng. J., vol. 9, no. 2, pp. 257–276, Jun. 2018, doi: 10.1016/j.asej.2016.01.004.
  • [21] Fathy and A. M. Kassem, “Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine,” ISA Trans., vol. 87, pp. 282–296, Apr. 2019, doi: 10.1016/j.isatra.2018.11.035.
  • [22] R. Toulabi, M. Shiroei, and A. M. Ranjbar, “Robust analysis and design of power system load frequency control using the Kharitonov’s theorem,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 51–58, 2014, doi: 10.1016/j.ijepes.2013.08.014.
  • [23] Mounica, C. D. Prasad, D. J. V. Prasad, and M. Aruna Bharathi, “Load frequency control of an isolated power system in presence of controllable energy storage devices,” Majlesi J. Electr. Eng., vol. 12, no. 2, pp. 29–38, 2018.
  • [24] Naidu, H. Mokhlis, and A. H. A. Bakar, “Multiobjective optimization using weighted sum Artificial Bee Colony algorithm for Load Frequency Control,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 657–667, 2014, doi: 10.1016/j.ijepes.2013.10.022.
  • [25] M. Ismail and A. F. Bendary, “Load Frequency Control for Multi Area Smart Grid based on Advanced Control Techniques,” Alexandria Eng. J., vol. 57, no. 4, pp. 4021–4032, Dec. 2018, doi: 10.1016/j.aej.2018.11.004.
  • [26] M. Ersdal, L. Imsland, and K. Uhlen, “Model Predictive Load-Frequency Control,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 777–785, Jan. 2016, doi: 10.1109/TPWRS.2015.2412614.
  • [27] Sun, K. Liao, J. Yang, and Z. He, “Model Predictive Control based Load FrequencyControl for Power Systems with Wind TurbineGenerators,” 2019.
  • [28] Elsisi, M. A. S. Aboelela, M. Soliman, and W. Mansour, “Model Predictive Control of Two-Area Load Frequency Control Based Imperialist Competitive Algorithm,” TELKOMNIKA Indones. J. Electr. Eng., vol. 16, no. 1, pp. 75–82, 2015, doi: 10.11591/telkomnika.v15i3.8856.
  • [29] Guo, “Application of full order sliding mode control based on different areas power system with load frequency control,” ISA Trans., vol. 92, pp. 23–34, Sep. 2019, doi: 10.1016/j.isatra.2019.01.036.
  • [30] H. Lai, A.-T. Tran, N. T. Pham, and V. Van Huynh, “Sliding Mode Load Frequency Regulator for Different-Area Power Systems with Communication Delays,” J. Adv. Eng. Comput., vol. 5, no. 2, p. 93, Jun. 2021, doi: 10.25073/jaec.202152.323.
  • [31] S. Dhillon, J. S. Lather, and S. Marwaha, “Multi Area Load Frequency Control Using Particle Swarm Optimization and Fuzzy Rules,” in Procedia Computer Science, 2015, vol. 57, pp. 460–472. doi: 10.1016/j.procs.2015.07.363.
  • [32] K. Bahgaat, M. I. El-Sayed, M. A. M. Hassan, and F. A. Bendary, “Load Frequency Control in Power System via Improving PID Controller Based on Particle Swarm Optimization and ANFIS Techniques,” Int. J. Syst. Dyn. Appl., vol. 3, no. 3, pp. 1–24, Oct. 2014, doi: 10.4018/ijsda.2014070101.
  • [33] K. Sinha, R. N. Patel, and R. Prasad, “Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System,” Int. J. Comput. Theory Eng., vol. 2, Apr. 2010.
  • [34] Shabani, B. Vahidi, and M. Ebrahimpour, “A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems,” ISA Trans., vol. 52, no. 1, pp. 88–95, 2013, doi: 10.1016/j.isatra.2012.09.008.
  • [35] S. Ali and S. M. Abd-Elazim, “BFOA based design of PID controller for two area Load Frequency Control with nonlinearities,” Int. J. Electr. Power Energy Syst., vol. 51, pp. 224–231, 2013, doi: 10.1016/j.ijepes.2013.02.030.
  • [36] Saini Narender and Ohri Jyoti, “Load Frequency Control of Multi-area Thermal Power System Using Grey Wolf Optimization,” in Control and Measurement Applications for Smart Grid, 2022, pp. 347–357.
  • [37] Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimization problems,” Knowledge-Based Syst., vol. 96, pp. 120–133, Mar. 2016, doi: 10.1016/j.knosys.2015.12.022.
  • [38] N. Alam, “Particle Swarm Optimization: Algorithm and its Codes in MATLAB Networked Microgrids View project Cochlear Implant View project”, doi: 10.13140/RG.2.1.4985.3206.
  • [39] Thede, “An introduction to genetic algorithms,” 2004. [Online]. Available: https://www.researchgate.net/publication/228609251
  • [40] Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.